Advertisement

Basic Statistics and Clinical Studies in Radiation Oncology

  • Lothar R Pilz
Living reference work entry

Abstract

In moving to the principle of evidence based medicine especially for the efficacy in diagnosis and interventional treatment in the middle of the last century, the epoch of clinical trials started and with this, statistical standards are now part of the conditions in methodological and systematic scientific approach in treating patients and improve care. Following this principle in radiation oncology, evidence based medicine relies on data sampled in strongly defined populations showing explicit characteristics of certain diseases and of healthy controls, or controls not showing these characteristics. This approach is turning away from patient centered research focusing in single or small groups of patients and will in so far enhance the experience of clinicians. That does not mean that only prospective studies are in the focus, but also a systematic retrospective look back is of importance in gaining information.

The information in this section is split into two parts (i) basic medical statistics and (ii) main issues of clinical trials. Since it is far from being complete it should be taken as a small compendium for a first reading to inform interested oncologists in a condensed way about the key aspects in medical statistics and clinical trials in radiation oncology and should be taken as an introduction and aid for further reading.

Keywords

Biometry Clinical statistics Clinical studies Statistical hypothesis Statistical testing proedures 

Literature

  1. Agresti A, Coull B. Approximate is better than ‘exact’ for interval estimation of binomial proportions. Am Stat. 1998;52:119–26.Google Scholar
  2. Al-Jundi A, Sakka S. Protocol writing in clinical research. J Clin Diagn Res. 2016;10(11):ZE10–3.PubMedPubMedCentralGoogle Scholar
  3. Anglemyer A, Horvath HT, Bero L. Healthcare outcomes assessed with observational study designs compared with those assessed in randomized trials. Cochrane Database Syst Rev. 2014;4:MR000034.Google Scholar
  4. Antoniou M, Jorgensen AL, Kolamunnage-Dona R. Biomarker-guided adaptive trial designs in phase II and phase III: a methodological review. PLoS One. 2016;11(2):e0149803.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Antoniou M, Kolamunnage-Dona R, Jorgensen A. Biomarker-guided non-adaptive trial designs in Phase II and Phase III: a methodological review. J Pers Med. 2017;7(1):pii:E1.CrossRefGoogle Scholar
  6. Austin PC. A tutorial on multilevel survival analysis: methods, models and applications. Int Stat Rev. 2017;85(2):185–203.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Begley CG, Ellis LM. Drug development: raise standards for preclinical cancer research. Nature. 2012;483(7391):531–3.PubMedCrossRefGoogle Scholar
  8. Berger ML, Martin BC, Husereau D, Worley K, Allen D, Yang W, Mullins CD, Kahler K, Quon NC, DevineS GJ, Cannon E, Crown W, on behalf of the ISPOR-AMCP-NPC Retrospective and Prospective Observational CER Task Forces. A questionnaire to assess the relevance and credibility of observational studies to inform health care decision making: an ISPOR-AMCP-NPC good practice task force report. Value Health. 2014;17(2):143–56.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Biau DJ, MD JBM, Porcher RP. Value and the theory of hypothesis testing: an explanation for new researchers. Clin Orthop Relat Res. 2010;468(3):885–92.PubMedCrossRefGoogle Scholar
  10. Black N. Why we need observational studies to evaluate the effectiveness of health care. BMJ. 1996;312:1215–8.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bland M, Peacock J. Interpreting statistics with confidence. Obstet Gynaecol. 2002;4:176–80.Google Scholar
