Advertisement

Radiobiological Principles of Radiotherapy for Benign Diseases

  • Franz RödelEmail author
  • Udo S. Gaipl
Living reference work entry

Abstract

Inflammatory degenerative and benign hyperproliferative diseases arise from complex and pathologically unbalanced multicellular interactions and altered microenvironmental conditions. Low and intermediate doses of ionizing radiation are clinically reported to ameliorate these disorders, but the understanding of the basis for the therapeutic effects is still at an early state. In recent years, however, it has become obvious by experimental in vitro and in vivo studies that a variety of cellular and osteoimmunological mechanisms were related to the anti-inflammatory, anti-degenerative, and antiproliferative efficacy of low-dose exposure. These mechanisms cover modulation of inflammatory properties of leukocytes, macrophages, fibroblasts, and endothelial cells, secretion of cytokines and growth factors, and impact on osteoclast and osteoblast activation. Notably, these mechanisms display comparable dose-effect relationships with a maximum effect in the range between 0.3 and 0.7 Gy, empirically identified to be most effective in the treatment of inflammatory degenerative disorders. In this chapter, we aim to summarize current findings and models exploring the mechanisms underlying the immunomodulatory and antiproliferative properties of low- and intermediate-dose radiotherapy for benign disorders.

Keywords

Low-dose radiation therapy Antiproliferative effect Anti-inflammatory effect Immune- modulation Osteoimmunology Inflammatory and degenerative diseases Hyperproliferative diseases 

References

  1. Abramson SB, Attur M, Amin AR, Clancy R. Nitric oxide and inflammatory mediators in the perpetuation of osteoarthritis. Curr Rheumatol Rep. 2001;3(6):535–41.CrossRefGoogle Scholar
  2. Anbar M, Gratt BM. Role of nitric oxide in the physiopathology of pain. J Pain Symptom Manag. 1997;14(4):225–54.CrossRefGoogle Scholar
  3. Arenas M, Gil F, Gironella M, Hernandez V, Jorcano S, Biete A, Pique JM, Panes J. Anti-inflammatory effects of low-dose radiotherapy in an experimental model of systemic inflammation in mice. Int J Radiat Oncol Biol Phys. 2006;66(2):560–7.CrossRefGoogle Scholar
  4. Arthur JS, Ley SC. Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol. 2013;13(9):679–92.  https://doi.org/10.1038/nri3495nri3495.CrossRefPubMedGoogle Scholar
  5. Bayreuther K, Rodemann HP, Hommel R, Dittmann K, Albiez M, Francz PI. Human skin fibroblasts in vitro differentiate along a terminal cell lineage. Proc Natl Acad Sci U S A. 1988;85(14):5112–6.  https://doi.org/10.1073/pnas.85.14.5112.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bianchi E, Taurone S, Bardella L, Signore A, Pompili E, Sessa V, Chiappetta C, Fumagalli L, Di Gioia C, Pastore FS, Scarpa S, Artico M. Involvement of pro-inflammatory cytokines and growth factors in the pathogenesis of Dupuytren's contracture: a novel target for a possible future therapeutic strategy? Clin Sci (Lond). 2015;129(8):711–20.  https://doi.org/10.1042/CS20150088.CrossRefGoogle Scholar
  7. Bumann J, Santo-Holtje L, Loffler H, Bamberg M, Rodemann HP. Radiation-induced alterations of the proliferation dynamics of human skin fibroblasts after repeated irradiation in the subtherapeutic dose range. Strahlenther Onkol. 1995;171(1):35–41.PubMedGoogle Scholar
