Advertisement

Harnessing the Space Environment for the Discovery and Development of New Medicines

  • Phoebe Ryder
  • Martin BraddockEmail author
Living reference work entry

Abstract

The unique nature of microgravity encountered in space provides both an opportunity and challenge for drug discovery and development that cannot be fully replicated on Earth. Scientific studies have been conducted across most phases of the drug discovery value chain and include the generation of superior protein crystals, identification, and validation of new drug targets, microarray analyses of transcripts attenuated by microgravity, and nonclinical in vivo studies to explore potential therapeutic benefit of potential new drugs and medicines which have regulatory approval for use in humans. Studies conducted on the Mir Space Station, Space Shuttle missions, and the International Space Station have had direct benefit for drug development programs such as those directed against reducing bone and muscle loss, increasing bone formation, and help us understand mechanisms for anti-microbial resistance. More recently, the demonstration of successful 3D bioprinting in space illustrates the potential to directly benefit patients on Earth. This review will highlight advances made in both drug discovery and development, illustrate gaps in our knowledge today and provide a future vision for how drug discovery and associated technologies may be advanced by harnessing the space environment.

Keywords

Drug discovery Drug development Value chain Microgravity Radiation Drug stability 

References

  1. A new future for R&D? (2017) Measuring the return from pharmaceutical innovation, Deloitte retrieved on July 30th 2019 https://www2.deloitte.com/us/en/pages/life-sciences-and-health-care/articles/measuring-return-from-pharmaceutical-innovation.html
  2. Aruni G, Amit G, Dasgupta P (2018) New surgical robots on the horizon and the potential role of artificial intelligence. Investig Clin Urol 59:221–222PubMedPubMedCentralCrossRefGoogle Scholar
  3. Astronaut/cosmonaut statistics retrieved on July 30th (2019). https://www.worldspaceflight.com/bios/stats.php
  4. Aunins TR, Erickson KE, Prasad N et al (2018) Spaceflight modifies Escherichia coli gene expression in response to antibiotic exposure and reveals role of oxidative stress response. Front Microbiol 9:310.  https://doi.org/10.3389/fmicb.2018.00310. PMID: 29615983CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barger LK, Flynn-Evans EE, Kubey A et al (2014) Prevalence of sleep deficiency and use of hypnotic drugs in astronauts before, during, and after spaceflight: an observational study. Lancet Neurol 13:904–912PubMedPubMedCentralCrossRefGoogle Scholar
  6. Barrila J, Ott CM, LeBlanc C et al (2016) Spaceflight modulates gene expression in the whole blood of astronauts. npj Microgravity 2:16039.  https://doi.org/10.1038/npjmgrav.2016.39CrossRefPubMedPubMedCentralGoogle Scholar
  7. Basner M, Dinges DF, Mollicone D et al (2013) Mars 520-d mission simulation reveals protracted crew hypokinesis and alterations of sleep duration and timing. Proc Natl Acad Sci USA 110:2635–2640PubMedCrossRefPubMedCentralGoogle Scholar
  8. Beheshti A, Ray S, Fogle H et al (2018) A microRNA signature of TGF-β1 response were identified as the key master regulators for spaceflight response. PLos One 2018. 2018 13:e0199621CrossRefGoogle Scholar
  9. Benhenda M (2017) ChenGAN challenge for drug discovery: can AI reproduce natural chemical diversity? arXiv:1708.08227Google Scholar
