Bone: Chemical Analysis

  • M. Anne KatzenbergEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-51726-1_158-2

Introduction

The general structure and chemical composition of bone are similar for all individuals, but there is some tolerance for minor variation in the elemental and isotopic composition of both the organic and inorganic components of bone tissue. This variation is tied to the local environment and to the diet. Both trace elements and stable isotopes act as natural tracers that provide information to archaeologists about details of the lives of past people, including diet, place of residence, and migration. Bone is a porous material composed of small crystals of hydroxylapatite. This small crystal size is beneficial in life since the bone is a storehouse for calcium and phosphorus. Bone mineral can quickly be mobilized from the skeleton when needed for physiological functions. From the perspective of the archaeologist, the small and poorly formed crystals are not an advantage because buried bone picks up and exchanges chemical constituents with the surrounding soil and water. Tooth...

This is a preview of subscription content, log in to check access.

References

  1. Ambrose, S.H. 1990. Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science 17: 431–451.CrossRefGoogle Scholar
  2. Ambrose, S.H., and M.A. Katzenberg, eds. 2001. Biogeochemical approaches to paleodietary analysis. New York: Kluwer Academic/Plenum Publishers.Google Scholar
  3. Bentley, R.A. 2006. Strontium isotopes from the earth to the archaeological skeleton: A review. Journal of Archaeological Method and Theory 13: 135–187.CrossRefGoogle Scholar
  4. Bocherens, H., G.J. van Klinken, and A.M. Pollard. 1999. Proceedings of the 5th advanced seminar on paleodiet, Centre de Recherches Archeologiques, Valbonne, 1–5 September 1997. Journal of Archaeological Science 26: 593–728.CrossRefGoogle Scholar
  5. Bowen, G.J., L.I. Wassenaar, and K.A. Hobson. 2005. Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia 143: 337–348.CrossRefGoogle Scholar
  6. Burton, J. 2008. Bone chemistry and trace element analysis. In Biological anthropology of the human skeleton, ed. M.A. Katzenberg and S.R. Saunders, 2nd ed., 443–460. Hoboken: Wiley.CrossRefGoogle Scholar
  7. Burton, J., and L.E. Wright. 1995. Nonlinearity in the relationship between bone Sr/Ca and diet: Paleodietary implications. American Journal of Physical Anthropology 96: 273–282.CrossRefGoogle Scholar
  8. Buzon, M.R., C.A. Conlee, and G.J. Bowen. 2011. Refining oxygen isotope analysis in the Nasca region of Peru: An investigation of water sources and archaeological samples. International Journal of Osteoarchaeology 21: 446–455.CrossRefGoogle Scholar
  9. Chisholm, B.S., D.E. Nelson, and H.P. Schwarcz. 1982. Stable carbon isotope ratios as a measure of marine versus terrestrial protein in ancient diets. Science 216: 1131–1132.CrossRefGoogle Scholar
  10. Coltrain, J.B., M.G. Hayes, and D.H. O’Rourke. 2004. Sealing, whaling and caribou: The skeletal isotope chemistry of Eastern Arctic foragers. Journal of Archaeological Science 31: 39–57.CrossRefGoogle Scholar
  11. Ehrlinger, J.R., A.H. Thompson, D.W. Podlesak, G.J. Bowen, L.A. Chesson, T.E. Cerling, T. Park, P. Dostie, and H. Schwarcz. 2010. A framework for the incorporation of isotopes and isoscapes in geospatial forensic investigations. In Isoscapes: Understanding movement, pattern and process on earth through isotope mapping, ed. J.B. West, G.J. Bowen, T.E. Dawson, and K.P. Tu, 357–387. Dordrecht: Springer.Google Scholar