  8. Candeias SM, Testard I. The many interactions between the innate immune system and the response to radiation. Cancer Lett. 2015;368(2):173–8.  https://doi.org/10.1016/j.canlet.2015.02.007S0304-3835(15)00098-1.CrossRefPubMedGoogle Scholar
  9. Choy E. Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford). 2012;51(Suppl 5):v3–11.  https://doi.org/10.1093/rheumatology/kes113.CrossRefGoogle Scholar
  10. Cordova A, Tripoli M, Corradino B, Napoli P, Moschella F. Dupuytren's contracture: an update of biomolecular aspects and therapeutic perspectives. J Hand Surg Br. 2005;30(6):557–62.  https://doi.org/10.1016/j.jhsb.2005.07.002.CrossRefPubMedGoogle Scholar
  11. Cucu A, Shreder K, Kraft D, Ruhle PF, Klein G, Thiel G, Frey B, Gaipl US, Fournier C. Decrease of markers related to bone erosion in serum of patients with musculoskeletal disorders after serial low-dose radon spa therapy. Front Immunol. 2017;8:882.  https://doi.org/10.3389/fimmu.2017.00882.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Deloch L, Derer A, Hueber AJ, Herrmann M, Schett GA, Wolfelschneider J, Hahn J, Ruhle PF, Stillkrieg W, Fuchs J, Fietkau R, Frey B, Gaipl US. Low-dose radiotherapy ameliorates advanced arthritis in hTNF-alpha tg mice by particularly positively impacting on bone metabolism. Front Immunol. 2018a;9:1834.  https://doi.org/10.3389/fimmu.2018.01834.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Deloch L, Ruckert M, Fietkau R, Frey B, Gaipl US. Low-dose radiotherapy has no harmful effects on key cells of healthy non-inflamed joints. Int J Mol Sci. 2018b;19(10):E3197.  https://doi.org/10.3390/ijms19103197.CrossRefPubMedGoogle Scholar
  14. Deloch L, Fuchs J, Rückert M, Fietkau R, Frey B, Gaipl U. Low-dose irradiation differentially impacts macrophage phenotype in dependence of fibroblast-like synoviocytes and radiation dose. J Immunol Res. 2019;2019:3161750.  https://doi.org/10.1155/2019/3161750.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Falcke SE, Ruhle PF, Deloch L, Fietkau R, Frey B, Gaipl US. Clinically relevant radiation exposure differentially impacts forms of cell death in human cells of the innate and adaptive immune system. Int J Mol Sci. 2018;19(11):E3574.  https://doi.org/10.3390/ijms19113574ijms19113574.CrossRefPubMedGoogle Scholar
  16. Frey B, Gaipl US, Sarter K, Zaiss MM, Stillkrieg W, Rodel F, Schett G, Herrmann M, Fietkau R, Keilholz L. Whole body low dose irradiation improves the course of beginning polyarthritis in human TNF-transgenic mice. Autoimmunity. 2009;42(4):346–8.  https://doi.org/10.1080/08916930902831738.CrossRefPubMedGoogle Scholar
  17. Frey B, Ruckert M, Deloch L, Ruhle PF, Derer A, Fietkau R, Gaipl US. Immunomodulation by ionizing radiation-impact for design of radio-immunotherapies and for treatment of inflammatory diseases. Immunol Rev. 2017;280(1):231–48.  https://doi.org/10.1111/imr.12572.CrossRefPubMedGoogle Scholar
  18. Frischholz B, Wunderlich R, Ruhle PF, Schorn C, Rodel F, Keilholz L, Fietkau R, Gaipl US, Frey B. Reduced secretion of the inflammatory cytokine IL-1beta by stimulated peritoneal macrophages of radiosensitive Balb/c mice after exposure to 0.5 or 0.7 Gy of ionizing radiation. Autoimmunity. 2013;46(5):323–8.  https://doi.org/10.3109/08916934.2012.747522.CrossRefPubMedGoogle Scholar