  10. Benoit MR, Li W, Stodieck LS et al (2006) Microbial antibiotic production aboard the international Space Station. Appl Microbiol Biotechnol 70:403–411PubMedCrossRefPubMedCentralGoogle Scholar
  11. Berman E, Eyal S (2019) Drug interactions in space: a cause for concern? Pharm Res 36:114PubMedCrossRefPubMedCentralGoogle Scholar
  12. Betzel C, Martirosyan A, Ruyters G (2017) Protein crystallization on the International Space Station ISS. In: Biotechnology in space. Springer briefs in space life sciences. Springer, ChamGoogle Scholar
  13. Bezbakh IZ, Ginkin VP, Safronov VV et al (2019) Mathematical modeling of lysozyme crystal growth under thermal control field for terrestrial and space conditions. J Mol Liquids 283:652.  https://doi.org/10.1016/j.molliq.2019.03.042CrossRefGoogle Scholar
  14. Bhayani D, Naik H, Nathaniel TN et al (2019) Simulated space radiation: investigating ionizing radiation effects on the stability of amlodipine besylate API and tablets. Eu J Pharm Sci.  https://doi.org/10.1016/j.ejps.2019.104982PubMedCrossRefPubMedCentralGoogle Scholar
  15. Binsted K, Kobrick RL, Griofa MO et al (2010) Human factors research as part of a Mars exploration analogue-mission on Devon Island. Planetary Space Sci 58:994–1006CrossRefGoogle Scholar
  16. Blaber EA, Finkelstein H, Dvorochkin N et al (2015) Microgravity reduces the differentiation and regenerative potential of embryonic stem cells. Stem Cells Dev 24:2605–2621PubMedPubMedCentralCrossRefGoogle Scholar
  17. Blue RS, Chancellor JC, Antonsen EL et al (2019a) Limitations in predicting radiation-induced pharmaceutical instability during long-duration spaceflight. npj Microgravity 5:15.  https://doi.org/10.1038/s41526-019-0076-1CrossRefPubMedPubMedCentralGoogle Scholar
  18. Blue RS, Bayuse TM, Daniels VR et al (2019b) Supplyinga pharmacy for NASA exploration spaceflight: challenges and current understanding. npj Microgravity 5:15.  https://doi.org/10.1038/s41526-019-0075-1CrossRefPubMedPubMedCentralGoogle Scholar
  19. Braddock M (2017) Ergonomic challenges for astronauts during space travel and the need for space medicine. J Ergonomics 7:1–10CrossRefGoogle Scholar
  20. Braddock M (2018) Exercise and ergonomics on the international space station and orion spacecraft. J Ergonomics Res 1.  https://doi.org/10.4172/JEOR-104
  21. Braddock M (2019) From target identification to drug development in space: using the microgravity assist. Curr Drug Disc Technol 16:1.  https://doi.org/10.2174/1570163816666190112150014CrossRefGoogle Scholar
  22. Braddock M, Campa R, Szocik K (2019a) Ergonomic constraints for astronauts: challenges and opportunities today and for the future. Proceedings of the international conference on ergonomics and human factors, Stratford-Upon-Avon, 1st EdnGoogle Scholar
  23. Braddock M, Wilhelm CP, Romain A et al (2019b) Application of socio-technical systems models to Martian colonisation and society build. Theoret Issues Ergonomics Sci.  https://doi.org/10.1080/1463922X.2019.1658242
  24. Campa R, Szocik K, Braddock M (2019) Why space colonisation will be fully automated. Technol Forecasting Social Change.  https://doi.org/10.1016/j.techfore.2019.03.021CrossRefGoogle Scholar
  25. Chatani M, Morimoto H, Takeyama K et al (2016) Acute transcriptional up-regulation specific to osteoblasts/osteoclasts in meduka fish immediately after exposure to gravity. Sci Rep 6:39545Google Scholar
  26. Chaussabel D (2015) Assessment of immune status using blood transcriptomics and potential implications for global health. Semin Immunol 27:58–66PubMedCrossRefPubMedCentralGoogle Scholar
