Skip to main content

Post-fire Tree Mortality

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams H, Williams A, Xu C, Rauscher S, Jiang X, McDowell N (2013) Empirical and process-based approaches to climate-induced forest mortality models. Front Plant Sci 4:438. https://doi.org/10.3389/fpls.2013.00438

    Article  Google Scholar 

  • Agee JK, Skinner CN (2005) Basic principles of forest fuel reduction treatments. For Ecol Manag 211(1–2):83–96

    Article  Google Scholar 

  • Alfaro-Sánchez R, Camarero JJ, Sánchez-Salguero R, Sangüesa-Barreda G, De Las Heras J (2016) Post-fire Aleppo pine growth, C and N isotope composition depend on site dryness. Trees 30:581–595. https://doi.org/10.1007/s00468-015-1342-9

    Article  Google Scholar 

  • Bär A, Michaletz ST, Mayr S (2019) Fire effects on tree physiology. New Phytol. https://doi.org/10.1111/nph.15871

    Article  Google Scholar 

  • Bond WJ, Keeley JE (2005) Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20(7):387–394

    Article  Google Scholar 

  • Bond WJ, Midgley JJ (2001) Ecology of sprouting in woody plants: the persistence niche. Trends Ecol Evol 16(1):45–51

    Article  Google Scholar 

  • Bova AS, Dickinson MB (2005) Linking surface-fire behavior, stem heating, and tissue necrosis. Can J For Res 35(4):814–822. https://doi.org/10.1139/x05-004

    Article  Google Scholar 

  • Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D’Antonio CM, DeFries RS, Doyle JC, Harrison SP, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Marston JB, Moritz MA, Prentice IC, Roos CI, Scott AC, Swetnam TW, van der Werf GR, Pyne SJ (2009) Fire in the earth system. Science 324(5926):481–484. https://doi.org/10.1126/science.1163886

    Article  Google Scholar 

  • Bowman DM, Murphy BP, Neyland DL, Williamson GJ, Prior LD (2014) Abrupt fire regime change may cause landscape-wide loss of mature obligate seeder forests. Glob Chang Biol 20(3):1008–1015

    Article  Google Scholar 

  • Brando PM, Nepstad DC, Balch JK, Bolker B, Christman MC, Coe M, Putz FE (2012) Fire-induced tree mortality in a neotropical forest: the roles of bark traits, tree size, wood density and fire behavior. Glob Chang Biol 18(2):630–641

    Article  Google Scholar 

  • Chatziefstratiou EK, Bohrer G, Bova AS, Subramanian R, Frasson RP, Scherzer A, Butler BW, Dickinson MB (2013) Firestem2d–a two-dimensional heat transfer model for simulating tree stem injury in fires. PLoS One 8(7):e70110

    Article  Google Scholar 

  • Davis RS, Hood S, Bentz BJ (2012) Fire-injured ponderosa pine provide a pulsed resource for bark beetles. Can J For Res 42(12):2022–2036. https://doi.org/10.1139/x2012-147

    Article  Google Scholar 

  • Dickinson M, Johnson E (2001) Fire effects on trees. In: Johnson EA, Miyanishi K (eds) Forest fires: behavior and ecological effects. Academic, New York, pp 477–525

    Chapter  Google Scholar 

  • Dieterich JH (1979) Recovery potential of fire-damaged southwestern ponderosa pine. U.S. Department of Agriculture, Forest Service, Fort Collins, p 8

    Google Scholar 

  • Fairman TA, Nitschke CR, Bennett LT (2016) Too much, too soon? A review of the effects of increasing wildfire frequency on tree mortality and regeneration in temperate eucalypt forests. Int J Wildland Fire 25(8):831–848

    Article  Google Scholar 

  • Flannigan MD, Krawchuk MA, de Groot WJ, Wotton BM, Gowman LM (2009) Implications of changing climate for global wildland fire. Int J Wildland Fire 18(5):483–507. https://doi.org/10.1071/WF08187