  19. Funes SC, Rios M, Escobar-Vera J, Kalergis AM. Implications of macrophage polarization in autoimmunity. Immunology. 2018;154(2):186–95.  https://doi.org/10.1111/imm.12910.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gaipl US, Voll RE, Sheriff A, Franz S, Kalden JR, Herrmann M. Impaired clearance of dying cells in systemic lupus erythematosus. Autoimmun Rev. 2005;4(4):189–94.  https://doi.org/10.1016/j.autrev.2004.10.007.CrossRefPubMedGoogle Scholar
  21. Gaipl US, Meister S, Lodermann B, Rodel F, Fietkau R, Herrmann M, Kern PM, Frey B. Activation-induced cell death and total Akt content of granulocytes show a biphasic course after low-dose radiation. Autoimmunity. 2009;42(4):340–2.  https://doi.org/10.1080/08916930902831233.CrossRefPubMedGoogle Scholar
  22. Ghosh S, Hayden MS. Celebrating 25 years of NF-kappaB research. Immunol Rev. 2012;246(1):5–13.  https://doi.org/10.1111/j.1600-065X.2012.01111.x.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Ghosh JC, Izumida Y, Suzuki K, Kodama S, Watanabe M. Dose-dependent biphasic accumulation of TP53 protein in normal human embryo cells after X irradiation. Radiat Res. 2000;153(3):305–11.CrossRefGoogle Scholar
  24. Headland SE, Norling LV. The resolution of inflammation: principles and challenges. Semin Immunol. 2015;27(3):149–60.  https://doi.org/10.1016/j.smim.2015.03.014.CrossRefPubMedGoogle Scholar
  25. Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407(6805):770–6.CrossRefGoogle Scholar
  26. Herskind C, Rodemann HP. Spontaneous and radiation-induced differentiation of fibroblasts. Exp Gerontol. 2000;35(6–7):747–55.CrossRefGoogle Scholar
  27. Hildebrandt G, Seed MP, Freemantle CN, Alam CA, Colville-Nash PR, Trott KR. Mechanisms of the anti-inflammatory activity of low-dose radiation therapy. Int J Radiat Biol. 1998;74(3):367–78.CrossRefGoogle Scholar
  28. Hildebrandt G, Jahns J, Hindemith M, Spranger S, Sack U, Kinne RW, Madaj-Sterba P, Wolf U, Kamprad F. Effects of low dose radiation therapy on adjuvant induced arthritis in rats. Int J Radiat Biol. 2000;76(8):1143–53.CrossRefGoogle Scholar
  29. Hildebrandt G, Maggiorella L, Rodel F, Rodel V, Willis D, Trott KR. Mononuclear cell adhesion and cell adhesion molecule liberation after X-irradiation of activated endothelial cells in vitro. Int J Radiat Biol. 2002;78(4):315–25.CrossRefGoogle Scholar
  30. Hildebrandt G, Loppnow G, Jahns J, Hindemith M, Anderegg U, Saalbach A, Kamprad F. Inhibition of the iNOS pathway in inflammatory macrophages by low-dose X-irradiation in vitro. Is there a time dependence? Strahlenther Onkol. 2003;179(3):158–66.CrossRefGoogle Scholar
  31. Imboden JB. The immunopathogenesis of rheumatoid arthritis. Annu Rev Pathol. 2009;4:417–34.  https://doi.org/10.1146/annurev.pathol.4.110807.092254.CrossRefPubMedGoogle Scholar
  32. Iqbal SA, Hayton MJ, Watson JS, Szczypa P, Bayat A. First identification of resident and circulating fibrocytes in Dupuytren’s disease shown to be inhibited by serum amyloid P and Xiapex. PLoS One. 2014;9(6):e99967.  https://doi.org/10.1371/journal.pone.0099967.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461(7267):1071–8.  https://doi.org/10.1038/nature08467.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Jahns J, Anderegg U, Saalbach A, Rosin B, Patties I, Glasow A, Kamprad M, Scholz M, Hildebrandt G. Influence of low dose irradiation on differentiation, maturation and T-cell activation of human dendritic cells. Mutat Res. 2011;709–710:32–9.  https://doi.org/10.1016/j.mrfmmm.2011.02.007.CrossRefPubMedGoogle Scholar
