Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires

Living Edition
| Editors: Samuel L. Manzello

Extinguishment Agents

  • Serafín J. González-PrietoEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-51727-8_124-1



Natural and synthetic substances used as chemical additives to improve water effectiveness for extinguishing wildfires.


The use of extinguishment agents in direct and indirect fire-fighting operations started in the early 1930s because these substances delay the ignition, reduce fire intensity (from flaming to smouldering combustion) and spread, decrease fuel consumption, and delay combustion recovery (Kalabokidis 2000; Giménez et al. 2004). The extinguishment agents help to control wood pyrolysis and combustion through several mechanisms (Liodakis et al. 2008): (a) acting as fire-fuel barriers; (b) cooling fuels by the endothermic decomposition of the added chemicals; (c) diluting with noncombustible gases the combustible gases evolved from burning fuels; (d) trapping free radicals; (e) increasing char...

This is a preview of subscription content, log in to check access.


  1. Adams R, Simmons D (1999) Ecological effects of fire fighting foams and retardants: a summary. Aust For 62:307–314CrossRefGoogle Scholar
  2. Angeler DG, Sanchez B, Garcia G, Moreno JM (2006) Community ecotoxicology: Invertebrate emergence from Fire Trol 934 contaminated vernal pool and salt marsh sediments under contrasting photoperiod and temperature regimes. Aquat Toxicol 78(2):167–175. https://doi.org/10.1016/j.aquatox.2006.02.030CrossRefGoogle Scholar
  3. Barreiro A, Martin A, Carballas T, Diaz-Ravina M (2010) Response of soil microbial communities to fire and fire-fighting chemicals. Sci Total Environ 408(24):6172–6178. https://doi.org/10.1016/j.scitotenv.2010.09.011CrossRefGoogle Scholar
  4. Barreiro A, Martín A, Carballas T, Díaz-Raviña M (2016) Long-term response of soil microbial communities to fire and fire-fighting chemicals. Biol Fertil Soils 52(7):963–975. https://doi.org/10.1007/s00374-016-1133-5CrossRefGoogle Scholar
  5. Basanta MR, Díaz-Raviña M, González-Prieto SJ, Carballas T (2002) Biochemical properties of forest soils as affected by a fire retardant. Biol Fertil Soils 36(5):377–383. https://doi.org/10.1007/s00374-002-0533-xCrossRefGoogle Scholar
  6. Bell T, Tolhurst K, Wouters M (2005) Effects of the fire retardant Phos-Chek on vegetation in eastern Australian heathlands. Int J Wildland Fire 14:199–211CrossRefGoogle Scholar
  7. Boulton AJ, Moss GL, Smithyman D (2003) Short-term effects of aerially-applied fire-suppressant foams on water chemistry and macroinvertebrates in streams after natural wild-fire on Kangaroo Island. S Aust Hydrobiologia 498(1–3):177–189CrossRefGoogle Scholar
  8. Couto-Vázquez A, González-Prieto SJ (2006) Short- and medium-term effects of three fire fighting chemicals on the properties of a burnt soil. Sci Total Environ 371(1–3):353–361. https://doi.org/10.1016/j.scitotenv.2006.08.016CrossRefGoogle Scholar
  9. Couto-Vázquez A, García-Marco S, González-Prieto SJ (2011) Long-term effects of fire and three firefighting chemicals on a soil–plant system. Int J Wildland Fire 20(7):856–865. https://doi.org/10.1071/WF10084CrossRefGoogle Scholar
  10. Cruz A, Serrano M, Navarro E, Luna B, Moreno JM (2005) Effect of a long-term fire retardant (Fire Trol 934 (R)) on the germination of nine Mediterranean-type shrub species. Environ Toxicol 20(6):543–548. https://doi.org/10.1002/tox.20143CrossRefGoogle Scholar
  11. Díaz-Raviña M, Baath E, Martín A, Carballas T (2006) Microbial community structure in forest soils treated with a fire retardant. Biol Fertil Soils 42(6):465–471. https://doi.org/10.1007/s00374-005-0036-7CrossRefGoogle Scholar
  12. Fernández-Fernández M, Gómez-Rey MX, González-Prieto SJ (2015) Effects of fire and three fire-fighting chemicals on main soil properties, plant nutrient content and vegetation growth and cover after 10years. Sci Total Environ 515-516:92–100. https://doi.org/10.1016/j.scitotenv.2015.02.048CrossRefGoogle Scholar
  13. Gaikowski MP, Hamilton SJ, Buhl KJ, McDonald SF, Summers C (1996) Acute toxicity of three fire-retardant and two fire-suppressant foam formulations to the early life stages of Rainbow Trout (Oncorynchus mykiss). Environ Toxicol Chem 15:1365–1374CrossRefGoogle Scholar
  14. García-Marco S, González-Prieto S (2008) Short- and medium-term effects of fire and fire-fighting chemicals on soil micronutrient availability. Sci Total Environ 407(1):297–303. https://doi.org/10.1016/j.scitotenv.2008.08.021CrossRefGoogle Scholar
  15. Giménez A, Pastor E, Zárate L, Planas E, Arnaldos J (2004) Long-term forest fire retardants: a review of quality, effectiveness, application and environmental considerations. Int J Wildland Fire 13(1):1–15. https://doi.org/10.1071/WF03001CrossRefGoogle Scholar
  16. Hopmans P, Collett N, Bickford R (2007) Effects of fire retardant on heathland soils in south-eastern Australia. Aust J Soil Res 45(8):607–617. https://doi.org/10.1071/SR07040CrossRefGoogle Scholar
  17. Kalabokidis K (2000) Effects of wildfire-suppression chemicals on people and the environment: a review. Global Nest Int J 2:129–137Google Scholar
  18. Kawano T, Otsuka K, Kadono T, Inokuchi R, Ishizaki Y, Dewancker B, Uezu K (2014) Eco-toxicological evaluation of fire-fighting foams in small-sized aquatic and semi-aquatic biotopes. Adv Mater Res 875-877:699–707. https://doi.org/10.4028/www.scientific.net/AMR.875-877.699CrossRefGoogle Scholar
  19. Koufopoulou S, Michalopoulos C, Tzamtzis N, Pappa A (2014) Impact of a long term fire retardant (Fire Trol 931) on the leaching of Na, Al, Fe, Mn, Cu and Si from a mediterranean forest soil: a short-term, lab-scale study. Bull Environ Contam Toxicol 92(6):708–713. https://doi.org/10.1007/s00128-014-1266-xCrossRefGoogle Scholar
  20. Larson DL, Newton WE, Anderson PJ, Stein SJ (1999) Effects of fire retardant chemical and fire suppressant foam on shrub steppe vegetation in northern Nevada. Int J Wildland Fire 9:115–127CrossRefGoogle Scholar
  21. Liodakis S, Tsoukala M (2009) Ash leaching of forest species treated with phosphate fire retardants. Water Air Soil Pollut 199(1–4):171–182. https://doi.org/10.1007/s11270-008-9869-7CrossRefGoogle Scholar
  22. Liodakis S, Tsoukala M (2010) Environmental benefits of using magnesium carbonate minerals as new wildfire retardants instead of commercially available, phosphate-based compounds. Environ Geochem Health 32(5):391–399. https://doi.org/10.1007/s10653-009-9283-0CrossRefGoogle Scholar
  23. Liodakis S, Antonopoulos I, Agiovlasitis IP, Kakardakis T (2008) Testing the fire retardancy of Greek minerals hydromagnesite and huntite on WUI forest species Phillyrea latifolia L. Thermochim Acta 469(1):43–51. https://doi.org/10.1016/j.tca.2007.12.010CrossRefGoogle Scholar
  24. Luna B, Moreno JM, Cruz A, Fernandez-Gonzalez F (2007) Effects of a long-term fire retardant chemical (Fire-Trol 934) on seed viability and germination of plants growing in a burned Mediterranean area. Int J Wildland Fire 16(3):349–359. https://doi.org/10.1071/wf06093CrossRefGoogle Scholar
  25. McDonald SF, Hamilton SJ, Buhl KJ, Heisinger JF (1996) Acute toxicity of fire control chemicals to Daphnia magna (Straus) and Selenastrum capricornutum (Printz). Ecotoxicol Environ Saf 33:62–72CrossRefGoogle Scholar
  26. McDonald SF, Hamilton SJ, Buhl KJ, Heisinger JF (1997) Acute toxicity of fire-retardant and foam-suppressant chemicals to Hyalella azteca (Saussure). Environ Toxicol Chem 16:1370–1376CrossRefGoogle Scholar
  27. Mizuki H, Uezu K, Kawano T, Kadono T, Kobayashi M, Hatae S, Oba Y, Iwamoto S, Mitumune S, Nagatomo Y, Owari Y, Umeki H, Ymagaga Y (2007) Novel environmental friendly soap-based fire-fighting agent. J Environ Eng Manag 16:403–408Google Scholar
  28. Moody CA, Field JA (2000) Perfluorinated surfactants and the environmental implications of their use in fire-fighting foams. Environ Sci Technol 34(18):3864–3870. https://doi.org/10.1021/es991359uCrossRefGoogle Scholar
  29. Pappa A, Tzamtzis N, Koufopoulou S (2006) Effect of fire retardant application on phosphorus leaching from Mediterranean forest soil: short-term laboratory-scale study. Int J Wildland Fire 15(3):287–292. https://doi.org/10.1071/wf05002CrossRefGoogle Scholar
  30. Pappa AA, Tzamtzis NE, Koufopoulou SE (2008) Nitrogen leaching from a forest soil exposed to fire retardant with and without fire: a laboratory study. Ann For Sci 65(2):210. https://doi.org/10.1051/forest:2007093CrossRefGoogle Scholar
  31. Rakowska J, Prochaska K, Twardochleb B, Rojewska M, Porycka B, Jaszkiewicz A (2014) Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires. Chem Pap 68(6):823–833. https://doi.org/10.2478/s11696-013-0511-9CrossRefGoogle Scholar
  32. Song U, Mun S, Waldman B, Lee E (2014) Effects of three fire-suppressant foams on the germination and physiological responses of plants. Environ Manag 54(4):865–874. https://doi.org/10.1007/s00267-014-0303-1CrossRefGoogle Scholar
  33. Wang P (2015) Application of green surfactants developing environment friendly foam extinguishing agent. Fire Technol 51(3):503–511. https://doi.org/10.1007/s10694-014-0422-5CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Galician Institute of Agrobiological Research (IIAG)Spanish Council of Scientific Research (CSIC)Santiago de CompostelaSpain

Section editors and affiliations

  • Pedro Reszka
    • 1
  • Guillermo Rein
    • 2
  1. 1.Universidad Adolfo IbañezSantiagoChile
  2. 2.Imperial College LondonLondonUK