  27. Chayen NE (1995) Microgravity protein crystallization aboard the photon satellite. J Cryst Growth 153:175–179CrossRefGoogle Scholar
  28. Chuong M, Prasad D, LeDuc B et al (2011) Stability of vitamin B complex in multivitamin and multimineral supplement tablets after space flight. J Pharm Biomed Anal 55:1197–1200PubMedCrossRefPubMedCentralGoogle Scholar
  29. Clément G (2017) International roadmap for artificial gravity research. npj Microgravity 3, 29 (2017) https://doi.org/10.1038/s41526-017-0034-8
  30. Costa-Almeida R, Granja PL, Gomes ME (2018) Gravity, tissue engineering and the missing link trends. Biotech 36:343–347Google Scholar
  31. Crucian B, Babiak-Vazquez A, Johnston S et al (2016a) Incidence of clinical symptoms during long-duration spaceflight. Int J gen Med 9:383–391PubMedPubMedCentralCrossRefGoogle Scholar
  32. Crucian B, Johnston S, Mehta S et al (2016b) A case of persistent skin rash and rhinitis with immune sytem dysregulation onboard the international space station. JACI Practice.  https://doi.org/10.1016/j.jaip.2015.12.021PubMedPubMedCentralGoogle Scholar
  33. Dantuma D, Elmaddawi R, Pathak Y et al (2015) Impact of simulated micrigravity on nanoemulsion stability – a preliminary research. Am J Med Biol Res 3:102–106Google Scholar
  34. Delp MD, Charvat JM, Limoli CL et al (2016) Apollo lunar astronauts show higher cardiovascular disease mortality: possible deep space radiation effects on the vascular endothelium. Sci Rep 6:29901PubMedPubMedCentralCrossRefGoogle Scholar
  35. DiMasi JA, Grabowski HG, Hansen RW (2016) Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ 47:2–23CrossRefGoogle Scholar
  36. Du B, Daniels VR, Vaksman Z et al (2011) Evaluation of physical and chemical changes in pharmaceuticals flown on space missions. Am Assoc Pharm Sci J 13:299–308Google Scholar
  37. Duch W, Swaminathan K, Meller J (2007) Artificial intelligence approaches for rational drug design and discovery. Curr Pharmaceut Design 13:1497–1508CrossRefGoogle Scholar
  38. Fang A, Pierson DL, Mishra SK et al (1997) Secondary metabolism in simulated microgravity: β-lactam production by Streptomyces clavuligerus. J Ind Microbiol Biotechnol 18:22–25PubMedCrossRefPubMedCentralGoogle Scholar
  39. Fang A, Pierson DL, Mishra SK et al (2000a) Relief from glucose interference in microcin B17 biosynthesis by growth in a rotating-wall bioreactor. Lett Appl Microbiol 31:39–41PubMedCrossRefPubMedCentralGoogle Scholar
  40. Fang A, Pierson DL, Mishra SK et al (2000b) Growth of Streptomyces hygroscopicus in rotating-wall bioreactor under simulated microgravity inhibits rapamycin production. Appl Microbiol Biotechnol 54:33–36PubMedCrossRefPubMedCentralGoogle Scholar
  41. Freed LE, Vunjak-Novakovic G (1997) Microgravity tissue engineering. In Vitro Cell Dev Biol Anim 33:381–385PubMedCrossRefPubMedCentralGoogle Scholar
  42. Galkin F, Aliper A, Putin E (2018) Human microbiome aging clocks based on deep learning and tandem of permutation feature importance and accumulated local effects. BioRxiV.  https://doi.org/10.1101/507780
  43. Gambacurta A, Merlini G, Ruggiero C et al (2019) Human osteogenic differentiation in space: proteomic and epigenetic clues to better understand osteoporosis. Sci Rep 9:8343PubMedPubMedCentralCrossRefGoogle Scholar
  44. Garrett-Bakelman FE, Darshi M, Green SJ et al (2019) The NASA twins study: a multi-dimensional analysis of a year-long human spaceflight. Science 364:eaau8650PubMedPubMedCentralGoogle Scholar
  45. Ghidini T (2018) Regenerative medicine and 3D bioprinting for human space exploration and colonisation. J Thorac Dis 10(Suppl 20):S2363–S2375PubMedPubMedCentralCrossRefGoogle Scholar
  46. Greig CA, Johns N, Gray C et al (2014) Phase I/II trial of formoterol fumarate combined with megestrol acetate in cachectic patients with advanced malignancy. Support Care Cancer 22:1269.  https://doi.org/10.1007/s00520-013-2081-3.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Grigoryan EN, Radugina EA (2019) Behaviour of stem-like cells, precursors for tissue regeneration in Urodela, under conditions of microgravity. Stem Cells Dev 28:423–437PubMedCrossRefPubMedCentralGoogle Scholar
  48. Hammond T, Allen P, Birdsall H (2016) Is there a space-based technology solution to problems with pre-clinical drug toxicity testing? Pharm Res 33:1545–1551PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hay M, Thomas DW, Craighead JL et al (2014) Clinical development success rates for investigational drugs. Nat Biotechnol 32:40–51PubMedCrossRefPubMedCentralGoogle Scholar
  50. Hessler G, Baringhaus K-H (2018) Artificial intelligence in drug design. Molecules 23:2520PubMedPubMedCentralCrossRefGoogle Scholar
  51. Higginson EE, Galen JE, Levine MM et al (2016) Microgravity as a biological tool to examine host-pathogen interactions and to guide development of therapeutics and preventatives that target pathogenic bacteria. Pathogens Dis ftw095Google Scholar
  52. Huang B, Li D-G, Huang Y et al (2018) Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism. Military Med Res 5:18CrossRefGoogle Scholar
  53. Hurst C, Scott JPR, Weston KL et al (2019) High-intensity interval training: a potential exercise countermeasure during human spaceflight. Front Physiol 10:581PubMedPubMedCentralCrossRefGoogle Scholar
  54. Jackson B (2018) ESA lays groundwork for 3D bioprinting bone in space. https://3dprintingindustry.com/news/esa-lays-groundwork-for-3d-bioprinting-bone-in-space-158410/. Retrieved on 1 Aug 2019
  55. James AW, Shen J, Zhang X et al (2015) NELL-1 in the treatment of osteoporotic bone loss. Nat Commun 6:7362.  https://doi.org/10.1038/ncomms8362CrossRefPubMedPubMedCentralGoogle Scholar
  56. Jaskelioff M, Muller FL, Paik J-H et al (2011) Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469:102–107PubMedCrossRefPubMedCentralGoogle Scholar
  57. Kamal KY, Herranz R, van Loon JJWA, Medina FJ (2018) Simulated microgravity, Mars gravity and 2 g hypergravity affect cell cycle regulation, ribosome biogenesis and epigenetics in Arabidopsis cultures. Sci Rep 8:6424PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kast J, Yu Y, Seubert CN et al (2017) Drugs in space: pharmacokinetics and pharmacodynamics in astronauts. Eur J Pharm Sci 109S:S2–S8PubMedCrossRefPubMedCentralGoogle Scholar
  59. Kizawa H, Nagao E, Shimamura M et al (2017) Scaffold-free 3D bio-printed human liver tissue stably maintains metabolic functions usefulfor drug discovery. Biochem Biophys Res Rep 10:186–191Google Scholar
  60. Kohn FPM, Hauslage (2019) The gravity dependence of pharmacodynamics: the integration of lidocaine into membranes in microgravity. Npj Microgravity 5:5.  https://doi.org/10.1038/s41526-019-0064-5CrossRefPubMedPubMedCentralGoogle Scholar
  61. Kopp S, Kruger M, Wehland M, Bauer J, Dittrich A et al (2018) Growing tissues in space. Front Physiol 9:253.  https://doi.org/10.3389/conf.fphys.2018.26.00014CrossRefGoogle Scholar