  35. Jin HS, Lee DH, Kim DH, Chung JH, Lee SJ, Lee TH. cIAP1, cIAP2, and XIAP act cooperatively via nonredundant pathways to regulate genotoxic stress-induced nuclear factor-kappaB activation. Cancer Res. 2009;69(5):1782–91.  https://doi.org/10.1158/0008-5472.CAN-08-2256.CrossRefPubMedGoogle Scholar
  36. Keffer J, Probert L, Cazlaris H, Georgopoulos S, Kaslaris E, Kioussis D, Kollias G. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J. 1991;10(13):4025–31.CrossRefGoogle Scholar
  37. Kern P, Keilholz L, Forster C, Seegenschmiedt MH, Sauer R, Herrmann M. In vitro apoptosis in peripheral blood mononuclear cells induced by low-dose radiotherapy displays a discontinuous dose-dependence. Int J Radiat Biol. 1999;75(8):995–1003.CrossRefGoogle Scholar
  38. Kern PM, Keilholz L, Forster C, Hallmann R, Herrmann M, Seegenschmiedt MH. Low-dose radiotherapy selectively reduces adhesion of peripheral blood mononuclear cells to endothelium in vitro. Radiother Oncol. 2000;54(3):273–82.CrossRefGoogle Scholar
  39. Krause C, Kloen P, Ten Dijke P. Elevated transforming growth factor beta and mitogen-activated protein kinase pathways mediate fibrotic traits of Dupuytren's disease fibroblasts. Fibrogenesis Tissue Repair. 2011;4(1):14.  https://doi.org/10.1186/1755-1536-4-14.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Large M, Reichert S, Hehlgans S, Fournier C, Rodel C, Rodel F. A non-linear detection of phospho-histone H2AX in EA.hy926 endothelial cells following low-dose X-irradiation is modulated by reactive oxygen species. Radiat Oncol. 2014;9:80.  https://doi.org/10.1186/1748-717X-9-80.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Large M, Hehlgans S, Reichert S, Gaipl US, Fournier C, Rodel C, Weiss C, Rodel F. Study of the anti-inflammatory effects of low-dose radiation: the contribution of biphasic regulation of the antioxidative system in endothelial cells. Strahlenther Onkol. 2015;191(9):742–9.  https://doi.org/10.1007/s00066-015-0848-9.CrossRefPubMedGoogle Scholar
  42. Lau AT, Wang Y, Chiu JF. Reactive oxygen species: current knowledge and applications in cancer research and therapeutic. J Cell Biochem. 2008;104(2):657–67.  https://doi.org/10.1002/jcb.21655.CrossRefPubMedGoogle Scholar
  43. Liebmann A, Hindemith M, Jahns J, Madaj-Sterba P, Weisheit S, Kamprad F, Hildebrandt G. Low-dose X-irradiation of adjuvant-induced arthritis in rats. Efficacy of different fractionation schedules. Strahlenther Onkol. 2004;180(3):165–72.CrossRefGoogle Scholar
  44. Lodermann B, Wunderlich R, Frey S, Schorn C, Stangl S, Rodel F, Keilholz L, Fietkau R, Gaipl US, Frey B. Low dose ionising radiation leads to a NF-kappaB dependent decreased secretion of active IL-1beta by activated macrophages with a discontinuous dose-dependency. Int J Radiat Biol. 2012;88(10):727–34.  https://doi.org/10.3109/09553002.2012.689464.CrossRefPubMedGoogle Scholar
