Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires

Living Edition
| Editors: Samuel L. Manzello

Wildland-Urban Interface

Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-51727-8_130-1



The wildland-urban interface (WUI) is the area where wildland vegetation meets or mixes with humans and their development, including houses and infrastructure. The term is mainly used in the context of wildfire to define the potential risk that WUI fires pose to human settlement.


The wildland-urban interface (WUI) is defined as the area where houses and other structures are built within or close to wildland vegetation (USDA and USDI 2001). The term is used in the context of wildfire to identify settlements that are potentially at risk from fire (Caton et al. 2016; Cohen 2008; Gill and Stephens 2009; Mell et al. 2010; Stewart et al. 2007). The WUI can include both the urban area directly adjacent to wildland vegetation and developed areas that may be directly affected by spotting ignition from wildfires.

In recent...

This is a preview of subscription content, log in to check access.


  1. Alcasena FJ, Evers CR, Vega-Garcia C (2018) The wildland-urban interface raster dataset of Catalonia. Data Br 17:124–128.  https://doi.org/10.1016/J.DIB.2017.12.066CrossRefGoogle Scholar
  2. Argañaraz JP, Radeloff VC, Bar-Massada A, Gavier-Pizarro GI, Scavuzzo CM, Bellis LM (2017) Assessing wildfire exposure in the wildland-urban interface area of the mountains of Central Argentina. J Environ Manag 196:499–510.  https://doi.org/10.1016/J.JENVMAN.2017.03.058CrossRefGoogle Scholar
  3. Badia A, Pallares-Barbera M, Valldeperas N, Gisbert M (2019) Wildfires in the wildland-urban interface in Catalonia: vulnerability analysis based on land use and land cover change. Sci Total Environ 673:184–196.  https://doi.org/10.1016/j.scitotenv.2019.04.012CrossRefGoogle Scholar
  4. Bar-Massada A, Stewart SI, Hammer RB, Mockrin MH, Radeloff VC (2013) Using structure locations as a basis for mapping the wildland urban interface. J Environ Manag 128:540–547.  https://doi.org/10.1016/j.jenvman.2013.06.021CrossRefGoogle Scholar
  5. Bar-Massada A, Radeloff VC, Stewart SI (2014) Biotic and abiotic effects of human settlements in the wildland–urban interface. Bioscience 64:429–437.  https://doi.org/10.1093/biosci/biu039CrossRefGoogle Scholar
  6. BC Wildfire Service (2019) Update: provincial strategic threat analysis (PSTA). British Columbia, ministry of forests, lands, natural resource operations & rural development, BC wildfire service. https://www2.gov.bc.ca/gov/content/safety/wildfire-status/prevention/vegetation-and-fuel-management/fire-fuel-management/psta. Accessed 3 July 2019
  7. Blanchi R, Leonard J (2008) Property safety: judging structural safety. In: Handmer J, Haynes K (eds) Community bushfire safety, pp 77–85Google Scholar
  8. Bouillon C, Fernandez Ramiro M, Sirca C, Fierro Garcia B, Casula F, Vila B, Tedim F (2014) A tool for mapping rural-urban interfaces on different scales. In: Viegas D (ed) Advances in forest fire research. Chapter 3 – Fire Management. Universidade de Coimbra, CoimbraGoogle Scholar
  9. Bowman DMJS, Balch J, Artaxo P, Bond WJ, Cochrane MA, D’Antonio CM, Defries R, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Mack M, Moritz MA, Pyne S, Roos CI, Scott AC, Sodhi NS, Swetnam TW (2011) The human dimension of fire regimes on Earth. J Biogeogr 38(12):2223–2236.  https://doi.org/10.1111/j.1365-2699.2011.02595.xCrossRefGoogle Scholar
  10. Bradley GA (1984) Land use and forest resources in a changing environment: the urban/forest interface. University of Washington, College of Forest Resources, University of Washington PressGoogle Scholar