    Article  Google Scholar 

  • Fowler JF, Sieg CH, McMillin J, Allen KK, Negron JF, Wadleigh LL, Anhold JA, Gibson KE (2010) Development of post-fire crown damage mortality thresholds in ponderosa pine. Int J Wildland Fire 19(5):583–588. https://doi.org/10.1071/WF08193

    Article  Google Scholar 

  • Furniss TJ, Larson AJ, Kane VR, Lutz JA (2019) Multi-scale assessment of post-fire tree mortality models. Int J Wildland Fire 28(1):46–61. https://doi.org/10.1071/WF18031

    Article  Google Scholar 

  • Ganio LM, Progar RA (2017) Mortality predictions of fire-injured large Douglas-fir and ponderosa pine in Oregon and Washington, USA. For Ecol Manag 390:47–67. https://doi.org/10.1016/j.foreco.2017.01.008

    Article  Google Scholar 

  • Grayson LM, Progar RA, Hood SM (2017) Predicting post-fire tree mortality for 14 conifers in the Pacific Northwest, USA: model evaluation, development, and thresholds. For Ecol Manag 399:213–226. https://doi.org/10.1016/j.foreco.2017.05.038

    Article  Google Scholar 

  • Harrington MG (1987) Ponderosa pine mortality from spring, summer, and fall crown scorching. West J Appl For 2(1):14–16

    Article  Google Scholar 

  • Hartford RA, Frandsen WH (1992) When it’s hot, it’s hot- or maybe it’s not! (Surface flaming may not portend extensive soil heating). Int J Wildland Fire 2:139–144

    Article  Google Scholar 

  • Hood SM (2010) Mitigating old tree mortality in long-unburned, fire-dependent forests: a synthesis. RMRS-GTR-238. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins

    Book  Google Scholar 

  • Hood S, Lutes D (2017) Predicting post-fire tree mortality for 12 western US conifers using the First-Order Fire Effects Model (FOFEM). Fire Ecol 13(2):66–84. https://doi.org/10.4996/fireecology.130290243

    Article  Google Scholar 

  • Hood SM, Cluck DR, Smith SL, Ryan KC (2008) Using bark char codes to predict post-fire cambium mortality. Fire Ecol 4(1):57–73

    Article  Google Scholar 

  • Hood S, Varner M, van Mantgem P, Cansler CA (2018) Fire and tree death: understanding and improving modeling of fire-induced tree mortality. Environ Res Lett 13:113004

    Article  Google Scholar 

  • Jenkins MJ, Runyon JB, Fettig CJ, Page WG, Bentz BJ (2014) Interactions among the mountain pine beetle, fires, and fuels. For Sci 60(3):489–501. https://doi.org/10.5849/forsci.13-017

    Article  Google Scholar 

  • Kane JM, van Mantgem PJ, Lalemand LB, Keifer M (2017a) Higher sensitivity and lower specificity in post-fire mortality model validation of 11 western US tree species. Int J Wildland Fire 26(5):444–454. https://doi.org/10.1071/WF16081

    Article  Google Scholar 

  • Kane JM, Varner JM, Metz MR, van Mantgem PJ (2017b) Characterizing interactions between fire and other disturbances and their impacts on tree mortality in western U.S. Forests. For Ecol Manag 405:188–199. https://doi.org/10.1016/j.foreco.2017.09.037

    Article  Google Scholar 

  • Kelsey RG, Westlind DJ (2017) Physiological stress and ethanol accumulation in tree stems and woody tissues at sublethal temperatures from fire. Bioscience 67(5):443–451

    Article  Google Scholar 

  • Lawes M, Richards A, Dathe J, Midgley J (2011a) Bark thickness determines fire resistance of selected tree species from fire-prone tropical savanna in North Australia. Plant Ecol 212(12):2057–2069. https://doi.org/10.1007/s11258-011-9954-7

    Article  Google Scholar 

  • Lawes MJ, Adie H, Russell-Smith J, Murphy B, Midgley JJ (2011b) How do small savanna trees avoid stem mortality by fire? The roles of stem diameter, height and bark thickness. Ecosphere 2(4):1–13

    Article  Google Scholar 

  • Liang S, Hurteau MD, Westerling AL (2017) Potential decline in carbon carrying capacity under projected climate-wildfire interactions in the Sierra Nevada. Sci Rep 7(1):2420

    Article  Google Scholar 

  • Michaletz ST, Johnson EA (2006) A heat transfer model of crown scorch in forest fires. Can J For Res 36(11):2839–2851. https://doi.org/10.1139/x06-158

    Article  Google Scholar 

  • Michaletz ST, Johnson EA (2007) How forest fires kill trees: a review of the fundamental biophysical processes. Scand J For Res 22:500–515

    Article  Google Scholar 

  • Michaletz S, Johnson E (2008) A biophysical process model of tree mortality in surface fires. Can J For Res 38(7):2013–2029

    Article  Google Scholar 

  • Midgley JJ, Kruger LM, Skelton R (2011) How do fires kill plants? The hydraulic death hypothesis and Cape Proteaceae “fire-resisters”. S Afr J Bot 77(2):381–386. https://doi.org/10.1016/j.sajb.2010.10.001

    Article  Google Scholar 

  • Nesmith J, Das A, O’Hara K, van Mantgem P (2015) The influence of pre-fire tree growth and crown condition on post-fire mortality of sugar pine following prescribed fire in Sequoia National Park. Can J For Res 45(7):910–919. https://doi.org/10.1139/cjfr-2014-0449

    Article  Google Scholar 

  • O’Brien JJ, Hiers JK, Mitchell R, Varner JM III, Mordecai K (2010) Acute physiological stress and mortality following fire in a long-unburned longleaf pine ecosystem. Fire Ecol 6:1–12

    Article  Google Scholar 

  • O’Brien JJ, Hiers JK, Varner JM, Hoffman CM, Dickinson MB, Michaletz ST, Loudermilk EL, Butler BW (2018) Advances in mechanistic approaches to quantifying biophysical fire effects. Curr For Reports 4(4):161–177. https://doi.org/10.1007/s40725-018-0082-7

    Article  Google Scholar 

  • Parker TJ, Clancy KM, Mathiasen RL (2006) Interactions among fire, insects and pathogens in coniferous forests of the interior western United States and Canada. Agric For Entomol 8(3):167–189. https://doi.org/10.1111/j.1461-9563.2006.00305.x

    Article  Google Scholar 

  • Pausas JG (2015) Bark thickness and fire regime. Funct Ecol 29(3):315–327. https://doi.org/10.1111/1365-2435.12372

    Article  Google Scholar 

  • Pausas JG, Keeley JE (2017) Epicormic resprouting in fire-prone ecosystems. Trends Plant Sci 22:1008

    Article  Google Scholar 

  • Pausas JG, Lamont BB, Paula S, Appezzato-da-Glória B, Fidelis A (2018) Unearthing belowground bud banks in fire-prone ecosystems. New Phytol 217(4):1435–1448. https://doi.org/10.1111/nph.14982

    Article  Google Scholar 

  • Pechony O, Shindell DT (2010) Driving forces of global wildfires over the past millennium and the forthcoming century. Proc Natl Acad Sci U S A 107(45):19167–19170. https://doi.org/10.1073/pnas.1003669107

    Article  Google Scholar 

  • Pellegrini AFA, Anderegg WRL, Paine CET, Hoffmann WA, Kartzinel T, Rabin SS, Sheil D, Franco AC, Pacala SW (2017) Convergence of bark investment according to fire and climate structures ecosystem vulnerability to future change. Ecol Lett 20(3):307–316. https://doi.org/10.1111/ele.12725

    Article  Google Scholar 

  • Platt WJ, Evans GW, Rathbun SL (1988) The population dynamics of a long-lived conifer (Pinus palustris). Am Nat 131(4):491–525