  45. Ma S, Liu X, Jiao B, Yang Y. Low-dose radiation-induced responses: focusing on epigenetic regulation. Int J Radiat Biol. 2010;86(7):517–28.  https://doi.org/10.3109/09553001003734592.CrossRefPubMedGoogle Scholar
  46. Mahler EAM, Minten MJ, Leseman-Hoogenboom MM, Poortmans PMP, Leer JWH, Boks SS, van den Hoogen FHJ, den Broeder AA, van den Ende CHM. Effectiveness of low-dose radiation therapy on symptoms in patients with knee osteoarthritis: a randomised, double-blinded, sham-controlled trial. Ann Rheum Dis. 2019;78(1):83–90.  https://doi.org/10.1136/annrheumdis-2018-214104.CrossRefPubMedGoogle Scholar
  47. Marples B, Collis SJ. Low-dose hyper-radiosensitivity: past, present, and future. Int J Radiat Oncol Biol Phys. 2008;70(5):1310–8.  https://doi.org/10.1016/j.ijrobp.2007.11.071.CrossRefPubMedGoogle Scholar
  48. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428–35.  https://doi.org/10.1038/nature07201.CrossRefPubMedGoogle Scholar
  49. Meek RM, McLellan S, Crossan JF. Dupuytren's disease. A model for the mechanism of fibrosis and its modulation by steroids. J Bone Joint Surg Br. 1999;81(4):732–8.CrossRefGoogle Scholar
  50. Meek RM, McLellan S, Reilly J, Crossan JF. The effect of steroids on Dupuytren's disease: role of programmed cell death. J Hand Surg Br. 2002;27(3):270–3.  https://doi.org/10.1054/jhsb.2001.0742.CrossRefPubMedGoogle Scholar
  51. Montero A, Sabater S, Rodel F, Gaipl US, Ott OJ, Seegenschmiedt MH, Arenas M. Is it time to redefine the role of low-dose radiotherapy for benign disease? Ann Rheum Dis. 2018;  https://doi.org/10.1136/annrheumdis-2018-214873.
  52. Mothersill C, Seymour C. Radiation-induced non-targeted effects of low doses-what, why and how? Health Phys. 2011;100(3):302.CrossRefGoogle Scholar
  53. Nathan C, Cunningham-Bussel A. Beyond oxidative stress: an immunologist's guide to reactive oxygen species. Nat Rev Immunol. 2013;13(5):349–61.  https://doi.org/10.1038/nri3423.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Neumann E, Lefevre S, Zimmermann B, Gay S, Muller-Ladner U. Rheumatoid arthritis progression mediated by activated synovial fibroblasts. Trends Mol Med. 2010;16(10):458–68.  https://doi.org/10.1016/j.molmed.2010.07.004.CrossRefPubMedGoogle Scholar
  55. Oeckinghaus A, Hayden MS, Ghosh S. Crosstalk in NF-kappaB signaling pathways. Nat Immunol. 2011;12(8):695–708.  https://doi.org/10.1038/ni.2065.CrossRefPubMedGoogle Scholar
  56. Ott OJ, Jeremias C, Gaipl US, Frey B, Schmidt M, Fietkau R. Radiotherapy for achillodynia: results of a single-center prospective randomized dose-optimization trial. Strahlenther Onkol. 2013;189(2):142–6.  https://doi.org/10.1007/s00066-012-0240-y.CrossRefPubMedGoogle Scholar
  57. Ott OJ, Hertel S, Gaipl US, Frey B, Schmidt M, Fietkau R. The Erlangen dose optimization trial for low-dose radiotherapy of benign painful elbow syndrome: long-term results. Strahlenther Onkol. 2014;  https://doi.org/10.1007/s00066-013-0504-1.CrossRefGoogle Scholar
  58. Prasad AV, Mohan N, Chandrasekar B, Meltz ML. Activation of nuclear factor kappa B in human lymphoblastoid cells by low-dose ionizing radiation. Radiat Res. 1994;138(3):367–72.CrossRefGoogle Scholar
  59. Prasad AV, Mohan N, Chandrasekar B, Meltz ML. Induction of transcription of “immediate early genes” by low-dose ionizing radiation. Radiat Res. 1995;143(3):263–72.CrossRefGoogle Scholar