  62. Kruger M, Kopp S, Wehland M, Bauer J, Baatout S et al (2019) Growing blood vessels in space: preparation studies of the SPHEROIDS project using related ground-based studies. Acta Astronaut 159:267–272CrossRefGoogle Scholar
  63. Lacey DL, Tan HL, Lu J et al (2000) Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo. Am J Pathol 157:435–448PubMedPubMedCentralCrossRefGoogle Scholar
  64. Landon LB, Rokholt C, Slack KJ et al (2017) Selecting astronauts for long-duration exploration missions: considerations for team performance and functioning. REACH Rev Human Space Explorer 5:33–56Google Scholar
  65. Larson L, Wojcik H, Gokhman B et al (2019) Team performance in space crews: Houston we have a teamwork problem. Acta Astronaut 161:108–114CrossRefGoogle Scholar
  66. Li J, Guo Y, Xu G et al (2016) Effects of microgravity on the phenotype, genome and transcriptome of Streptococcus pneumonia. Res Rev J Microbiol Biotechnol 5:107–114Google Scholar
  67. Lloyd SA, Morony SE, Ferguson VL et al (2017) Osteoprotegerin is an effective countermeasure for spaceflight-induced bone loss in mice. Bone 81:562–572CrossRefGoogle Scholar
  68. Luo A, Gao C, Song Y (1998) Biological responses of a Streptomyces strain producing Nikkomycin to space flight. Space Med Med Eng 11:411–414Google Scholar
  69. Mader TH, Gibson CR, Otto CA et al (2017) Persistent asymmetric optic disc swelling after long-duration space flight: implications for pathogenesis. J Neuro Opthalmol 2:133–139CrossRefGoogle Scholar
  70. Makedonas G, Chouker A, Mehta S et al (2019) Mechanistic clues to overcome spaceflight-induced immune dysregulation. Curr Pathobiol Rep.  https://doi.org/10.1007/s40139-018-01786-6
  71. Mathea S, Baptista M, Reichert P et al (2018) Crystallizing the Parkinson’s disease protein LRRK2 under microgravity conditions. bioRxiv.  https://doi.org/10.1101/259655
  72. McDonnell AC, Eiken O, Frings-Meuthen P et al (2019) The LunHab project: muscle and bone alterations in male participants following a 10 day lunar habitat simulation. Exp Physiol 104:1250–1261PubMedCrossRefPubMedCentralGoogle Scholar
  73. Mehta P, Bhayani D (2017) Impact of space environment on stability of medicines: challenges and prospects. J Pharm Biomed Anal 136:111–119PubMedCrossRefPubMedCentralGoogle Scholar
  74. Meng X-M, Nikolic-Paterson DJ, Lan HY (2016) TGFβ: the master regulator of fibrosis. Nat Rev Nephrol 12:325.  https://doi.org/10.1038/nrneph.2016.48CrossRefPubMedPubMedCentralGoogle Scholar
  75. Morrison MD, Nicholoson WL (2018) Meta-analysis of data from spaceflight transcriptome experiments does not support the idea of a common bacterial “spaceflight response”. Sci Rep 8:14403PubMedPubMedCentralCrossRefGoogle Scholar
  76. NASA Facts (2011) Astronaut selection and training. Retrieved on 2 Aug 2019. https://www.nasa/gov/centers/johnson/pdf606877main_FS-2011-11-057-JSC-astro_tmg.pdf
  77. NASA GeneLab (2019). https://genelab.nasa.gov/. Accessed 30 July 2019
  78. Nelson M (2018) Pushing our limits: insights from biosphere 2. University of Arizona Press, TucsonCrossRefGoogle Scholar
  79. Neves JM, Collins PJ, Wilkerson RP et al (2019) Microgravity effect on microstructural development of tr-calcium silicate (C3S) paste. Front Material 6:83CrossRefGoogle Scholar
  80. Ominsky MS, Boyce RW, Li X et al (2017) Effects of sclerostin antibodies in animal models of osteoporosis. Bone 97:63–75CrossRefGoogle Scholar
  81. Peldszus R, Daike H, Pretlove S et al (2014) The perfect boring situation – addressing the experience of monotony during crewed deep space missions through habitability design. Acta Astronaut 94:262–276CrossRefGoogle Scholar