    Article  Google Scholar 

  • Seidl R, Spies TA, Peterson DL, Stephens SL, Hicke JA (2016) Searching for resilience: addressing the impacts of changing disturbance regimes on forest ecosystem services. J Appl Ecol 53(1):120–129. https://doi.org/10.1111/1365-2664.12511

    Article  Google Scholar 

  • Taudière A, Richard F, Carcaillet C (2017) Review on fire effects on ectomycorrhizal symbiosis, an unachieved work for a scalding topic. For Ecol Manag 391:446–457

    Article  Google Scholar 

  • Valor T, González-Olabarria JR, Piqué M, Casals P (2017) The effects of burning season and severity on the mortality over time of Pinus nigra spp. salzmannii (Dunal) Franco and P. sylvestris L. For Ecol Manag 406(Suppl C):172–183. https://doi.org/10.1016/j.foreco.2017.08.027

    Article  Google Scholar 

  • van Mantgem PJ, Stephenson NL, Mutch LS, Johnson VG, Esperanza AM, Parsons DJ (2003) Growth rate predicts mortality of Abies concolor in both burned and unburned stands. Can J For Res 33(6):1029–1038

    Article  Google Scholar 

  • van Mantgem P, Nesmith JCB, Keifer M, Knapp EE, Flint A, Flint L (2013) Climatic stress increases forest fire severity across the western United States. Ecol Lett 16(9):1151–1156. https://doi.org/10.1111/ele.12151

    Article  Google Scholar 

  • van Mantgem PJ, Falk DA, Williams EC, Das AJ, Stephenson NL (2018) Pre-fire drought and competition mediate post-fire conifer mortality in western U.S. National Parks. Ecol Appl 28:1730

    Article  Google Scholar 

  • Van Wagner CE (1973) Height of crown scorch in forest fires. Can J For Res 3:373–378

    Article  Google Scholar 

  • Varner JM III, Hiers JK, Ottmar RD, Gordon DR, Putz FE, Wade DD (2007) Overstory tree mortality resulting from reintroducing fire to long-unburned longleaf pine forests: the importance of duff moisture. Can J For Res 37:1349–1358

    Article  Google Scholar 

  • Varner JM, Putz FE, O’Brien JJ, Hiers JK, Mitchell RJ, Gordon DR (2009) Post-fire tree stress and growth following smoldering duff fires. For Ecol Manag 258(11):2467–2474

    Article  Google Scholar 

  • Walker RB, Coop JD, Parks SA, Trader L (2018) Fire regimes approaching historic norms reduce wildfire-facilitated conversion from forest to non-forest. Ecosphere 9(4):e02182. https://doi.org/10.1002/ecs2.2182

    Article  Google Scholar 

  • Weise DR, Johansen RW, Wade DD (1987) Effects of spring defoliation on first-year growth of young loblolly and slash pines. Research note SE-347. US Department of Agriculture, Forest Service, Southeastern Forest Experiment Station, Asheville

    Book  Google Scholar 

  • Woolley T, Shaw DC, Ganio LM, Fitzgerald SA (2012) A review of logistic regression models used to predict post-fire tree mortality of western North American conifers. Int J Wildland Fire 21:1–35

    Article  Google Scholar 

  • Yu H, Wiegand T, Yang X, Ci L (2009) The impact of fire and density-dependent mortality on the spatial patterns of a pine forest in the Hulun Buir sandland, Inner Mongolia, China. For Ecol Manag 257(10):2098–2107. https://doi.org/10.1016/j.foreco.2009.02.019

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon M. Hood .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hood, S.M., Varner, J.M. (2019). Post-fire Tree Mortality. In: Manzello, S. (eds) Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires. Springer, Cham. https://doi.org/10.1007/978-3-319-51727-8_252-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51727-8_252-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51727-8

  • Online ISBN: 978-3-319-51727-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics