Measuring Femoral and Tibial Torsion in Children with Cerebral Palsy

  • Brian Po-Jung ChenEmail author
Living reference work entry


Lower limb torsional deformity is one of the most common musculoskeletal pathologies in children with cerebral palsy. Lower limb torsional deformity may cause many functional issues, such as problems of intoeing or out-toeing gait pattern and decreased energy efficiency during walking. Understanding more about how the rotational profile should be measured and the measurement accuracy enables more precise location of the deformity and should improve clinical treatment decision-making. In this chapter, we are going to discuss the measuring techniques for lower limb torsional deformities, specifically tibial torsion and femoral anteversion or torsion, which are described in the literature. Methods including physical examination, imaging study, and three-dimensional motion analysis are reviewed and discussed. Understanding the wide range of measurement options are important when assessing lower extremity torsional problem and planning treatment options for the musculoskeletal pathology in cerebral palsy.


Tibial torsion Femoral torsion Femoral anteversion Torsional deformity Rotational profile 


  1. Aktas S, Aiona MD, Orendurff M (2000) Evaluation of rotational gait abnormality in the patients cerebral palsy. J Pediatr Orthop 20(2):217–220PubMedGoogle Scholar
  2. Assi A, Chaibi Y, Presedo A et al (2013) Three-dimensional reconstructions for asymptomatic and cerebral palsy children’s lower limbs using a biplanar X-ray system: a feasibility study. Eur J Radiol 82(12):2359–2364CrossRefPubMedGoogle Scholar
  3. Barberie JE, Wong AD, Cooperberg PL et al (1998) Extended field-of-view sonography in musculoskeletal disorders. Am J Roentgenol 171(3):751–757CrossRefGoogle Scholar
  4. Berger RA, Crossett LS, Jacobs JJ et al (1998) Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res 356:144–153CrossRefGoogle Scholar
  5. Beyaert C, Haumont T, Paysant J et al (2003) The effect of inturning of the foot on knee kinematics and kinetics in children with treated idiopathic clubfoot. Clin Biomech 18(7):670–676CrossRefGoogle Scholar
  6. Bickley LS (2016) Bates’ guide to physical examination and history taking. Wolters KluwerGoogle Scholar
  7. Boisrenoult P, Scemama P, Fallet L et al (2001) Epiphyseal distal torsion of the femur in osteoarthritic knees. A computed tomography study of 75 knees with medial arthrosis. Rev Chir Orthop Reparatrice Appar Mot 87(5):469–476PubMedGoogle Scholar
  8. Brown JK, Minns RA (1989) Mechanisms of deformity in children with cerebral palsy. Semin Orthop 4:236–255Google Scholar
  9. Bruderer-Hofstetter M, Fenner V, Payne E et al (2015) Gait deviations and compensations in pediatric patients with increased femoral torsion. J Orthop Res 33(2):155–162CrossRefPubMedGoogle Scholar
  10. Brunner R, Baumann JU (1998) Three-dimensional analysis of the skeleton of the lower extremities with 3D-precision radiography. Arch Orthop Trauma Surg 117(6):351–356CrossRefPubMedGoogle Scholar
  11. Brunner R, Krauspe R, Romkes J (2000) Torsion deformities in the lower extremities in patients with infantile cerebral palsy: pathogenesis and therapy. Orthopade 29(9):808–813CrossRefPubMedGoogle Scholar
  12. Buck FM, Guggenberger R, Koch PP (2012) Femoral and tibial torsion measurements with 3D models based on low-dose biplanar radiographs in comparison with standard CT measurements. Am J Roentgenol 199(5):W607–W612CrossRefGoogle Scholar
  13. Butler-Manuel PA, Guy RL, Heatley FW (1992) Measurement of tibial torsion – a new technique applicable to ultrasound and computed tomography. Br J Radiol 65(770):S119–S126CrossRefGoogle Scholar
  14. Clementz BG (1988) Tibial torsion measured in normal adults. Acta Orthop 59(4):441–442CrossRefGoogle Scholar
  15. Clementz BG (1989a) Assessment of tibial torsion and rotational deformity with a new fluoroscopic technique. Clin Orthop Relat Res (245):199–209Google Scholar
  16. Clementz BG (1989b) Fluoroscopy of rotation in tibial fractures. Acta Orthop 60(2):204–207CrossRefGoogle Scholar
  17. Clementz BG, Magnusson A (1989) Assessment of tibial torsion employing fluoroscopy, computed tomography and the cryosectioning technique. Acta Radiol 30(1):75–80CrossRefPubMedGoogle Scholar
  18. Cooney KM, Keister T, Poignard E et al (2004) Convergent validity of goniometric and motion capture techniques used to measure tibial torsion. TFA 17(6):3–8Google Scholar
  19. Dahlke TM, Grand Valley State University et al (1997) Utilizing the Ryder’s and the thigh-foot angle tests to establish normal values of femoral anteversion and tibiofibular torsion in children aged 5 through 10 years. Grand Valley State UniversityGoogle Scholar
  20. Delialioglu MO, Tasbas BA, Bayrakci K et al (2006) Alternative reliable techniques in femoral torsion measurement. J Pediatr Orthop B 15(1):28–33CrossRefPubMedGoogle Scholar
  21. Desloovere K, Molenaers G, Feys H et al (2006) Do dynamic and static clinical measurements correlate with gait analysis parameters in children with cerebral palsy? Gait Posture 24(3):302–313CrossRefPubMedGoogle Scholar
  22. Dubousset J, Charpak G, Dorion I et al (2005) A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with low-dose radiation and the standing position: the EOS system. Bull Acad Natl Med 189(2):287–297PubMedGoogle Scholar
  23. Dubousset J, Charpak G, Skalli W et al (2010) EOS: a new imaging system with low dose radiation in standing position for spine and bone & joint disorders. J Musculoskelet Res 13(1):1–12CrossRefGoogle Scholar
  24. Dunlap K, Shands AR Jr, Hollister LC Jr et al (1953) A new method for determination of torsion of the femur. J Bone Joint Surg Am 35A(2):289–311CrossRefGoogle Scholar
  25. Durham HA (1915) Anteversion of the femoral neck in the normal femur: and its relation to congenital dislocation of the hip. J Am Med Assoc 65(3):223–224CrossRefGoogle Scholar
  26. Engel GM, Staheli LT (1974) The natural history of torsion and other factors influencing gait in childhood. A study of the angle of gait, tibial torsion, knee angle, hip rotation, and development of the arch in normal children. Clin Orthop Relat Res 99:12–17CrossRefGoogle Scholar
  27. Figueroa J, Guarachi JP, Matas J et al (2016) Is computed tomography an accurate and reliable method for measuring total knee arthroplasty component rotation? Int Orthop 40(4):709–714CrossRefPubMedGoogle Scholar
  28. Folinais D, Thelen P, Delin C et al (2013) Measuring femoral and rotational alignment: EOS system versus computed tomography. Orthop Traumatol Surg Res 99(5):509–516CrossRefPubMedGoogle Scholar
  29. Gajdosik RL, Bohannon RW (1987) Clinical measurement of range of motion. Review of goniometry emphasizing reliability and validity. Phys Ther 67(12):1867–1872CrossRefPubMedGoogle Scholar
  30. Gaumétou E, Quijano S, Ilharreborde B et al (2014) EOS analysis of lower extremity segmental torsion in children and young adults. Orthop Traumatol Surg Res 100(1):147–151CrossRefPubMedGoogle Scholar
  31. Gorter JW, Rosenbaum PL, Hanna SE et al (2004) Limb distribution, motor impairment, and functional classification of cerebral palsy. Dev Med Child Neurol 46(7):461–467CrossRefPubMedGoogle Scholar
  32. Goutallier D, van Driessche S, Manicom O et al (2006) Influence of lower-limb torsion on long-term outcomes of tibial valgus osteotomy for medial compartment knee osteoarthritis. J Bone Joint Surg Am 88(11):2439–2447CrossRefPubMedGoogle Scholar
  33. Graham HK, Selber P (2003) Musculoskeletal aspects of cerebral palsy. Bone Joint J 85(2):157–166Google Scholar
  34. Güven M, Akman B, Ünay K et al (2008) A new radiographic measurement method for evaluation of tibial torsion: a pilot study in adults. Clin Orthop Relat Res 467(7):1807–1812CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hartel MJ, Petersik A, Schmidt A et al (2016) Determination of femoral neck angle and torsion angle utilizing a novel three-dimensional modeling and analytical technology based on CT datasets. PLoS One 11(3):e0149480CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hernandez RJ, Tachdjian MO, Poznanski AK et al (1981) CT determination of femoral torsion. Am J Roentgenol 137(1):97–101CrossRefGoogle Scholar
  37. Hicks J, Arnold A, Anderson F et al (2007) The effect of excessive tibial torsion on the capacity of muscles to extend the hip and knee during single-limb stance. Gait Posture 26(4):546–552CrossRefPubMedPubMedCentralGoogle Scholar
  38. Howard J, Soo B, Graham HK et al (2005) Cerebral palsy in Victoria: motor types, topography and gross motor function. J Paediatr Child Health 41(9–10):479–483CrossRefPubMedGoogle Scholar
  39. Hubbard DD, Staheli LT (1972) The direct radiographic measurement of femoral torsion using axial tomography: technic and comparison with an indirect radiographic method. Clin Orthop Relat Res 86:16–20CrossRefPubMedGoogle Scholar
  40. Hudson D, Royer T, Richards J (2006) Ultrasound measurements of torsions in the tibia and femur. J Bone Joint Surg Am 88(1):138–143PubMedGoogle Scholar
  41. Jakob RP, Haertel M, Stüssi E (1980) Tibial torsion calculated by computerised tomography and compared to other methods of measurement. J Bone Joint Surg Br 62B(2):238–242CrossRefGoogle Scholar
  42. Jarrett DY, Oliveira AM, Zou KH et al (2010) Axial oblique CT to assess femoral anteversion. Am J Roentgenol 194(5):1230–1233CrossRefGoogle Scholar
  43. Jend HH, Heller M, Dallek M et al (1981) Measurement of tibial torsion by computer tomography. Acta Radiol Diagn 22(3A):271–276CrossRefGoogle Scholar
  44. Joseph B, Carver RA, Bell MJ et al (1987) Measurement of tibial torsion by ultrasound. J Pediatr Orthop 7(3):317–323CrossRefPubMedGoogle Scholar
  45. Kaplan PA, Matamoros A Jr, Anderson JC (1990) Sonography of the musculoskeletal system. Am J Roentgenol 155(2):237–245CrossRefGoogle Scholar
  46. Khoury V, Cardinal E, Bureau NJ (2007) Musculoskeletal sonography: a dynamic tool for usual and unusual disorders. Am J Roentgenol 188(1):W63–W73CrossRefGoogle Scholar
  47. Krishna M, Evans R, Sprigg A et al (1991) Tibial torsion measured by ultrasound in children with talipes equinovarus. J Bone Joint Surg Br 73(2):207–210CrossRefPubMedGoogle Scholar
  48. Lee DY, Lee CK, Cho TJ (1992) A new method for measurement of femoral anteversion. Int Orthop 16(3):277–281CrossRefPubMedGoogle Scholar
  49. Lee SH, Chung CY, Park MS et al (2009) Tibial torsion in cerebral palsy: validity and reliability of measurement. Clin Orthop Relat Res 467(8):2098–2104CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lee J-H, Yoon T-L, Choi S-A et al (2012) Comparison of femoral anteversion angle and determination of reliability measured at three different anatomical references of the tibial crest during the trochanteric prominence angle test. Phys Ther Korea 19(4):55–60CrossRefGoogle Scholar
  51. Luchini M, Stevens DB (1983) Validity of torsional profile examination. J Pediatr Orthop 3(1):41–44CrossRefPubMedGoogle Scholar
  52. MacWilliams BA, McMulkin ML, Baird GO et al (2010) Distal tibial rotation osteotomies normalize frontal plane knee moments. J Bone Joint Surg 92(17):2835–2842CrossRefPubMedGoogle Scholar
  53. Magee DJ, Sueki D (2013) Orthopedic physical assessment atlas and video- E-book: selected special tests and movements. Elsevier Health SciencesGoogle Scholar
  54. Magilligan DJ (1956) Calculation of the angle of anteversion by means of horizontal lateral roentgenography. J Bone Joint Surg 38(6):1231CrossRefPubMedGoogle Scholar
  55. Maier C, Zingg P, Seifert B et al (2012) Femoral torsion: reliability and validity of the trochanteric prominence angle test. Hip Int 22(5):534–538CrossRefPubMedGoogle Scholar
  56. Martin HD, Kelly BT, Leunig M et al (2010) The pattern and technique in the clinical evaluation of the adult hip: the common physical examination tests of hip specialists. Arthroscopy 26(2):161–172CrossRefPubMedGoogle Scholar
  57. Marx RG, Bombardier C, Wright JG (1999) What do we know about the reliability and validity of physical examination tests used to examine the upper extremity? J Hand Surg Am 24(1):185–193CrossRefPubMedGoogle Scholar
  58. Meyrignac O, Moreno R, Baunin C et al (2015) Low-dose biplanar radiography can be used in children and adolescents to accurately assess femoral and tibial torsion and greatly reduce irradiation. Eur Radiol 25(6):1752–1760CrossRefPubMedGoogle Scholar
  59. Miller F (1995) Complications in cerebral palsy treatment. In: Complications in pediatric orthopedic surgery. Lippincott Company, pp 477–544Google Scholar
  60. Miller F, Merlo M, Liang Y et al (1993) Femoral version and neck shaft angle. J Pediatr Orthop 13(3):382–388CrossRefPubMedGoogle Scholar
  61. Milner CE, Soames RW (1998) A comparison of four in vivo methods of measuring tibial torsion. J Anat 193(1):139–144CrossRefPubMedPubMedCentralGoogle Scholar
  62. Moulton A, Upadhyay SS (1982) A direct method of measuring femoral anteversion using ultrasound. J Bone Joint Surg Br 64(4):469–472CrossRefPubMedGoogle Scholar
  63. Murphy SB, Simon SR, Kijewski PK et al (1987) Femoral anteversion. J Bone Joint Surg Am 69(8):1169–1176CrossRefPubMedGoogle Scholar
  64. Nazarian LN (2008) The top 10 reasons musculoskeletal sonography is an important complementary or alternative technique to MRI. Am J Roentgenol 190(6):1621–1626CrossRefGoogle Scholar
  65. Ollivier M, Stelzlen C, Boisrenoult P et al (2015) Poor reproducibility of the MRI measurement of distal femoral torsion. Orthop Traumatol Surg Res 101(8):937–940CrossRefPubMedGoogle Scholar
  66. Pasciak M, Stoll TM, Hefti F (1996) Relation of femoral to tibial torsion in children measured by ultrasound. J Pediatr Orthop B 5(4):268–272CrossRefPubMedGoogle Scholar
  67. Radler C, Kranzl A, Manner HM et al (2010) Torsional profile versus gait analysis: consistency between the anatomic torsion and the resulting gait pattern in patients with rotational malalignment of the lower extremity. Gait Posture 32(3):405–410CrossRefPubMedGoogle Scholar
  68. Reikerås O, Høiseth A (1989) Torsion of the leg determined by computed tomography. Acta Orthop 60(3):330–333CrossRefGoogle Scholar
  69. Rethlefsen SA (2006) Causes of intoeing gait in children with cerebral palsy. J Bone Joint Surg Am 88(10):2175–2177PubMedGoogle Scholar
  70. Rosen H, Sandick H (1955) The measurement of tibiofibular torsion. J Bone Joint Surg Am 37A(4):847–855CrossRefGoogle Scholar
  71. Rosenbaum P, Paneth N, Leviton A et al (2007) A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol 109:S8–S14Google Scholar
  72. Rosskopf AB, Ramseier LE, Sutter R et al (2014) Femoral and tibial torsion measurement in children and adolescents: comparison of 3D models based on low-dose biplanar radiography and low-dose CT. Am J Roentgenol 202(3):W285–W291CrossRefGoogle Scholar
  73. Rosskopf AB, Buck FM, Pfirrmann CWA et al (2017) Femoral and tibial torsion measurements in children and adolescents: comparison of MRI and 3D models based on low-dose biplanar radiographs. Skeletal Radiol 46(4):469–476CrossRefPubMedGoogle Scholar
  74. Ruby L, Mital MA, O’Connor J et al (1979) Anteversion of the femoral neck. J Bone Joint Surg Am 61(1):46–51CrossRefPubMedGoogle Scholar
  75. Ryder CT, Crane L (1953) Measuring femoral anteversion; the problem and a method. J Bone Joint Surg Am 35A(2):321–328CrossRefGoogle Scholar
  76. Sangeux M, Pascoe J, Graham HK et al (2015) Three-dimensional measurement of femoral neck anteversion and neck shaft angle. J Comput Assist Tomogr 39(1):83–85CrossRefPubMedGoogle Scholar
  77. Schwartz M, Lakin G (2003) The effect of tibial torsion on the dynamic function of the soleus during gait. Gait Posture 17(2):113–118CrossRefPubMedGoogle Scholar
  78. Smith J, Finnoff JT (2009a) Diagnostic and interventional musculoskeletal ultrasound: part 1. Fundamentals. PM R 1(1):64–75CrossRefPubMedGoogle Scholar
  79. Smith J, Finnoff JT (2009b) Diagnostic and interventional musculoskeletal ultrasound: part 2. Clinical applications. PM R 1(2):162–177CrossRefPubMedGoogle Scholar
  80. Song KM, Concha MC, Haideri NF (2001) Effects of lower limb torsion on ankle kinematic data during gait analysis. J Pediatr Orthop 21(6):792–797PubMedGoogle Scholar
  81. Staheli LT, Engel GM (1972) Tibial torsion: a method of assessment and a survey of normal children. Clin Orthop Relat Res 86:183–186CrossRefPubMedGoogle Scholar
  82. Stuberg W, Temme J, Kaplan P et al (1991) Measurement of tibial torsion and thigh-foot angle using goniometry and computed tomography. Clin Orthop Relat Res (272):208–212Google Scholar
  83. Sutherland DH, Davids JR (1993) Common gait abnormalities of the knee in cerebral palsy. Clin Orthop Relat Res (288):139–147Google Scholar
  84. Svenningsen S, Apalset K, Terjesen T et al (1989) Regression of femoral anteversion. A prospective study of intoeing children. Acta Orthop Scand 60(2):170–173CrossRefPubMedGoogle Scholar
  85. Tamari K, Tinley P, Briffa K et al (2005) Validity and reliability of existing and modified clinical methods of measuring femoral and tibiofibular torsion in healthy subjects: use of different reference axes may improve reliability. Clin Anat 18(1):46–55CrossRefPubMedGoogle Scholar
  86. Terjesen T, Anda S (1987) Femoral anteversion in children measured by ultrasound. Acta Orthop Scand 58(4):403–407CrossRefPubMedGoogle Scholar
  87. Tönnis D, Heinecke A (1999) Current concepts review-acetabular and femoral anteversion: relationship with osteoarthritis of the hip. J Bone Joint Surg 81(12):1747–1770CrossRefPubMedGoogle Scholar
  88. Toogood PA, Skalak A, Cooperman DR (2009) Proximal femoral anatomy in the normal human population. Clin Orthop Relat Res 467(4):876–885CrossRefPubMedGoogle Scholar
  89. Viikari-Juntura E (1987) Interexaminer reliability of observations in physical examinations of the neck. Phys Ther 67(10):1526–1532CrossRefPubMedGoogle Scholar
  90. Weiner DS, Cook AJ, Hoyt WA Jr et al (1978) Computed tomography in the measurement of femoral anteversion. Orthopedics 1(4):299–306CrossRefPubMedGoogle Scholar
  91. Yagi T, Sasaki T (1986) Tibial torsion in patients with medial-type osteoarthritic knee. Clin Orthop Relat Res (213):177–182Google Scholar
  92. Yoon TL, Park KM, Choi SA et al (2014) A comparison of the reliability of the trochanteric prominence angle test and the alternative method in healthy subjects. Man Ther 19(2):97–101CrossRefPubMedGoogle Scholar
  93. Yoshioka Y, Siu D, Cooke TD (1987) The anatomy and functional axes of the femur. J Bone Joint Surg Am 69(6):873–880CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Pediatric Orthopedics and TraumatologyPoznań University of Medical SciencesPoznańPoland

Section editors and affiliations

  • Freeman Miller
    • 1
  1. 1.AI DuPont Hospital for ChildrenWilmingtonUSA

Personalised recommendations