  82. Popova M, Isayev O, Tropsha A (2018) Deep reinforcement for drug design. Sci Adv 4:eaap7855CrossRefGoogle Scholar
  83. Puolakkainen T, Ma H, Kainulainen H et al (2017) Treatment with activin type IIB-receptor improves bone mass and strength in a mouse model of Duchenne muscular dystrophy. BMC Muscuoloskel Dis 18:20CrossRefGoogle Scholar
  84. Rai B, Kaur J (2012) Human factor studies on a Mars analogue during crew 100b international lunar exploration working group EuroMoonMars crew: proposed new approaches for future human space and interplanetary missions. N Am J Med Sci 4:548–557PubMedPubMedCentralCrossRefGoogle Scholar
  85. Ramachandran V, Dalal S, Scheuring RA et al (2018) Musculoskeletal injuries in astronauts: review of pre flight, in-flight, post-flight and extravehicular activity injuries. Curr Pathol Rep 6:149–158CrossRefGoogle Scholar
  86. Reichert P, Nagabhushan TL, Long MM et al (1996) Macroscale production and analysis of crystalline interferon a-2B in microgravity on STS-52. Proceedings of symposium on NASA centers for the commercial development of space, AlbuquerqueGoogle Scholar
  87. Rodent research-6 (SpaceX-13) (2017) Retrieved on 30 Sept 2018. https://www.nasa.gov/ames/research/space-biosciences/rodent-research-6-spacex-13
  88. Rooney BV, Crucian BE, Pierson DL et al (2019) Herpes virus reactivation in astronauts during spaceflight and its application on earth. Front Microbiol 10:16PubMedPubMedCentralCrossRefGoogle Scholar
  89. Salamon N, Grimm JM, Horack et al (2018) Application of virtual reality for crew mental health in extended-duration space missions. Acta Astronaut 146:117–122CrossRefGoogle Scholar
  90. Salazar-Degracia A, Busquets S, Argilas JM et al (2018) Effects of the beta-2 agonist formoterol on atrophy, autophagy and muscle phenotype in respiratory and limb muscles of rats with cancer-induced cachexia. Biochimie 149:79–91PubMedCrossRefPubMedCentralGoogle Scholar
  91. Sandal GM, van deVijver FJR, Smith N (2018) Psychological hibernation in Antarctica. Front Psychol 9:2235.  https://doi.org/10.3389/fpsyg.2018.02235CrossRefPubMedPubMedCentralGoogle Scholar
  92. Schiwon K, Arends K, Rogowski et al (2013) Comparison of antibiotic resistance, biofilm formation and conjugative transfer of Staphylococcus and Enterococcus isolates from international space station and antarctic research station concordia. Microbial Ecol 65:638–651CrossRefGoogle Scholar
  93. Schneider G, Fechner U (2005) Computer-based de novo design of drug-like molecules. Nat Rev Drug Disc 4:649–663CrossRefGoogle Scholar
  94. Schroeder R (2017) Microgels for long-term storage of vitamins for extended spaceflight. Life Sci Space Res 16:26–37CrossRefGoogle Scholar
  95. Scott JPR, Weber T, Green DA (2019) Introduction to the frontiers research topic: optimisation of exercise countermeasures for human space flight – lessons from terrestrial physiology and operational considerations. Front Physiol 10:173PubMedPubMedCentralCrossRefGoogle Scholar
  96. Sellwood MA, Ahmed M, Segler MHS et al (2018) Artificial intelligence in drug discovery. Future Med Chem 10:2025–2028PubMedCrossRefPubMedCentralGoogle Scholar
  97. Shademan A, Decker RS, Opfermann JD et al (2016) Supervised autonomous robotic soft tissue surgery. Sci Trans Med 8:337ra64337ra64CrossRefGoogle Scholar
  98. Sielaff AC, Urbaniak C, Mohan GBM et al (2019) Characterisation of the total and viable bacterial and fungal communities associated with the international space station. Microbiome 7:50CrossRefGoogle Scholar