  12. Fry, B. 2006. Stable isotope ecology. New York: Springer.CrossRefGoogle Scholar
  13. Grupe, G., and G.C. McGlynn, eds. 2016. Isotopic landscapes in bioarchaeology. Berlin: Springer.Google Scholar
  14. Hoefs, J. 1997. Stable isotope geochemistry. Berlin: Springer.CrossRefGoogle Scholar
  15. Katzenberg, M.A. 2008. Stable isotope analysis: A tool for studying past diet, demography and life history. In Biological anthropology of the human skeleton, ed. M.A. Katzenberg and S.R. Saunders, 2nd ed., 413–441. Hoboken: Wiley.CrossRefGoogle Scholar
  16. Katzenberg, M.A., H.G. McKenzie, R.J. Losey, O.I. Goriunova, and A. Weber. 2012. Prehistoric dietary adaptations among hunter-fisher-gatherers from the Little Sea of Lake Baikal, Siberia, Russian Federation. Journal of Archaeological Science 39: 2612–2626.  https://doi.org/10.1016/j.jas.2011.08.010.CrossRefGoogle Scholar
  17. Koch, P.L., and J. Burton. 2003. Bone chemistry. In International journal of osteoarchaeology, vol. 13. Chichester: Wiley.Google Scholar
  18. Lambert, J.B., and G. Grupe. 1993. Prehistoric human bone: Archaeology at the molecular level. Berlin: Springer.CrossRefGoogle Scholar
  19. Minagawa, M., and E. Wada. 1984. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta 48: 1135–1140.CrossRefGoogle Scholar
  20. Price, T.D. 1989. The chemistry of prehistoric bone. Cambridge: Cambridge University Press.Google Scholar
  21. Sillen, A., and G. Armelagos. 1991. Proceedings of the 2nd advanced seminar on paleodietary research: Chemistry and paleodiet. Journal of Archaeological Science 18 (3): 225–226.CrossRefGoogle Scholar
  22. Sponheimer, M., B.H. Passey, D.J. Deruiter, D. Guatelli-Steinberg, T.E. Cerling, and J.A. Lee-Thorp. 2006. Isotopic evidence for dietary variability in the early hominin Paranthropus robustus. Science 314: 980–982.CrossRefGoogle Scholar
  23. Tauber, H. 1981. 13C evidence for dietary habits of prehistoric man in Denmark. Nature 292: 332–333.CrossRefGoogle Scholar
  24. van der Merwe, N.J. 1982. Carbon isotopes, photosynthesis, and archaeology. American Scientist 70: 596–606.Google Scholar
  25. Vogel, J.C., and N.J. van der Merwe. 1977. Isotopic evidence for early maize cultivation in New York State. American Antiquity 42: 238–242.CrossRefGoogle Scholar
  26. West, J.B., G.J. Bowen, T.E. Dawson, and K.P. Tu, eds. 2010. Isoscapes: Understanding movement, pattern and process on earth through isotope mapping. Dordrecht: Springer.Google Scholar
  27. White, C., T. Price, and F. Longstaffe. 2007. Residential histories of the human sacrifices at the Moon Pyramid, Teotihuacan: Evidence from oxygen and strontium isotopes. Ancient Mesoamerica 18 (1): 159–172.CrossRefGoogle Scholar
  28. Willmes, M., L. Kinsley, M.-H. Moncel, R.A. Armstrong, M. Aubert, S. Eggins, and R. Grün. 2016. Improvement of laser ablation in situ micro-analysis to identify diagenetic alteration and measure strontium isotope ratios in fossil human teeth. Journal of Archaeological Science 70: 102–116.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Anthropology and ArchaeologyUniversity of CalgaryCalgaryCanada

Section editors and affiliations

  • Soren Blau
    • 1
  • Luis Fondebrider
    • 2
  • Douglas H. Ubelaker
    • 3
  1. 1.Department of Forensic MedicineVictorian Institute of Forensic Medicine / Monash UniversityMelbourneAustralia
  2. 2.The Argentine Forensic Anthropology Team (Equipo Argentino de Antropología Forense, EAAF)Buenos AiresArgentina
  3. 3.National Museum of Natural HistorySmithsonian InstitutionWashingtonUSA