  60. Rastogi S, Boylan M, Wright EG, Coates PJ. Interactions of apoptotic cells with macrophages in radiation-induced bystander signaling. Radiat Res. 2013;179(2):135–45.  https://doi.org/10.1667/RR2969.1.CrossRefPubMedGoogle Scholar
  61. Ratkaj I, Bujak M, Jurisic D, Baus Loncar M, Bendelja K, Pavelic K, Kraljevic Pavelic S. Microarray analysis of Dupuytren's disease cells: the profibrogenic role of the TGF-beta inducible p38 MAPK pathway. Cell Physiol Biochem. 2012;30(4):927–42.  https://doi.org/10.1159/000341470.CrossRefPubMedGoogle Scholar
  62. Richards SA, Muter J, Ritchie P, Lattanzi G, Hutchison CJ. The accumulation of un-repairable DNA damage in laminopathy progeria fibroblasts is caused by ROS generation and is prevented by treatment with N-acetyl cysteine. Hum Mol Genet. 2011;20(20):3997–4004.  https://doi.org/10.1093/hmg/ddr327.CrossRefPubMedGoogle Scholar
  63. Rodel F, Hantschel M, Hildebrandt G, Schultze-Mosgau S, Rodel C, Herrmann M, Sauer R, Voll RE. Dose-dependent biphasic induction and transcriptional activity of nuclear factor kappa B (NF-kappaB) in EA.hy.926 endothelial cells after low-dose X-irradiation. Int J Radiat Biol. 2004a;80(2):115–23.CrossRefGoogle Scholar
  64. Rodel F, Schaller U, Schultze-Mosgau S, Beuscher HU, Keilholz L, Herrmann M, Voll R, Sauer R, Hildebrandt G. The induction of TGF-beta(1) and NF-kappaB parallels a biphasic time course of leukocyte/endothelial cell adhesion following low-dose X-irradiation. Strahlenther Onkol. 2004b;180(4):194–200.CrossRefGoogle Scholar
  65. Rodel F, Hofmann D, Auer J, Keilholz L, Rollinghoff M, Sauer R, Beuscher HU. The anti-inflammatory effect of low-dose radiation therapy involves a diminished CCL20 chemokine expression and granulocyte/endothelial cell adhesion. Strahlenther Onkol. 2008;184(1):41–7.  https://doi.org/10.1007/s00066-008-1776-8.CrossRefPubMedGoogle Scholar
  66. Rodel F, Keilholz L, Herrmann M, Weiss C, Frey B, Voll R, Gaipl U, Rodel C. Activator protein 1 shows a biphasic induction and transcriptional activity after low dose X-irradiation in EA.hy.926 endothelial cells. Autoimmunity. 2009;42(4):343–5.  https://doi.org/10.1080/08916930902831597.CrossRefPubMedGoogle Scholar
  67. Rodel F, Frey B, Gaipl U, Keilholz L, Fournier C, Manda K, Schollnberger H, Hildebrandt G, Rodel C. Modulation of inflammatory immune reactions by low-dose ionizing radiation: molecular mechanisms and clinical application. Curr Med Chem. 2012a;19(12):1741–50.. CMC-EPUB-20120312-005 [pii]CrossRefGoogle Scholar
  68. Rodel F, Frey B, Manda K, Hildebrandt G, Hehlgans S, Keilholz L, Seegenschmiedt MH, Gaipl US, Rodel C. Immunomodulatory properties and molecular effects in inflammatory diseases of low-dose x-irradiation. Front Oncol. 2012b;2:120.  https://doi.org/10.3389/fonc.2012.00120.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Rodel F, Frey B, Multhoff G, Gaipl U. Contribution of the immune system to bystander and non-targeted effects of ionizing radiation. Cancer Lett. 2015;356(1):105–13.  https://doi.org/10.1016/j.canlet.2013.09.015.CrossRefPubMedGoogle Scholar
  70. Rodel F, Fournier C, Wiedemann J, Merz F, Gaipl US, Frey B, Keilholz L, Seegenschmiedt MH, Rodel C, Hehlgans S. Basics of radiation biology when treating hyperproliferative benign diseases. Front Immunol. 2017;8:519.  https://doi.org/10.3389/fimmu.2017.00519.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Rodemann HP, Peterson HP, Schwenke K, von Wangenheim KH. Terminal differentiation of human fibroblasts is induced by radiation. Scanning Microsc. 1991;5(4):1135–42.. discussion 1142-1133PubMedGoogle Scholar
  72. Roedel F, Kley N, Beuscher HU, Hildebrandt G, Keilholz L, Kern P, Voll R, Herrmann M, Sauer R. Anti-inflammatory effect of low-dose X-irradiation and the involvement of a TGF-beta1-induced down-regulation of leukocyte/endothelial cell adhesion. Int J Radiat Biol. 2002;78(8):711–9.CrossRefGoogle Scholar
  73. Roos WP, Thomas AD, Kaina B. DNA damage and the balance between survival and death in cancer biology. Nat Rev Cancer. 2016;16(1):20–33.  https://doi.org/10.1038/nrc.2015.2.CrossRefPubMedGoogle Scholar
  74. Rubin P, Soni A, Williams JP. The molecular and cellular biologic basis for the radiation treatment of benign proliferative diseases. Semin Radiat Oncol. 1999;9(2):203–14.  https://doi.org/10.1053/SRAO00900203.CrossRefPubMedGoogle Scholar
  75. Ruhle PF, Wunderlich R, Deloch L, Fournier C, Maier A, Klein G, Fietkau R, Gaipl US, Frey B. Modulation of the peripheral immune system after low-dose radon spa therapy: detailed longitudinal immune monitoring of patients within the RAD-ON01 study. Autoimmunity. 2017;50(2):133–40.  https://doi.org/10.1080/08916934.2017.1284819.CrossRefPubMedGoogle Scholar
  76. Scapini P, Lapinet-Vera JA, Gasperini S, Calzetti F, Bazzoni F, Cassatella MA. The neutrophil as a cellular source of chemokines. Immunol Rev. 2000;177:195–203.CrossRefGoogle Scholar
  77. Schaue D, Marples B, Trott KR. The effects of low-dose X-irradiation on the oxidative burst in stimulated macrophages. Int J Radiat Biol. 2002;78(7):567–76.CrossRefGoogle Scholar
  78. Schaue D, Jahns J, Hildebrandt G, Trott KR. Radiation treatment of acute inflammation in mice. Int J Radiat Biol. 2005;81(9):657–67.CrossRefGoogle Scholar
  79. Schroder S, Juerss D, Kriesen S, Manda K, Hildebrandt G. Immunomodulatory properties of low-dose ionizing radiation on human endothelial cells. Int J Radiat Biol. 2019;95(1):23–32.  https://doi.org/10.1080/09553002.2018.1486515.CrossRefPubMedGoogle Scholar
  80. Seegenschmiedt MH, Makoski HB, Trott KR, Brady LWE. Radiotherapy for non-malignant disorders. Medical radiology diagnostic imaging and radiation oncology. Berlin: Springer Verlag; 2008.Google Scholar
  81. Seegenschmiedt MH, Micke O, Niewald M, Mucke R, Eich HT, Kriz J, Heyd R. DEGRO guidelines for the radiotherapy of non-malignant disorders: part III: hyperproliferative disorders. Strahlenther Onkol. 2015;191(7):541–8.  https://doi.org/10.1007/s00066-015-0818-2.CrossRefPubMedGoogle Scholar
  82. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT, Sahebkar A. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425–40.  https://doi.org/10.1002/jcp.26429.CrossRefPubMedGoogle Scholar
  83. Shih B, Bayat A. Scientific understanding and clinical management of Dupuytren disease. Nat Rev Rheumatol. 2010;6(12):715–26.  https://doi.org/10.1038/nrrheum.2010.180.CrossRefPubMedGoogle Scholar
  84. Speyer CL, Ward PA. Role of endothelial chemokines and their receptors during inflammation. J Investig Surg. 2011;24(1):18–27.  https://doi.org/10.3109/08941939.2010.521232.CrossRefGoogle Scholar
