Muscle Changes at the Cellular-Fiber Level in Cerebral Palsy

  • Sudarshan Dayanidhi
  • Richard L. LieberEmail author
Living reference work entry


Muscle changes are routinely observed in children with cerebral palsy. The natural progression of gait leads to a reduction in passive range of motion and muscle contractures. Here we discuss the physiological properties of skeletal muscle tissue and recent advances in the biological basis of contractures. Skeletal muscles are highly organized structures composed of muscle cells, i.e., myofibers, arranged in parallel and series. Myofibers in turn are made up of basic contractile proteins actin and myosin that interact to form sarcomeres. Sarcomere length and force production are intricately associated such that at very long and short sarcomere lengths, there is a reduction in force-generating capacity. During typical postnatal development, longitudinal skeletal muscle growth occurs by addition of sarcomeres secondary to stretch induced by bone growth. In children with cerebral palsy, sarcomere lengths are overstretched, and serial sarcomere number is lower, associated with a limitation in joint range of motion, suggesting reduced ability for muscle growth and weakness. Increase in muscle extracellular matrix content and increase in passive mechanical stiffness of fibers and fiber bundles are also observed in contractured muscles. Satellite cells are resident stem cells indispensable for postnatal development, repair, and regeneration of skeletal muscles. The satellite cell population is dramatically reduced in contractured muscles. Overall these findings suggest that impaired muscle growth and contractures in children with cerebral palsy are related to a reduced muscle stem cell number.


Contracture Skeletal muscle Cerebral palsy Muscle stem cell Satellite cell Sarcomere 


  1. Barber LA, Read F, Lovatt Stern J, Lichtwark G, Boyd RN (2016) Medial gastrocnemius muscle volume in ambulant children with unilateral and bilateral cerebral palsy aged 2 to 9 years. Dev Med Child Neurol 58(11):1146–1152. CrossRefPubMedGoogle Scholar
  2. Barber LEE, Hastings-Ison T, Baker R, Barrett ROD, Lichtwark G (2011) Medial gastrocnemius muscle volume and fascicle length in children aged 2 to 5 years with cerebral palsy. Dev Med Child Neurol 53(6):543–548. CrossRefPubMedGoogle Scholar
  3. Bell KJ, Ounpuu S, DeLuca PA, Romness MJ (2002) Natural progression of gait in children with cerebral palsy. J Pediatr Orthop 22(5):677–682PubMedGoogle Scholar
  4. Bentzinger CF, Wang YX, Dumont NA, Rudnicki MA (2013) Cellular dynamics in the muscle satellite cell niche. EMBO Rep 14(12):1062–1072CrossRefPubMedPubMedCentralGoogle Scholar
  5. Boakes JL, Foran J, Ward SR, Lieber RL (2007) Muscle adaptation by serial sarcomere addition 1 year after femoral lengthening. Clin Orthop Relat Res 456:250–253. CrossRefPubMedGoogle Scholar
  6. Bobroff ED, Chambers HG, Sartoris DJ, Wyatt MP, Sutherland DH (1999) Femoral anteversion and neck-shaft angle in children with cerebral palsy. Clin Orthop Relat Res 364:194–204CrossRefGoogle Scholar
  7. Booth CM, Cortina-Borja MJF, Theologis TN (2001) Collagen accumulation in muscles of children with cerebral palsy and correlation with severity of spasticity. Dev Med Child Neurol 43(5):314–320. CrossRefPubMedGoogle Scholar
  8. Bunata R, Icenogle K (2014) Cerebral palsy of the elbow and forearm. J Hand Surg 39(7):1425–1432. CrossRefGoogle Scholar
  9. Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122(2):289–301. CrossRefPubMedGoogle Scholar
  10. Dayanidhi S, Dykstra PB, Lyubasyuk V, McKay BR, Chambers HG, Lieber RL (2015) Reduced satellite cell number in situ in muscular contractures from children with cerebral palsy. J Orthop Res 33(7):1039–1045. CrossRefPubMedGoogle Scholar
  11. Dayanidhi S, Lieber RL (2014) Skeletal muscle satellite cells: mediators of muscle growth during development and implications for developmental disorders. Muscle Nerve 50(5):723–732. CrossRefPubMedPubMedCentralGoogle Scholar
  12. de Bruin M, Smeulders MJ, Kreulen M, Huijing PA, Jaspers RT (2014) Intramuscular connective tissue differences in spastic and control muscle: a mechanical and histological study. PLoS One 9(6):e101038. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Durkin MS, Benedict RE, Christensen D, Dubois LA, Fitzgerald RT, Kirby RS, Maenner MJ, Van Naarden Braun K, Wingate MS, Yeargin-Allsopp M (2016) Prevalence of cerebral palsy among 8-year-old children in 2010 and preliminary evidence of trends in its relationship to low birthweight. Paediatr Perinat Epidemiol 30(5):496–510. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Enesco M, Puddy D (1964) Increase in the number of nuclei and weight in skeletal muscle of rats of various ages. Am J Anat 114:235–244. CrossRefPubMedGoogle Scholar
  15. Fry CS, Lee JD, Jackson JR, Kirby TJ, Stasko SA, Liu H, Dupont-Versteegden EE, McCarthy JJ, Peterson CA (2014) Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy. FASEB J 28(4):1654–1665. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fry CS, Lee JD, Mula J, Kirby TJ, Jackson JR, Liu F, Yang L, Mendias CL, Dupont-Versteegden EE, McCarthy JJ, Peterson CA (2015) Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat Med 21(1):76–80. CrossRefPubMedGoogle Scholar
  17. Gillies AR, Lieber RL (2011) Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 44(3):318–331. PubMedPubMedCentralGoogle Scholar
  18. Gokhin DS, Ward SR, Bremner SN, Lieber RL (2008a) Quantitative analysis of neonatal skeletal muscle functional improvement in the mouse. J Exp Biol 211(Pt 6):837–843. CrossRefPubMedGoogle Scholar
  19. Gokhin DS, Ward SR, Bremner SN, Lieber RL (2008b) Quantitative analysis of neonatal skeletal muscle functional improvement in the mouse. J Exp Biol 211(6):837–843. CrossRefPubMedGoogle Scholar
  20. Goldspink G (1970) The proliferation of myofibrils during muscle fibre growth. J Cell Sci 6(2):593–603PubMedGoogle Scholar
  21. Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184(1):170–192CrossRefPubMedPubMedCentralGoogle Scholar
  22. Graham HK, Rosenbaum P, Paneth N, Dan B, Lin JP, Damiano DL, Becher JG, Gaebler-Spira D, Colver A, Reddihough DS, Crompton KE, Lieber RL (2016) Cerebral palsy. Nat Rev Dis Primers 2:15082. CrossRefPubMedGoogle Scholar
  23. Graham HK, Selber P (2003) Musculoskeletal aspects of cerebral palsy. J Bone Joint Surg Br Vol 85-B(2):157–166. CrossRefGoogle Scholar
  24. Griffin GE, Williams PE, Goldspink G (1971) Region of longitudinal growth in striated muscle fibres. Nat New Biol 232(27):28–29CrossRefPubMedGoogle Scholar
  25. Günther S, Kim J, Kostin S, Lepper C, Fan C-M, Braun T (2013) Myf5-positive satellite cells contribute to Pax7-dependent long-term maintenance of adult muscle stem cells. Cell Stem Cell 13:590–601CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hagglund G, Wagner P (2008) Development of spasticity with age in a total population of children with cerebral palsy. BMC Musculoskelet Disord 9(1):150CrossRefPubMedPubMedCentralGoogle Scholar