  12. Boers M. Add-on or step-up trials for new drug development in rheumatoid arthritis: a new standard? Arthritis Rheum. 2003;48(6):1481–3.PubMedCrossRefGoogle Scholar
  13. Bolla M, Bartelink H, Garavaglia G, Gonzalez D, Horiot JC, Johansson KA, van Tienhoven G, Vantongelen K, van Glabbeke M. EORTC guidelines for writing protocols for clinical trials of radiotherapy. Radiother Oncol. 1995;36(1):1–8.PubMedCrossRefGoogle Scholar
  14. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to meta-analysis. Oxford, UK: Wiley; 2009.CrossRefGoogle Scholar
  15. Bretz F, Schmidli H, Koenig F, Racine A, Maurer W. Confirmatory seamless phase II/III clinical trials with hypotheses selection at interim: general concepts (with discussion). Biom J. 2006;48:623–34.PubMedCrossRefGoogle Scholar
  16. Bretz F, Koenig F, Brannath W, Glimm E, Posch M. Adaptive designs for confirmatory clinical trials. Stat Med. 2009;28:1181–217.PubMedCrossRefGoogle Scholar
  17. Bucher HC, Guyatt GH, Griffith LE, Walter SD. The results of direct and indirect comparisons in meta-analysis of randomized controlled trials. J Clin Epidemiol. 1997;50:683–91.PubMedCrossRefGoogle Scholar
  18. Burke JF, Sussman JB, Kent DM, Hayward RA. Three simple rules to ensure reasonably credible subgroup analyses. BMJ. 2015;351:h5651.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Buyse M, Pedbois P. On the relationship between response to treatment and survival time. Stat Med. 1996;15:2797–812.PubMedCrossRefGoogle Scholar
  20. Cameron IM, Scott NW, Adler M, Reid IC. A comparison of three methods of assessing differential item functioning (DIF) in the hospital anxiety depression scale: ordinal logistic regression, Rasch analysis and the mantel chi-square procedure. Qual Life Res. 2014;23(10):2883–8.PubMedCrossRefGoogle Scholar
  21. Chan A, Tetzlaff JM, Gøtzsche PC, Altman DG, Mann H, Berlin JA, Dickersin K, Hróbjartsson A, Schulz KF, Parulekar WR, Krleža-Jeric K, Laupacis A, Moher D. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013;346:e7586.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chen Z, Cui Y, Owonikoko TK, Wang Z, Li Z, Luo R, Kutner M, Khuri FR, Kowalski J. Escalation with overdose control using all toxicities and time to event toxicity data in cancer phase I clinical trials. Contemp Clin Trials. 2014;37(2):322–32.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chevret S. Bayesian adaptive clinical trials: a dream for statisticians only? Statist Med. 2012;31:1002–13.CrossRefGoogle Scholar
  24. CHMP (Committee for Medicinal Products for Human Use). Points to consider on multiplicity issues in clinical trials. London: EMA; 2002. www.ema.europa.eu/ema/pages/includes/document/open_document.jsp?webContentId=WC500003640Google Scholar
  25. CHMP (Committee for Medicinal Products for Human Use). Reflection paper on methodological issues in confirmatory clinical trials planned with an adaptive design. London: EMA; 2007. www.ema.europa.eu/ema/pages/includes/document/open_document.jsp?webContentId=WC500003616Google Scholar
  26. CHMP (Committee for Medicinal Products for Human Use). Guideline on the evaluation of anticancer medicinal products in man. London: EMA; 2017. http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/general/general_content_001122.jsp&mid=WC0b01ac0580034cf3Google Scholar
  27. Choi H, Charnsangavej C, Faria SC, Macapinlac HA, Burgess MA, Patel SR, Chen LL, Podoloff DA, Benjamin RS. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with Imatinib Mesylate: proposal of new computed tomography response criteria. J Clin Oncol. 2007;25:1753–9.PubMedCrossRefGoogle Scholar