  85. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–20.  https://doi.org/10.1016/j.cell.2010.01.022.CrossRefPubMedGoogle Scholar
  86. Tschopp J, Martinon F, Burns K. NALPs: a novel protein family involved in inflammation. Nat Rev Mol Cell Biol. 2003;4(2):95–104.  https://doi.org/10.1038/nrm1019.CrossRefPubMedGoogle Scholar
  87. Tsukimoto M, Homma T, Mutou Y, Kojima S. 0.5 Gy gamma radiation suppresses production of TNF-alpha through up-regulation of MKP-1 in mouse macrophage RAW264.7 cells. Radiat Res. 2009;171(2):219–24.  https://doi.org/10.1667/RR1351.1.CrossRefPubMedGoogle Scholar
  88. Valledor AF, Comalada M, Santamaria-Babi LF, Lloberas J, Celada A. Macrophage proinflammatory activation and deactivation: a question of balance. Adv Immunol. 2010;108:1–20.  https://doi.org/10.1016/B978-0-12-380995-7.00001-X.CrossRefPubMedGoogle Scholar
  89. Verjee LS, Verhoekx JS, Chan JK, Krausgruber T, Nicolaidou V, Izadi D, Davidson D, Feldmann M, Midwood KS, Nanchahal J. Unraveling the signaling pathways promoting fibrosis in Dupuytren’s disease reveals TNF as a therapeutic target. Proc Natl Acad Sci U S A. 2013;110(10):E928–37.  https://doi.org/10.1073/pnas.1301100110.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I. Immunosuppressive effects of apoptotic cells. Nature. 1997;390(6658):350–1.CrossRefGoogle Scholar
  91. von Pannewitz G. Die Röntgentherapie der Arthritis deformans. Ergebnisse der medizinischen Strahlenforschung. 1933;6:62–126.Google Scholar
  92. Walsh MC, Choi Y. Biology of the RANKL-RANK-OPG system in immunity, bone, and beyond. Front Immunol. 2014;5:511.  https://doi.org/10.3389/fimmu.2014.00511.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Weichselbaum RR, Hallahan D, Fuks Z, Kufe D. Radiation induction of immediate early genes: effectors of the radiation-stress response. Int J Radiat Oncol Biol Phys. 1994;30(1):229–34.CrossRefGoogle Scholar
  94. Williams J, Chen Y, Rubin P, Finkelstein J, Okunieff P. The biological basis of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol. 2003;13(3):182–8.  https://doi.org/10.1016/S1053-4296(03)00045-6.CrossRefPubMedGoogle Scholar
  95. Wunderlich R, Ernst A, Rodel F, Fietkau R, Ott O, Lauber K, Frey B, Gaipl US. Low and moderate doses of ionizing radiation up to 2 Gy modulate transmigration and chemotaxis of activated macrophages, provoke an anti-inflammatory cytokine milieu, but do not impact upon viability and phagocytic function. Clin Exp Immunol. 2015;179(1):50–61.  https://doi.org/10.1111/cei.12344.CrossRefPubMedGoogle Scholar
  96. Wunderlich R, Ruhle PF, Deloch L, Rodel F, Fietkau R, Gaipl US, Frey B. Ionizing radiation reduces the capacity of activated macrophages to induce T-cell proliferation, but does not trigger dendritic cell-mediated non-targeted effects. Int J Radiat Biol. 2019;95(1):33–43.  https://doi.org/10.1080/09553002.2018.1490037.CrossRefPubMedGoogle Scholar
  97. Zhang AY, Kargel JS. The basic science of Dupuytren disease. Hand Clin. 2018;34(3):301–5.  https://doi.org/10.1016/j.hcl.2018.03.001.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Radiotherapy and OncologyUniversitätsklinikum Frankfurt, Goethe UniversitätFrankfurt am MainGermany
  2. 2.Department of Radiation OncologyUniversitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations