Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires

Living Edition
| Editors: Samuel L. Manzello

Post-fire Tree Mortality

  • Sharon M. HoodEmail author
  • J. Morgan Varner
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-51727-8_252-1

Synonyms

Definition

Tree death is caused either directly or indirectly by wildland fire.

Introduction

By killing trees, wildland fires influence ecosystems in many ways, including limiting ecosystem productivity, altering resource availability, and changing the structure and composition of vegetation (Bond and Keeley 2005). These changes can have both positive and negative impacts on carbon storage, biodiversity conservation, hydrologic processes, and economic and social services (Bowman et al. 2009). In fire-adapted and fire-dependent ecosystems, fire controls tree density and species dominance, creating habitat that supports diverse plant and animal species that cannot persist in the absence of fire. However, fire-adapted ecosystems may be vulnerable to climate-driven alterations to fire regimes that are an emerging threat in recent decades, with observations of increasing fire size, frequency, and...

This is a preview of subscription content, log in to check access.

References

  1. Adams H, Williams A, Xu C, Rauscher S, Jiang X, McDowell N (2013) Empirical and process-based approaches to climate-induced forest mortality models. Front Plant Sci 4:438.  https://doi.org/10.3389/fpls.2013.00438CrossRefGoogle Scholar
  2. Agee JK, Skinner CN (2005) Basic principles of forest fuel reduction treatments. For Ecol Manag 211(1–2):83–96CrossRefGoogle Scholar
  3. Alfaro-Sánchez R, Camarero JJ, Sánchez-Salguero R, Sangüesa-Barreda G, De Las Heras J (2016) Post-fire Aleppo pine growth, C and N isotope composition depend on site dryness. Trees 30:581–595.  https://doi.org/10.1007/s00468-015-1342-9CrossRefGoogle Scholar
  4. Bär A, Michaletz ST, Mayr S (2019) Fire effects on tree physiology. New Phytol.  https://doi.org/10.1111/nph.15871CrossRefGoogle Scholar
  5. Bond WJ, Keeley JE (2005) Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20(7):387–394CrossRefGoogle Scholar
  6. Bond WJ, Midgley JJ (2001) Ecology of sprouting in woody plants: the persistence niche. Trends Ecol Evol 16(1):45–51CrossRefGoogle Scholar
  7. Bova AS, Dickinson MB (2005) Linking surface-fire behavior, stem heating, and tissue necrosis. Can J For Res 35(4):814–822.  https://doi.org/10.1139/x05-004CrossRefGoogle Scholar
  8. Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D’Antonio CM, DeFries RS, Doyle JC, Harrison SP, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Marston JB, Moritz MA, Prentice IC, Roos CI, Scott AC, Swetnam TW, van der Werf GR, Pyne SJ (2009) Fire in the earth system. Science 324(5926):481–484.  https://doi.org/10.1126/science.1163886CrossRefGoogle Scholar
  9. Bowman DM, Murphy BP, Neyland DL, Williamson GJ, Prior LD (2014) Abrupt fire regime change may cause landscape-wide loss of mature obligate seeder forests. Glob Chang Biol 20(3):1008–1015CrossRefGoogle Scholar
  10. Brando PM, Nepstad DC, Balch JK, Bolker B, Christman MC, Coe M, Putz FE (2012) Fire-induced tree mortality in a neotropical forest: the roles of bark traits, tree size, wood density and fire behavior. Glob Chang Biol 18(2):630–641CrossRefGoogle Scholar
  11. Chatziefstratiou EK, Bohrer G, Bova AS, Subramanian R, Frasson RP, Scherzer A, Butler BW, Dickinson MB (2013) Firestem2d–a two-dimensional heat transfer model for simulating tree stem injury in fires. PLoS One 8(7):e70110CrossRefGoogle Scholar
  12. Davis RS, Hood S, Bentz BJ (2012) Fire-injured ponderosa pine provide a pulsed resource for bark beetles. Can J For Res 42(12):2022–2036.  https://doi.org/10.1139/x2012-147CrossRefGoogle Scholar
  13. Dickinson M, Johnson E (2001) Fire effects on trees. In: Johnson EA, Miyanishi K (eds) Forest fires: behavior and ecological effects. Academic, New York, pp 477–525CrossRefGoogle Scholar
  14. Dieterich JH (1979) Recovery potential of fire-damaged southwestern ponderosa pine. U.S. Department of Agriculture, Forest Service, Fort Collins, p 8Google Scholar
  15. Fairman TA, Nitschke CR, Bennett LT (2016) Too much, too soon? A review of the effects of increasing wildfire frequency on tree mortality and regeneration in temperate eucalypt forests. Int J Wildland Fire 25(8):831–848CrossRefGoogle Scholar
  16. Flannigan MD, Krawchuk MA, de Groot WJ, Wotton BM, Gowman LM (2009) Implications of changing climate for global wildland fire. Int J Wildland Fire 18(5):483–507.  https://doi.org/10.1071/WF08187CrossRefGoogle Scholar
  17. Fowler JF, Sieg CH, McMillin J, Allen KK, Negron JF, Wadleigh LL, Anhold JA, Gibson KE (2010) Development of post-fire crown damage mortality thresholds in ponderosa pine. Int J Wildland Fire 19(5):583–588.  https://doi.org/10.1071/WF08193CrossRefGoogle Scholar
  18. Furniss TJ, Larson AJ, Kane VR, Lutz JA (2019) Multi-scale assessment of post-fire tree mortality models. Int J Wildland Fire 28(1):46–61.  https://doi.org/10.1071/WF18031CrossRefGoogle Scholar
  19. Ganio LM, Progar RA (2017) Mortality predictions of fire-injured large Douglas-fir and ponderosa pine in Oregon and Washington, USA. For Ecol Manag 390:47–67.  https://doi.org/10.1016/j.foreco.2017.01.008CrossRefGoogle Scholar
  20. Grayson LM, Progar RA, Hood SM (2017) Predicting post-fire tree mortality for 14 conifers in the Pacific Northwest, USA: model evaluation, development, and thresholds. For Ecol Manag 399:213–226.  https://doi.org/10.1016/j.foreco.2017.05.038CrossRefGoogle Scholar
  21. Harrington MG (1987) Ponderosa pine mortality from spring, summer, and fall crown scorching. West J Appl For 2(1):14–16CrossRefGoogle Scholar
  22. Hartford RA, Frandsen WH (1992) When it’s hot, it’s hot- or maybe it’s not! (Surface flaming may not portend extensive soil heating). Int J Wildland Fire 2:139–144CrossRefGoogle Scholar
  23. Hood SM (2010) Mitigating old tree mortality in long-unburned, fire-dependent forests: a synthesis. RMRS-GTR-238. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort CollinsCrossRefGoogle Scholar
  24. Hood S, Lutes D (2017) Predicting post-fire tree mortality for 12 western US conifers using the First-Order Fire Effects Model (FOFEM). Fire Ecol 13(2):66–84.  https://doi.org/10.4996/fireecology.130290243CrossRefGoogle Scholar
  25. Hood SM, Cluck DR, Smith SL, Ryan KC (2008) Using bark char codes to predict post-fire cambium mortality. Fire Ecol 4(1):57–73CrossRefGoogle Scholar
  26. Hood S, Varner M, van Mantgem P, Cansler CA (2018) Fire and tree death: understanding and improving modeling of fire-induced tree mortality. Environ Res Lett 13:113004CrossRefGoogle Scholar
  27. Jenkins MJ, Runyon JB, Fettig CJ, Page WG, Bentz BJ (2014) Interactions among the mountain pine beetle, fires, and fuels. For Sci 60(3):489–501.  https://doi.org/10.5849/forsci.13-017CrossRefGoogle Scholar
  28. Kane JM, van Mantgem PJ, Lalemand LB, Keifer M (2017a) Higher sensitivity and lower specificity in post-fire mortality model validation of 11 western US tree species. Int J Wildland Fire 26(5):444–454.  https://doi.org/10.1071/WF16081CrossRefGoogle Scholar
  29. Kane JM, Varner JM, Metz MR, van Mantgem PJ (2017b) Characterizing interactions between fire and other disturbances and their impacts on tree mortality in western U.S. Forests. For Ecol Manag 405:188–199.  https://doi.org/10.1016/j.foreco.2017.09.037CrossRefGoogle Scholar