  28. Chow SC, Chang M. Adaptive design methods in clinical trials. Boca Raton: Chapman & Hall/CRC; 2007.Google Scholar
  29. Chow SC, Liu J-P. Design and analysis of clinical trials. 2nd ed. New York: Wiley; 2004.Google Scholar
  30. Clopper CJ, Pearson ES. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika. 1934;26:404–13.CrossRefGoogle Scholar
  31. Cook TD, De Mets DL. Introduction to statistical methods for clinical trials. Boca Raton: Chapman & Hall/CRC; 2008.Google Scholar
  32. Crane M, Rissel C, Greaves S, Gebel K. Correcting bias in self-rated quality of life: an application of anchoring vignettes and ordinal regression models to better understand QoL differences across commuting modes. Qual Life Res. 2016;25(2):257–66.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Crowley J, Ankerst DP, editors. Handbook of statistics in oncology. 2nd ed. Boca Raton: Chapman & Hall/CRC Press; 2006.Google Scholar
  34. D’Agostino RBD, Belanger A, D’Agostino RBD Jr. A suggestion for using powerful and informative tests of normality. Am Stat. 1990;44(4):316–21.Google Scholar
  35. DeMets DL. Current development in clinical trials: issues old and new. Statist Med. 2012;31:2944–54.CrossRefGoogle Scholar
  36. DeMets DL, Pocock SJ, Julian DG. The agonising negative trend in monitoring of clinical trials. Lancet. 1999;354:1983–8.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Detry MA, Lewis RJ. The intention-to-treat principle: how to assess the true effect of choosing a medical treatment. JAMA. 2014;312(1):85–6.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Du Prel J-B, Röhrig B, Hommel G, Blettner M. Choosing statistical tests. Dtsch Arztebl Int. 2010;107(19):343–8.PubMedPubMedCentralGoogle Scholar
  39. Dumas-Mallet E, Smith A, Boraud T, Gonon F. Poor replication validity of biomedical association studies reported by newspapers. PLoS One. 2017;12(2):e0172650.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Edeline J, Boucher E, Rolland Y, Vauléon E, Pracht M, Perrin C, Le Roux C, Raoul JL. Comparison of tumor response by response evaluation criteria in solid tumors (RECIST) and modified RECIST in patients treated with sorafenib for hepatocellular carcinoma. Cancer. 2012;118:147–56.PubMedCrossRefGoogle Scholar
  41. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J. New response evaluation criteria in solid tumors: revised RECIST guideline (version 1.1). Euro J Cancer. 2009;45:228–47.CrossRefGoogle Scholar
  42. Eldridge SM, Lancaster GA, Campbell MJ, Thabane L, Hopewell S, Coleman CL, Bond CM. Defining feasibility and pilot studies in preparation for randomised controlled trials: development of a conceptual framework. PLoS One. 2016;11(3):e0150205.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Elsäßer A, Regnstrom J, Vetter T, Koenig F, Hemmings RJ, Greco M, Papaluca-AmatiI M, Posch M. Adaptive clinical trial designs for European marketing authorization: a survey of scientific advice letters from the European medicines agency. Trials. 2014;15:383.PubMedPubMedCentralCrossRefGoogle Scholar
  44. European Medicines Agency. ICH topic E8: note for guidance on general considerations for clinical trials. CPMP/ICH/291/95. London. 1998. http://www.ich.org/products/guidelines/efficacy/article/efficacy-guidelines.html
  45. European Medicines Agency. ICH topic E9: Estimands and sensitivity analysis in clinical trials, E9(R1), current step 2 version, June 16th, 2017. London. 2017. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E9/E9-R1EWG_Step2_Guideline_2017_0616.pdf
  46. FDA. Guidance for industry. Clinical trial endpoints for the approval of cancer drugs and biologics. Rockville: US Department of Health and Human Services; 2007. https://www.fda.gov/downloads/Drugs/Guidances/ucm071590.pdfGoogle Scholar