  11. Caballero D, Beltrán I, Velasco A (2007) Forest fires and wildland-urban interface in Spain: types and risk distribution. Paper presented at the IV Conferencia Internacional sobre Incendios Forestales, SevilleGoogle Scholar
  12. CAL FIRE (2019) Top 20 most destructive California wildfires. https://calfire.ca.gov/media/5511/top20_destruction.pdf. Accessed 3 July 2019
  13. Caton SE, Hakes RSP, Gorham DJ, Zhou A, Gollner MJ (2016) Review of pathways for building fire spread in the wildland urban interface part I: exposure conditions. Fire Technol 53(2):429–473.  https://doi.org/10.1007/s10694-016-0589-zCrossRefGoogle Scholar
  14. Chas-Amil ML, Touza J, García-Martínez E (2013) Forest fires in the wildland-urban interface: a spatial analysis of forest fragmentation and human impacts. Appl Geogr 43:127–137.  https://doi.org/10.1016/j.apgeog.2013.06.010CrossRefGoogle Scholar
  15. Cohen JD (2008) The wildland-urban interface fire problem. A consequence of the fire exclusion paradigm. For Hist Today Fall 2008:20–26Google Scholar
  16. Conedera M, Tonini M, Oleggini L, Vega Orozco C, Leuenberger M, Pezzatti GB (2015) Geospatial approach for defining the wildland-urban interface in the alpine environment. Comput Environ Urban Syst 52:10–20.  https://doi.org/10.1016/J.COMPENVURBSYS.2015.02.003CrossRefGoogle Scholar
  17. Coughlan M, Magi B, Derr K, Coughlan MR, Magi BI, Derr KM (2018) A global analysis of hunter-gatherers, broadcast fire use, and lightning-fire-prone landscapes. Fire 1:41.  https://doi.org/10.3390/fire1030041CrossRefGoogle Scholar
  18. Council of Canadian Academies (2019) Canada’s top climate change risks. The expert panel on climate change risks and adaptation potential, OttawaGoogle Scholar
  19. Curran T, Perry G, Wyse S, Alam M, Curran TJ, Perry GLW, Wyse SV, Alam MA (2017) Managing fire and biodiversity in the wildland-urban interface: a role for green firebreaks. Fire 1:3.  https://doi.org/10.3390/fire1010003CrossRefGoogle Scholar
  20. Davis JB (1990) The wildland-urban interface – paradise or battleground. J For 88:26–31Google Scholar
  21. Evers CR, Ager AA, Nielsen-Pincus M, Palaiologou P, Bunzel K (2019) Archetypes of community wildfire exposure from national forests of the western US. Landsc Urban Plan 182:55–66.  https://doi.org/10.1016/J.LANDURBPLAN.2018.10.004CrossRefGoogle Scholar
  22. FAO (2007) Fire management – global assessment 2006. A thematic study prepared in the framework of the global forest resources assessment 2005. FAO Forestry Paper 151, RomeGoogle Scholar
  23. Finney MA (2005) The challenge of quantitative risk analysis for wildland fire. For Ecol Manag 211:97CrossRefGoogle Scholar
  24. Flannigan MD, Krawchuk MA, de Groot WJ, Wotton B, Gowman L (2009) Implications of changing climate for global wildland fire. Int J Wildland Fire 18:483–507.  https://doi.org/10.1071/WF08187CrossRefGoogle Scholar
  25. Fox DM, Martin N, Carrega P, Andrieu J, Adnès C, Emsellem K, Ganga O, Moebius F, Tortorollo N, Fox EA (2015) Increases in fire risk due to warmer summer temperatures and wildland urban interface changes do not necessarily lead to more fires. Appl Geogr 56:1–12.  https://doi.org/10.1016/J.APGEOG.2014.10.001CrossRefGoogle Scholar
  26. Galiana-Martin L, Karlsson O (2011) Development of a methodology for the assessment of vulnerability related to wildland fires using a multi-criteria evaluation. Geogr Res 50(3):304–319.  https://doi.org/10.1111/j.1745-5871.2011.00718.xCrossRefGoogle Scholar
  27. Galiana-Martin L, Herrero G, Solana J (2011) A wildland-urban interface typology for forest fire risk management in Mediterranean areas. Landsc Res 36:151–171.  https://doi.org/10.1080/01426397.2010.549218CrossRefGoogle Scholar
  28. Ganteaume A, Jappiot M (2013) What causes large fires in Southern France. For Ecol Manag 294:76–85.  https://doi.org/10.1016/j.foreco.2012.06.055CrossRefGoogle Scholar
  29. Gill AM (2009) Fire, science and society at the rural-urban interface. Proc R Soc Qld 115:153–160Google Scholar
  30. Gill AM, Stephens SL (2009) Scientific and social challenges for the management of fire-prone wildland–urban interfaces. Environ Res Lett 4:034014.  https://doi.org/10.1088/1748-9326/4/3/034014CrossRefGoogle Scholar
  31. Gill AM, Stephens SL, Cary GJ (2013) The worldwide “wildfire” problem. Ecol Appl 23:438–454.  https://doi.org/10.1890/10-2213.1CrossRefGoogle Scholar
  32. Haas JR, Calkin DE, Thompson MP (2013) A national approach for integrating wildfire simulation modeling into Wildland urban Interface risk assessments within the United States. Landsc Urban Plan 119:44–53.  https://doi.org/10.1016/j.landurbplan.2013.06.011CrossRefGoogle Scholar
  33. Haight RG, Cleland DT, Hammer RB, Radeloff VC, Rupp TS (2004) Assessing fire risk in the wildland-urban interface. J For 102:41–48Google Scholar
  34. Hammer RB, Radeloff VC, Fried JS, Stewart SI (2007) Wildland-urban interface housing growth during the 1990s in California, Oregon, and Washington. Int J Wildland Fire 16:255–265.  https://doi.org/10.1071/WF05077CrossRefGoogle Scholar
  35. Herrero-Corral G, Jappiot M, Bouillon C, Long-Fournel M (2012) Application of a geographical assessment method for the characterization of wildland-urban interfaces in the context of wildfire prevention: a case study in western Madrid. Appl Geogr 35:60–70CrossRefGoogle Scholar
  36. Hope ES, McKenney DW, Pedlar JH, Stocks BJ, Gauthier S (2016) Wildfire suppression costs for Canada under a changing climate. PLoS One 11:e0157425.  https://doi.org/10.1371/journal.pone.0157425CrossRefGoogle Scholar
  37. Johnston LM (2016) Mapping Canadian wildland fire interface areas. MSc., Department of Renewable Resources, University of Alberta. https://era.library.ualberta.ca/files/cnv935306n. Accessed 3 July 2019
  38. Johnston LM, Flannigan MD (2018) Mapping Canadian wildland fire interface areas. Int J Wildland Fire 27(1):1–14.  https://doi.org/10.1071/WF16221CrossRefGoogle Scholar
  39. Lampin-Maillet C (2009) Classifying the relationship between the spatial organization of a region and fire risk: the case of forest-dwelling interface areas in the South of France. PhD, Geography, University of Provence, Aix-MarseilleGoogle Scholar
  40. Lampin-Maillet C, Jappiot M, Long M, Bouillon C, Morge D, Ferrier JP (2010) Mapping wildland-urban interfaces at large scales integrating housing density and vegetation aggregation for fire prevention in the South of France. J Environ Manag 91:732–741.  https://doi.org/10.1016/j.jenvman.2009.10.001CrossRefGoogle Scholar
  41. Leonard J, Opie K, Newnham G, Blanchi R (2014) A new methodology for state – wide mapping of bushfire prone areas in Queensland, AustraliaGoogle Scholar
  42. Lowell K, Shamir R, Siqueira A, White J, O'Connor A, Butcher G, Garvey M, Niven M (2009) Assessing the capabilities of geospatial data to map built structures and evaluate their bushfire threat. Int J Wildland Fire 18(8):1010–1020.  https://doi.org/10.1071/WF08077CrossRefGoogle Scholar
  43. Manzello SL, Maranghides A, Mell WE (2007) Firebrand generation from burning vegetation. Int J Wildland Fire 16:458–462.  https://doi.org/10.1071/WF06079CrossRefGoogle Scholar
  44. Martinuzzi S, Stewart SI, Helmers DP, Mockrin MH, Hammer RB, Radeloff VC (2015) The 2010 wildland-urban interface of the conterminous United States. Research Map NRS-8. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station, 124p.  https://doi.org/10.2737/NRS-RMAP-8
  45. Mell WE, Manzello SL, Maranghides A, Butry D, Rehm RG (2010) The wildland–urban interface fire problem – current approaches and research needs. Int J Wildland Fire 19:238–251.  https://doi.org/10.1071/WF07131CrossRefGoogle Scholar
  46. Menakis JP, Cohen JD, Bradshaw LS (2003) Mapping wildland fire risk to flammable structures for the conterminous United States. Fire conference 2000 first national congress fire ecology, prevention, and managementGoogle Scholar
  47. Mercer E, Zipperer W (2012) Fire in the wildland–urban interface. In: Laband D, Lockaby G, Zipperer W (eds) Urban-rural interfaces: linking people and nature. American Society of Agronomy, Madison, pp 287–303Google Scholar
  48. Miller C, Ager AA (2013) A review of recent advances in risk analysis for wildfire management. Int J Wildland Fire 22(1):14CrossRefGoogle Scholar
  49. MNP (2017) A review of the 2016 horse river wildfire: Alberta agriculture and forestry preparedness and response. MNP LLP, Forestry Division, Alberta Agriculture and Forestry, EdmontonGoogle Scholar
  50. Modugno S, Balzter H, Cole B, Borrelli P (2016) Mapping regional patterns of large forest fires in wildland-urban interface areas in Europe. J Environ Manag 172(1):112–126.  https://doi.org/10.1016/j.jenvman.2016.02.013CrossRefGoogle Scholar
  51. Molina-Terrén DM, Xanthopoulos G, Diakakis M, Ribeiro L, Caballero D, Delogu GM, Viegas DX, Silva CA, Cardil A (2019) Analysis of forest fire fatalities in Southern Europe: Spain, Portugal, Greece and Sardinia (Italy). Int J Wildland Fire 28(2):85–98.  https://doi.org/10.1071/WF18004CrossRefGoogle Scholar
  52. Moritz MA, Batllori E, Bradstock RA, Gill AM, Handmer J, Hessburg PF, Leonard J, Mccaffrey S, Odion DC, Schoennagel T, Syphard AD (2014) Learning to coexist with wildfire. Nature 515:58–66.  https://doi.org/10.1038/nature13946CrossRefGoogle Scholar
  53. Nauslar NJ, Abatzoglou JT, Marsh PT (2017) The 2017 North Bay and Southern California fires: a case study. Fire 1(1):18.  https://doi.org/10.3390/fire1010018CrossRefGoogle Scholar
  54. NSW Rural Fire Service (2015) Guide for bush fire prone land mapping. https://www.rfs.nsw.gov.au/__data/assets/pdf_file/0011/4412/Guideline-for-Councils-to-Bushfire-Prone-Area-Land-Mapping.pdf. Accessed 3 July 2019
  55. Planning Victoria (2019) Criteria to be used in mapping Victoria’s bushfire prone areas https://www.planning.vic.gov.au/__data/assets/pdf_file/0027/5499/BPA-Mapping-Criteria.pdf. Accessed 3 July 2019
  56. Platt RV (2010) The wildland-urban interface: evaluating the definition effect. J For 108:9–15Google Scholar
  57. Podur J, Wotton M (2010) Will climate change overwhelm fire management capacity? Ecol Model 221:1301–1309.  https://doi.org/10.1016/j.ecolmodel.2010.01.013CrossRefGoogle Scholar
  58. Price O, Bradstock R (2014) Countervailing effects of urbanization and vegetation extent on fire frequency on the wildland urban interface: disentangling fuel and ignition effects. Landsc Urban Plan 130:81–88.  https://doi.org/10.1016/j.landurbplan.2014.06.013CrossRefGoogle Scholar
  59. Radeloff VC, Hammer RB, Stewart SI, Fried JS, Holcomb SS, McKeefry JF (2005) The wildland-urban interface in the United States. Ecol Appl 15:799–805.  https://doi.org/10.1890/04-1413CrossRefGoogle Scholar
  60. Radeloff VC, Helmers DP, Kramer HA, Mockrin MH, Alexandre PM, Bar-Massada A, Butsic V, Hawbaker TJ, Martinuzzi S, Syphard AD, Stewart SI (2018) Rapid growth of the US wildland-urban interface raises wildfire risk. Proc Natl Acad Sci U S A 115:3314–3319.  https://doi.org/10.1073/pnas.1718850115CrossRefGoogle Scholar
  61. Rehm RG, Mell W (2009) A simple model for wind effects of burning structures and topography on wildland–urban interface surface-fire propagation. Int J Wildland Fire 18:290–301.  https://doi.org/10.1071/WF08087CrossRefGoogle Scholar
  62. Robinne F-N, Miller C, Parisien M-A, Emelko MB, Bladon KD, Silins U, Flannigan M (2016) A global index for mapping the exposure of water resources to wildfire. Forests 7(1):22.  https://doi.org/10.3390/f7010022CrossRefGoogle Scholar
  63. Scott JH, Thompson MP, Calkin DE (2013) A wildfire risk assessment framework for land and resource management. Report RMRS-GTR-315. United States Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort CollinsGoogle Scholar
  64. Sirca C, Casula F, Bouillon C, García BF, Fernández Ramiro MM, Molina BV, Spano D (2017) A wildfire risk oriented GIS tool for mapping rural-urban interfaces. Environ Model Softw 94:36–47.  https://doi.org/10.1016/j.envsoft.2017.03.024CrossRefGoogle Scholar
  65. Sommers WT (2008) The emergence of the wildland–urban interface concept. For Hist Today F08:12–18Google Scholar
  66. State of California (2019) Maps. Fire and resource assessment program (FRAP). California Department of Forestry and Fire Protection. https://frap.fire.ca.gov/mapping/maps/. Accessed 3 July 2019
  67. Stewart SI, Radeloff VC, Hammer RB (2003) Characteristics and location of the wildland-urban interface in the United States. Second international wildland fire ecology and fire management workshop, Orlando, 16–20 Nov 2003Google Scholar
  68. Stewart SI, Radeloff VC, Hammer RB, Hawbaker TJ (2007) Defining the wildland-urban interface. J For 105:201–207Google Scholar
  69. Stewart S, Wilmer B, Hammer R, Aplet G, Hawbaker T, Miller C, Radeloff V (2009) Wildland-urban interface maps vary with purpose and context. J For 107(2):78–83Google Scholar
  70. Syphard AD, Radeloff VC, Keeley JE, Hawbaker TJ, Clayton MK, Stewart SI, Hammer RB (2007) Human influence on California fire regimes. Ecol Appl 17(5):1388–1402.  https://doi.org/10.1890/06-1128.1CrossRefGoogle Scholar
  71. Syphard AD, Radeloff VC, Keuler NS, Taylor RS, Hawbaker TJ, Stewart SI, Clayton MK (2008) Predicting spatial patterns of fire on a southern California landscape. Int J Wildland Fire 17(5):602–613.  https://doi.org/10.1071/WF07087CrossRefGoogle Scholar
  72. Teague B, McLeod R, Pascoe S (2010) 2009 Victorian Bushfires Royal Commission final report: summary. State Government of Victoria, MelbourneGoogle Scholar
  73. Tedim F, Xanthopoulos G, Leone V (2015) Forest fires in Europe: facts and challenges. In: Wildfire hazards, risks and disasters, pp 77–99.  https://doi.org/10.1016/B978-0-12-410434-1.00005-1CrossRefGoogle Scholar
  74. Tedim F, Leone V, Amraoui M, Bouillon C, Coughlan M, Delogu G, Fernandes P, Ferreira C, McCaffrey S, McGee T, Parente J, Paton D, Pereira M, Ribeiro L, Viegas D, Xanthopoulos G (2018) Defining extreme wildfire events: difficulties, challenges, and impacts. Fire 1(1):9.  https://doi.org/10.3390/fire1010009CrossRefGoogle Scholar
  75. Theobald DM, Romme WH (2007) Expansion of the US wildland-urban interface. Landsc Urban Plan 83:340–354.  https://doi.org/10.1016/j.landurbplan.2007.06.002CrossRefGoogle Scholar
  76. USDA (2019) What is the Wildland Urban Interface (WUI)? https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fsbdev3_053107.pdf. Accessed 3 July 2019
  77. USDA, USDI (2001) Notices. Federal Register. Vol. 66, No. 3Google Scholar
  78. Zhang Y, He HS, Yang J (2008) The wildland–urban interface dynamics in the southeastern U.S. from 1990 to 2000. Landsc Urban Plan 85:155–162.  https://doi.org/10.1016/J.LANDURBPLAN.2007.11.007CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Canadian Forest ServiceGreat Lakes Forestry CentreSault Ste. MarieCanada
  2. 2.CSIROMelbourneAustralia
  3. 3.IRSTEAAix-en-ProvenceFrance

Section editors and affiliations

  • Michael Gollner
    • 1
  • Kuibin Zhou
    • 2
  1. 1.Department of Fire Protection EngineeringUniversity of MarylandCollege ParkUSA
  2. 2.Nanjing Tech UniversityNanjingChina