  30. Kelsey RG, Westlind DJ (2017) Physiological stress and ethanol accumulation in tree stems and woody tissues at sublethal temperatures from fire. Bioscience 67(5):443–451CrossRefGoogle Scholar
  31. Lawes M, Richards A, Dathe J, Midgley J (2011a) Bark thickness determines fire resistance of selected tree species from fire-prone tropical savanna in North Australia. Plant Ecol 212(12):2057–2069.  https://doi.org/10.1007/s11258-011-9954-7CrossRefGoogle Scholar
  32. Lawes MJ, Adie H, Russell-Smith J, Murphy B, Midgley JJ (2011b) How do small savanna trees avoid stem mortality by fire? The roles of stem diameter, height and bark thickness. Ecosphere 2(4):1–13CrossRefGoogle Scholar
  33. Liang S, Hurteau MD, Westerling AL (2017) Potential decline in carbon carrying capacity under projected climate-wildfire interactions in the Sierra Nevada. Sci Rep 7(1):2420CrossRefGoogle Scholar
  34. Michaletz ST, Johnson EA (2006) A heat transfer model of crown scorch in forest fires. Can J For Res 36(11):2839–2851.  https://doi.org/10.1139/x06-158CrossRefGoogle Scholar
  35. Michaletz ST, Johnson EA (2007) How forest fires kill trees: a review of the fundamental biophysical processes. Scand J For Res 22:500–515CrossRefGoogle Scholar
  36. Michaletz S, Johnson E (2008) A biophysical process model of tree mortality in surface fires. Can J For Res 38(7):2013–2029CrossRefGoogle Scholar
  37. Midgley JJ, Kruger LM, Skelton R (2011) How do fires kill plants? The hydraulic death hypothesis and Cape Proteaceae “fire-resisters”. S Afr J Bot 77(2):381–386.  https://doi.org/10.1016/j.sajb.2010.10.001CrossRefGoogle Scholar
  38. Nesmith J, Das A, O’Hara K, van Mantgem P (2015) The influence of pre-fire tree growth and crown condition on post-fire mortality of sugar pine following prescribed fire in Sequoia National Park. Can J For Res 45(7):910–919.  https://doi.org/10.1139/cjfr-2014-0449CrossRefGoogle Scholar
  39. O’Brien JJ, Hiers JK, Mitchell R, Varner JM III, Mordecai K (2010) Acute physiological stress and mortality following fire in a long-unburned longleaf pine ecosystem. Fire Ecol 6:1–12CrossRefGoogle Scholar
  40. O’Brien JJ, Hiers JK, Varner JM, Hoffman CM, Dickinson MB, Michaletz ST, Loudermilk EL, Butler BW (2018) Advances in mechanistic approaches to quantifying biophysical fire effects. Curr For Reports 4(4):161–177.  https://doi.org/10.1007/s40725-018-0082-7CrossRefGoogle Scholar
  41. Parker TJ, Clancy KM, Mathiasen RL (2006) Interactions among fire, insects and pathogens in coniferous forests of the interior western United States and Canada. Agric For Entomol 8(3):167–189.  https://doi.org/10.1111/j.1461-9563.2006.00305.xCrossRefGoogle Scholar
  42. Pausas JG (2015) Bark thickness and fire regime. Funct Ecol 29(3):315–327.  https://doi.org/10.1111/1365-2435.12372CrossRefGoogle Scholar
  43. Pausas JG, Keeley JE (2017) Epicormic resprouting in fire-prone ecosystems. Trends Plant Sci 22:1008CrossRefGoogle Scholar
  44. Pausas JG, Lamont BB, Paula S, Appezzato-da-Glória B, Fidelis A (2018) Unearthing belowground bud banks in fire-prone ecosystems. New Phytol 217(4):1435–1448.  https://doi.org/10.1111/nph.14982CrossRefGoogle Scholar
  45. Pechony O, Shindell DT (2010) Driving forces of global wildfires over the past millennium and the forthcoming century. Proc Natl Acad Sci U S A 107(45):19167–19170.  https://doi.org/10.1073/pnas.1003669107CrossRefGoogle Scholar
  46. Pellegrini AFA, Anderegg WRL, Paine CET, Hoffmann WA, Kartzinel T, Rabin SS, Sheil D, Franco AC, Pacala SW (2017) Convergence of bark investment according to fire and climate structures ecosystem vulnerability to future change. Ecol Lett 20(3):307–316.  https://doi.org/10.1111/ele.12725CrossRefGoogle Scholar
  47. Platt WJ, Evans GW, Rathbun SL (1988) The population dynamics of a long-lived conifer (Pinus palustris). Am Nat 131(4):491–525CrossRefGoogle Scholar
  48. Seidl R, Spies TA, Peterson DL, Stephens SL, Hicke JA (2016) Searching for resilience: addressing the impacts of changing disturbance regimes on forest ecosystem services. J Appl Ecol 53(1):120–129.  https://doi.org/10.1111/1365-2664.12511CrossRefGoogle Scholar
  49. Taudière A, Richard F, Carcaillet C (2017) Review on fire effects on ectomycorrhizal symbiosis, an unachieved work for a scalding topic. For Ecol Manag 391:446–457CrossRefGoogle Scholar
  50. Valor T, González-Olabarria JR, Piqué M, Casals P (2017) The effects of burning season and severity on the mortality over time of Pinus nigra spp. salzmannii (Dunal) Franco and P. sylvestris L. For Ecol Manag 406(Suppl C):172–183.  https://doi.org/10.1016/j.foreco.2017.08.027CrossRefGoogle Scholar
  51. van Mantgem PJ, Stephenson NL, Mutch LS, Johnson VG, Esperanza AM, Parsons DJ (2003) Growth rate predicts mortality of Abies concolor in both burned and unburned stands. Can J For Res 33(6):1029–1038CrossRefGoogle Scholar
  52. van Mantgem P, Nesmith JCB, Keifer M, Knapp EE, Flint A, Flint L (2013) Climatic stress increases forest fire severity across the western United States. Ecol Lett 16(9):1151–1156.  https://doi.org/10.1111/ele.12151CrossRefGoogle Scholar
  53. van Mantgem PJ, Falk DA, Williams EC, Das AJ, Stephenson NL (2018) Pre-fire drought and competition mediate post-fire conifer mortality in western U.S. National Parks. Ecol Appl 28:1730CrossRefGoogle Scholar
  54. Van Wagner CE (1973) Height of crown scorch in forest fires. Can J For Res 3:373–378CrossRefGoogle Scholar
  55. Varner JM III, Hiers JK, Ottmar RD, Gordon DR, Putz FE, Wade DD (2007) Overstory tree mortality resulting from reintroducing fire to long-unburned longleaf pine forests: the importance of duff moisture. Can J For Res 37:1349–1358CrossRefGoogle Scholar
  56. Varner JM, Putz FE, O’Brien JJ, Hiers JK, Mitchell RJ, Gordon DR (2009) Post-fire tree stress and growth following smoldering duff fires. For Ecol Manag 258(11):2467–2474CrossRefGoogle Scholar
  57. Walker RB, Coop JD, Parks SA, Trader L (2018) Fire regimes approaching historic norms reduce wildfire-facilitated conversion from forest to non-forest. Ecosphere 9(4):e02182.  https://doi.org/10.1002/ecs2.2182CrossRefGoogle Scholar
  58. Weise DR, Johansen RW, Wade DD (1987) Effects of spring defoliation on first-year growth of young loblolly and slash pines. Research note SE-347. US Department of Agriculture, Forest Service, Southeastern Forest Experiment Station, AshevilleCrossRefGoogle Scholar
  59. Woolley T, Shaw DC, Ganio LM, Fitzgerald SA (2012) A review of logistic regression models used to predict post-fire tree mortality of western North American conifers. Int J Wildland Fire 21:1–35CrossRefGoogle Scholar
  60. Yu H, Wiegand T, Yang X, Ci L (2009) The impact of fire and density-dependent mortality on the spatial patterns of a pine forest in the Hulun Buir sandland, Inner Mongolia, China. For Ecol Manag 257(10):2098–2107.  https://doi.org/10.1016/j.foreco.2009.02.019CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  1. 1.Rocky Mountain Research StationUSDA Forest ServiceMissoulaUSA
  2. 2.Tall Timbers Research Station & Land ConservancyTallahasseeUSA

Section editors and affiliations

  • Kuibin Zhou
    • 1
  1. 1.Nanjing Tech UniversityNanjingChina