  47. FDA. Guidance for industry. Guidance for industry. Patient-reported outcome measures: use in medical product development to support labeling claims. Draft guidance. Rockville: US Department of Health and Human Services; 2009. https://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/default.htmGoogle Scholar
  48. FDA. Submission of quality metrics data. Guidance for Industry. Rockville: US Department of Health and Human Services; 2016. https://www.fda.gov/downloads/drugs/guidances/ucm455957.pdfGoogle Scholar
  49. Fleming TR. Surrogate endpoints and FDA’s accelerated approval process. Health Aff. 2005;24:67–78.CrossRefGoogle Scholar
  50. Fossâ SD, Skovlund E. Interim analyses in clinical trials: why do we plan them? J Clin Oncol. 2000;18:4007–8.PubMedCrossRefGoogle Scholar
  51. Franklin JM, Dejene S, Huybrechts KF, Wang SV, Kulldorff M, Rothman KJ. A bias in the evaluation of bias comparing randomized trials with nonexperimental studies. Epidem Method. 2017.  https://doi.org/10.1515/em-2016-0018. (in press)
  52. Friedman LM, Furberg CD, DeMets DL. Fundamentals of clinical trials. 5th ed. New York: Springer; 2015.CrossRefGoogle Scholar
  53. Gan HK, You B, Pond GR, Chen EX. Assumptions of expected benefits in randomized phase III trials evaluating systemic treatments for cancer. J Natl Cancer Inst. 2012;104(8):590–8.PubMedCrossRefGoogle Scholar
  54. Glasziou P, Chalmers I, Rawlins M, McCulloch P. When are randomised trials unnecessary? Picking signal from noise. BMJ. 2007;334:349–51.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Greco T, Zangrillo A, Biondi-Zoccai G, Landoni G. Meta-analysis: pitfalls and hints. Heart Lung Vessel. 2013;5(4):219–25.PubMedPubMedCentralGoogle Scholar
  56. Green SJ, Pauler DK. Statistics in clinical trials. Curr Oncol Rep. 2004;6(1):36–41.PubMedCrossRefGoogle Scholar
  57. Green S, Benedetti J, Crowley J. Clinical trials in oncology. London: Chapman & Hall; 1997.CrossRefGoogle Scholar
  58. Guédé D, Reigner B, Vandenhende F, Derks M, Beyer U, Jordan P, Worth E, Diack C, Frey N, Peck R. Bayesian adaptive designs in single ascending dose trials in healthy volunteers. Br J Clin Pharmacol. 2014;78(2):393–400.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Gupta SK. Intention-to-treat concept: a review. Pers Clin Res. 2011;2:109–12.CrossRefGoogle Scholar
  60. Hollen PJ, Gralla RJ, Cox C, Eberly SW, Kris MG. A dilemma in analysis: issues in the serial measurement of quality of life in patients with advanced lung cancer. Lung Cancer. 1997;18(2):119–36.PubMedCrossRefGoogle Scholar
  61. Iasonos A, O’Quigley J. Adaptive dose-finding studies: a review of model-guided phase I clinical trials. J Clin Oncol. 2014;32(23):2505–11.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Jacobsen JC, Gluud C, Wetterslev J, Winkel P. When and how should multiple imputation be used for handling missing data in randomised clinical trials – a practical guide with flowcharts. BMC Med Res Methodol. 2017;17(1):162.CrossRefGoogle Scholar
  63. Jansen JP, Trikalinos T, Cappeleri JC, Daw J, Andes S, Eldessouki R, Salanti G. Indirect treatment comparison/network meta-analysis study questionnaire to assess relevance and credibility to inform health care decision making: an ISPOR-AMCP-NPC good practice task force report. Value Health. 2014;17:157–73.PubMedCrossRefGoogle Scholar
  64. Jennison C, Turnbull BW. Group sequential methods with applications to clinical trials. Boca Raton: Chapman & Hall; 2000.Google Scholar
  65. Jennison C, Turnbull BW. Confirmatory seamless phase II/III clinical trials with hypothesis selection at interim: opportunities and limitations. Biom J. 2006;48:650–5.CrossRefGoogle Scholar