  99. Singh NK, Wood JM, Karouia F et al (2018) Succession and persistence of microbial communities and antimicrobial resistance genes associated with international Space Station environmental surfaces. Microbiome 6:204PubMedPubMedCentralCrossRefGoogle Scholar
  100. Sobisch L-Y, Rogowski KM, Fuchs J et al (2019) Biofilm forming antibiotic resistant gram-positive pathogens isolated from surfaces on the international space station. Front Microbiol 10:543PubMedPubMedCentralCrossRefGoogle Scholar
  101. Space station research explorer (2019). https://www.nasa.gov/mission_pages/station/research/experiments/explorer/. Accessed 2 Aug 2019
  102. Stepanek J, Blue RS, Parazynski S (2019) Space medicine in the ra of civilian spaceflight. New Engl J Med 380:1053–1060PubMedCrossRefPubMedCentralGoogle Scholar
  103. Stockton B, Packham N (2018) Significant incidents in human spaceflight https://sma.nasa.gov/SignificantIncidents/assets/2018/SignificantIncidents_Zcard2018.pdf. Accessed 25 July 2019
  104. Stodieck L (2013) Amgen countermeasures for bone and muscle loss in space and on Earth. Retrieved on June 9th 2019 https://www.nasa.gov/sites/default/files/files/issrdc_2013-07-17-0800_stodieck2013.pdf
  105. Strelov VI, Kuranova IP, Zakharov BG et al (2014) Crystallization in space: results and prospects. Crystallography Rep 59:781–806CrossRefGoogle Scholar
  106. Strewe C, Moser D, Buchheim J-I et al (2019) Sex differences in stress and immune responses during confinement in Antarctica. Biol Sex Diff 10:20.  https://doi.org/10.1186/s13293-019-0231-0CrossRefGoogle Scholar
  107. Strollo F, Gentile S, Strollo G et al (2018) Recent progress in space physiology and aging. Front Physiol 9:1551PubMedPubMedCentralCrossRefGoogle Scholar
  108. Taylor PW (2015) Impact of space flight on bacterial virulence and antibiotic susceptibility. Inf Drug Res 8:249–262CrossRefGoogle Scholar
  109. Thiel CS, Tauber S, Christoffel S et al (2018) Rapid coupling between gravitational forces and the transcriptome in human myelomonocytice U937 cell. Sci Rep 8:13267PubMedPubMedCentralCrossRefGoogle Scholar
  110. Three dimensional bioprinting in space (2019). https://bioprinting.ru/en/press-center/publications/nasa-organaut/. Retrieved on 2 Aug 2019
  111. Tirumalai MR, Karouia F, Tran Q et al (2019) Evaluation of acquired antibiotic resistance in Escherichia coli exposed to long-term low-shear modeled microgravity and background antibiotic exposure. Am Soc Microbiol 10:e02637–e02618Google Scholar
  112. Unsworth BR, Lelkes PI (1998) Growing tissues in microgravity. Nat Med 4:901–907PubMedCrossRefPubMedCentralGoogle Scholar
  113. Urbaniak C, Checinska-Sielaff A, Frey KG et al (2018) Detection of antimicrobial resistance genes associated with the international space station environmental surfaces. Sci Rep 9:814CrossRefGoogle Scholar
  114. Valeur E, Jimonet P (2018) New modalities, technologies and partnerships in probe and lead generation: enabling a mode-of-action centric paradigm. J Med Chem 61:9004–9029PubMedCrossRefPubMedCentralGoogle Scholar
  115. Von Haehling S, Anker SD (2015) Treatment of cachexia: an overview of recent developments. Int J Cardiol 15:736–742CrossRefGoogle Scholar
  116. Vonortas NS (2015) Protein crystallization for drug development: a prospective empirical appraisal of economic effects of ISS microgravity. NASA final reportGoogle Scholar