  66. Johnson PD, Besselsen DG. Practical aspects of experimental design in animal research. ILAR J. 2002;43(4):202–6.PubMedCrossRefGoogle Scholar
  67. Karnofsky DA, Abelmann WH, Craver LF, Burchenal JH. The use of the nitrogen mustards in the palliative treatment of carcinoma – with particular reference to bronchogenic carcinoma. Cancer. 1948;1(4):634–56.CrossRefGoogle Scholar
  68. Koul R, Tse R, Karreman E, Dubey A, Tai P. Overall quality of life assessment in the patients undergoing external beam radiation in outpatient radiation oncology department. Int J Hematol Oncol Stem Cell Res. 2015;9(3):122–7.PubMedPubMedCentralGoogle Scholar
  69. Kunz R, Khan KS, Kleinjen J, Antes G. Systematische Übersichtsarbeiten und Meta-Analysen. Bern: Huber; 2009.Google Scholar
  70. Laenen A, Alonso A. The functional living index-cancer: estimating its reliability based on clinical trial data. Qual Life Res. 2010;19(1):103–9.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Lai TL, Lavori PW, Shih M-L. Adaptive trial designs. Annu Rev Pharmacol Toxicol. 2012;52:101–10.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Le Tourneau C, Lee JJ, Siu LL. Dose escalation methods in phase I cancer clinical trials. J Natl Cancer Inst. 2009;101(10):708–20.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Leon AC, Davis LL, Kraemer HC. The role and interpretation of pilot studies in clinical research. J Psychiatr Res. 2011;45(5):626–9.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Lewis JA, Facey KM. Statistical shortcomings in licensing applications. Stat Med. 1998;17:1663–73.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Lin L, Chu H. Quantifying publication bias in meta-analysis. Biometrics. 2017.  https://doi.org/10.1111/biom.12817. (in print)
  76. Little RL, D’Agostino R, Cohen ML, Dickersin K, Emerson SS, Farrar JT, Frangakis C, Hogan JW, Molenberghs G, Murphy SA, Neaton JD, Rotnitzky A, Scharfstein D, Shih WJ, Siegel JP, Stern H. The prevention and treatment of missing data in clinical trials. N Engl J Med. 2012;367:1355–60.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Mandrekar SJ, Sargent DJ. Randomized phase II trials. J Thorac Oncol. 2010;5(7):932–4.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Matsuyama Y. A comparison of the results of intent-to-treat, per-protocol, and g-estimation in the presence of non-random treatment changes in a time-to-event non-inferiority trial. Stat Med. 2010;29(20):2107–16.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Matthews RA. Methods for assessing the credibility of clinical trial outcomes. Drug Inf J. 2001;35:1469–78.CrossRefGoogle Scholar
  80. Mavridis D, Salanti G. Exploring and accounting for publication bias in mental health: a brief overview of methods. Evid Based Ment Health. 2014;17(1):11–5.PubMedCrossRefGoogle Scholar
  81. Moher D, Schulz KF, Altman DG, for the CONSORT Group. The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomized trials. Ann Intern Med. 2001;134:657–62.PubMedCrossRefGoogle Scholar
  82. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62:1006–12.PubMedCrossRefGoogle Scholar
  83. Moore CG, Carter RE, Nietert PJ, Stewart PW. Recommendations for planning pilot studies in clinical and translational research. Clin Transl Sci. 2011;4(5):332–7.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Moyé LA. Multiple analyses in clinical trials: fundamentals for investigators. New York: Springer; 2003.Google Scholar
  85. Nottage M, Siu L. Principles of clinical trial design. J Clin Oncol. 2002;20(Suppl 15):42s–6s.PubMedGoogle Scholar
  86. Oken MM, Creech RH, Tormey DC, Horton J, Davis TE, McFadden ET, Carbone PP. Toxicity and response criteria of the eastern cooperative oncology group. Am J Clin Oncol. 1982;5(6):649–55.PubMedCrossRefGoogle Scholar
  87. Oron AP, Azriel D, Hoff PD. Dose-finding designs: the role of convergence properties. Int J Biostat. 2011;27(7):39.Google Scholar
  88. Osoba D. Health-related quality of life and cancer clinical trials. Ther Adv Med Oncol. 2011;3(2):57–71.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Piantadosi S. Clinical trials: a methodological perspective. 2nd ed. New York: Wiley; 2005.CrossRefGoogle Scholar
  90. Pilz LR, Manegold C. Endpoints in lung cancer trials: today’s challenges for clinical statistics. MEMO. 2013;6:92–7.CrossRefGoogle Scholar
  91. Pilz LR, Manegold C, Schmid-Bindert G. Statistical considerations and endpoints for clinical lung cancer studies: can progression free survival (PFS) substitute overall survival (OS) as a valid endpoint in clinical trials for advanced non-small-cell lung cancer? Transl Lung Cancer Res. 2012;1:26–35.PubMedPubMedCentralGoogle Scholar
  92. Pilz LR, Abel U, Pritsch M. Biometrie. In: Wannenmacher M, Wenz F, Debus J, editors. Strahlentherapie. 2nd ed. Berlin/Heidelberg: Springer; 2013. p. 353–70.CrossRefGoogle Scholar
  93. Pocock SJ. Clinical trials – a practical approach. Chichester: Wiley; 1983.Google Scholar
  94. PRISMA: Transparent reporting of systematic reviews and meta-analyses. The PRISMA Group (2009). http://www.prisma-statement.org
  95. Rodrigues FB, Duarte GS, Costa J, Ferreira JJ, Wild EJ. Meta-research metrics matter: letter regarding article “indirect tolerability comparison of Deutetrabenazine and Tetrabenazine for Huntington disease”. J Clin Mov Disord. 2017;4:19.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Rosenberger WF, Lachin JM. Randomization in clinical trials: theory and practice. New York: Wiley; 2002.CrossRefGoogle Scholar
  97. Sackett DL. Was ist Evidenz-basierte Medizin? Editorial. In: Perleth M, Antes G, editors. Evidenzbasierte Medizin. Wissenschaft im Praxisalltag. München: MMV Medizin Verlag; 1998. p. 9–12.Google Scholar
  98. Sanchez M, Chen X. Choosing the analysis population in non-inferiority studies: per protocol or intent-to-treat. Stat Med. 2006;25(7):1169–81.CrossRefGoogle Scholar
  99. Savović J, Jones H, Altman D, Harris R, Jűni P, Pildal J, Als-Nielsen B, Balk E, Gluud C, Gluud L, Ioannidis J, Schulz K, Beynon R, Welton N, Wood L, Moher D, Deeks J, Sterne J. Influence of reported study design characteristics on intervention effect estimates from randomised controlled trials: combined analysis of meta-epidemiological studies. Health Technol Assess. 2012;16(35):1–82.PubMedCrossRefGoogle Scholar
  100. Schipper H, Clinch J, McMurray A, Levitt M. Measuring the quality of life of cancer patients: the functional living index-cancer: development and validation. J Clin Oncology. 1984;2(5):472–83.CrossRefGoogle Scholar
  101. Schrimpf D, Pilz LR. Adaptive randomization procedures for the web-based randomization system RANDI2. Int J Clin Pharmacol Ther. 2012;52:85–6.CrossRefGoogle Scholar
  102. Schrimpf D, Plotnicki L, Pilz LR. Choice and simulation of the randomization procedure for clinical trials. Int J Clin Pharmacol Ther. 2011;49:91–2.PubMedGoogle Scholar
  103. Schrimpf D, Manegold C, Pilz LR. Design of clinical studies: adaptive randomization and progression-free survival (PFS) as an endpoint in clinical studies of advanced non-small cell lung cancer (NSCLC). Int J Clin Pharmacol Ther. 2013;52:84–6.CrossRefGoogle Scholar
  104. Schumacher M, Schulgen G. Methodik klinischer Studien. 3rd ed. New York/Heidelberg: Springer; 2008.CrossRefGoogle Scholar
  105. Sedgwick P. What is publication bias in a meta-analysis? BMJ. 2015;351:h4419.PubMedCrossRefGoogle Scholar
  106. Seymour L, Ivy SP, Sargent D, Spriggs D, Baker L, Rubenstein L, Ratein MJ, LeBlanc M, Stewart D, Crowley J, Groshan S, Humphrey JS, West P, Berry D. The design of phase II clinical trials testing cancer therapeutics: consensus recommendations from the clinical trial design task force of the national cancer institute investigational drug steering committee. Clin Cancer Res. 2010;16:1764–9.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Song F, Parekh S, Hooper L, Loke YK, Ryder J, Sutton AJ, Hing C, Kwok CS, Pang C, Harvey I. Dissemination and publication of research findings: an updated review of related biases. Health Technol Assess. 2010;14(8):iii, ix–xi, 1–193.Google Scholar
  108. Spitzer WO, Dobson AJ, Hall J, Chesterman E, Levi J, Shepherd R, Battista RN, Catchlove BR. Measuring the quality of life of cancer patients: a concise QL-index for use by physicians. J Chronic Dis. 1981;34(12):585–97.PubMedCrossRefGoogle Scholar
  109. Storer BE. Design and analysis of phase I trials. Biometrics. 1989;45(3):925–37.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Suvarna V. Phase IV of drug development. Pers Clin Res. 2010;1(2):57–60.Google Scholar
  111. Tang PA, Bentzen SM, Chen EX, Siu LL. Surrogate endpoints for overall survival in metastatic colorectal cancer: literature-based analysis from 39 randomized controlled trials of first-line chemotherapy. J Clin Oncol. 2007;29:4562–8.CrossRefGoogle Scholar
  112. Tanniou J, van der Tweel I, Teerenstra S, Roes KCB. Subgroup analyses in confirmatory clinical trials: time to be specific about their purposes. BMC Med Res Methodol. 2016;16:20.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Tickle-Degnen L. Nuts and bolts of conducting feasibility studies. Am J Occup Ther. 2013;67(2):171–6.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Verdam MGE, Oort FJ, Sprangers MAG. Item bias detection in the hospital anxiety and depression scale using structural equation modeling: comparison with other item bias detection methods. Qual Life Res. 2017;26(6):1439–50.PubMedCrossRefPubMedCentralGoogle Scholar
  115. Vyas D, Balakrishnan A, Vyas A. The value of the p-value. Am J Robot Surg. 2015;2(1):53–6.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Wang M, Dignam JJ, Zhang QE, DeGroot JF, Mehta MP, Hunsberger S. Integrated phase II/III clinical trials in oncology: a case study. Clin Trials. 2012;9:741–7.PubMedCrossRefGoogle Scholar
  117. Wassertheil-Smoller S, Smoller J. Biostatistics and epidemiology. A primer for health and biomedical professionals. Berlin/Heidelberg: Springer; 2015.Google Scholar
  118. Wheeler GM, Sweeting MJ, Mander AP. Toxicity-dependent feasibility bounds for the escalation with overdose control approach in phase I cancer trials. Stat Med. 2017;36(16):2499–513.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Whitehead AL, Sully BG, Campbell MJ. Pilot and feasibility studies: is there a difference from each other and from a randomised controlled trial? Contemp Clin Trials. 2014;38(1):130–3.PubMedCrossRefGoogle Scholar
  120. Wilson SR, Burden C. Biometrics, vol. 1. Oxford, UK: EOLSS Publishers/UNESCO; 2009.Google Scholar
  121. Wong KM, Capasso A, Eckhardt SG. The changing landscape of phase I trials in oncology. Nat Rev Clin Oncol. 2016;13(2):106–17.PubMedCrossRefGoogle Scholar
  122. Yao B, Zhu L, Jiang Q, Xia HA. Safety monitoring in clinical trials. Pharmaceutics. 2013;5(1):94–106.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Medical Faculty Mannheim and Heinrich Lanz ZentrumUniversität HeidelbergMannheimGermany
  2. 2.Department of Clinical Molecular BiologyMedical University of BialystokBialystokPoland

Personalised recommendations