  117. Voorhies AA, Ott CM, Mehta S et al (2019) Study of the impact of long-duration space missions at the international Space Station on the astronaut microbiome. Sci Rep 9:9911PubMedPubMedCentralCrossRefGoogle Scholar
  118. Wang J-Z, Xiong N-Y, Zhao L-Z et al (2018) Review fantastic medical implications of 3D-printing in liver surgeries, liver regeneration, liver transplantation and drug hepatotoxicity testing: a review. Int J Surg 56:1–6PubMedCrossRefPubMedCentralGoogle Scholar
  119. Wehland M, Grimm D (2017) Tissue engineering in microgravity. In: Biotechnology in space. Springer Briefs in Space Life Sciences. Springer, ChamCrossRefGoogle Scholar
  120. Welsh J, Bevelacqua JJ, Keshavarz M et al (2019) Is telomere length a biomarker of adaptive responses in space? Curious findings from NASA and residents of high background radiation areas. J Biomed Phys Eng 9:381–388CrossRefGoogle Scholar
  121. Wilson JW, Ott CM, zu Bentrup KH et al (2007) Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc Natl Acad Sci USA 104: 16299–16304PubMedCrossRefPubMedCentralGoogle Scholar
  122. Wotring VE (2015) Chemical potency and degradation products of medications stored over 550 days at the international space station. AAPS J 18:210–216PubMedPubMedCentralCrossRefGoogle Scholar
  123. Wuest SL, Gantenbein B, Ille F et al (2018) Electrophysiological experiments in microgravity: lessons learned and future challenges. Npj Microgravity 4:7.  https://doi.org/10.1038/s41526-018-0042-3CrossRefPubMedPubMedCentralGoogle Scholar
  124. Xu X-Y, Li X, Wang J, He X-T, Sun H-H et al (2019) Concise review: periodontal tissue regeneration using stem cells: strategies and translational considerations. Stem Cells Trans Med 8:392–403CrossRefGoogle Scholar
  125. Yin H, Wang Y, Sun X et al (2018) Functional tissue-engineered microtissue derived from cartilage extracellular matrix for articular cartilage regeneration. Acta Biomater 77:127–141PubMedCrossRefPubMedCentralGoogle Scholar
  126. Zea L (2015) Drug discovery and development in space, IAC-15-A1.8x27627, 66th International Astronautical Congress, Jerusalem, IsraelGoogle Scholar
  127. Zea L, Larsen M, Estante F et al (2017) Phenotypic changes exhibited by E. coli cultured in space. Front Microbiol 8:1598PubMedPubMedCentralCrossRefGoogle Scholar
  128. Zhang B, Bai P, Zhao X et al (2019) Increased growth rate and amikacin resistance of Salmonella enteritidis after one-month spaceflight on China’s Shenzhou-11 spacecraft. MicrobiologyOpen e833Google Scholar
  129. Zhavoronkov A, Mamoshina P (2019) Deep ageing clocks: the emergence of AI-based biomarkers of aging and longevity. Trends Pharmacol Sci 40:546–549PubMedCrossRefPubMedCentralGoogle Scholar
  130. Zhou J, Sun C, Wang N et al (2006) Preliminary report on the biological effects of space flight on the producing strain of a new immunosuppressant, Kanglemycin C. J Industr Microbiol Biotechnol 33:707–712CrossRefGoogle Scholar
  131. Zhou G, Jiang H, Yin Z et al (2018) In vitro regeneration of patient-specific ear shaped cartilage and its first clinical application for auricular reconstruction. EBioMedicine 28:287–302PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Newton’s Astronomical Society@Woolsthorpe, Woolsthorpe Manor, Water Lane, Woolsthorpe by ColsterworthGranthamUK
  2. 2.Science4U.co.ukRadcliffe-on-Trent, NottinghamshireUK

Section editors and affiliations

  • Marlise Araújo dos Santos
    • 1
  • Yashwant Pathak
    • 2
  1. 1.Porto AlegreBrazil
  2. 2.Health College of PharmacyUniversity of South FloridaTampaUSA

Personalised recommendations