  27. Halevy O, Piestun Y, Allouh MZ, Rosser BWC, Rinkevich Y, Reshef R, Rozenboim I, Wleklinski-Lee M, Yablonka-Reuveni Z (2004) Pattern of Pax7 expression during myogenesis in the posthatch chicken establishes a model for satellite cell differentiation and renewal. Dev Dyn 231(3):489–502. CrossRefPubMedGoogle Scholar
  28. Handsfield GG, Meyer CH, Abel MF, Blemker SS (2016) Heterogeneity of muscle sizes in the lower limbs of children with cerebral palsy. Muscle Nerve 53(6):933–945. CrossRefPubMedGoogle Scholar
  29. Herskind A, Ritterband-Rosenbaum A, Willerslev-Olsen M, Lorentzen J, Hanson L, Lichtwark G, Nielsen JB (2016) Muscle growth is reduced in 15-month-old children with cerebral palsy. Dev Med Child Neurol 58(5):485–491. CrossRefPubMedGoogle Scholar
  30. Hirtz D, Thurman DJ, Gwinn-Hardy K, Mohamed M, Chaudhuri AR, Zalutsky R (2007) How common are the “common” neurologic disorders? Neurology 68(5):326–337. CrossRefPubMedGoogle Scholar
  31. Johnson DC, Damiano DL, Abel MF (1997) The evolution of gait in childhood and adolescent cerebral palsy. J Pediatr Orthop 17(3):392–396PubMedGoogle Scholar
  32. Keefe AC, Lawson JA, Flygare SD, Fox ZD, Colasanto MP, Mathew SJ, Yandell M, Kardon G (2015) Muscle stem cells contribute to myofibres in sedentary adult mice. Nat Commun 6.
  33. Kinney MC, Dayanidhi S, Dykstra PB, McCarthy JJ, Peterson CA, Lieber RL (2016) Reduced skeletal muscle satellite cell number alters muscle morphology after chronic stretch but allows limited serial sarcomere addition. Muscle Nerve.
  34. Kuang S, Gillespie MA, Rudnicki MA (2008) Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell 2(1):22–31. CrossRefPubMedGoogle Scholar
  35. Leafblad ND, Van Heest AE (2015) Management of the Spastic Wrist and Hand in cerebral palsy. J Hand Surg 40(5):1035–1040. CrossRefGoogle Scholar
  36. Lepper C, Conway SJ, Fan CM (2009) Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements. Nature 460(7255):627–631. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lepper C, Partridge TA, Fan CM (2011) An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138(17):3639–3646. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lieber RL (1986) Skeletal muscle adaptability. I: review of basic properties. Dev Med Child Neurol 28(3):390–397CrossRefPubMedGoogle Scholar
  39. Lieber RL, Friden J (2000) Functional and clinical significance of skeletal muscle architecture. Muscle Nerve 23(11):1647–1666CrossRefPubMedGoogle Scholar
  40. Lieber RL, Fridén J (2002) Spasticity causes a fundamental rearrangement of muscle-joint interaction. Muscle Nerve 25(2):265–270CrossRefPubMedGoogle Scholar
  41. Lieber RL, Runesson E, Einarsson F, Friden J (2003) Inferior mechanical properties of spastic muscle bundles due to hypertrophic but compromised extracellular matrix material. Muscle Nerve 28(4):464–471. CrossRefPubMedGoogle Scholar
  42. Macconnachie HF, Enesco M, Leblond CP (1964) The mode of increase in the number of skeletal muscle nuclei in the postnatal rat. Am J Anat 114:245–253. CrossRefPubMedGoogle Scholar
  43. Mathewson MA, Ward SR, Chambers HG, Lieber RL (2015) High resolution muscle measurements provide insights into equinus contractures in patients with cerebral palsy. J Orthop Res 33(1):33–39. CrossRefPubMedGoogle Scholar
  44. Mauro A (1961) Satellite cell of skeletal muscle Fibers. J Biophys Biochem Cytol 9(2):493–495. CrossRefPubMedPubMedCentralGoogle Scholar
  45. McNee AE, Will E, Lin JP, Eve LC, Gough M, Morrissey MC, Shortland AP (2007) The effect of serial casting on gait in children with cerebral palsy: preliminary results from a crossover trial. Gait Posture 25(3):463–468. CrossRefPubMedGoogle Scholar
  46. Meyer GA, Lieber RL (2011) Elucidation of extracellular matrix mechanics from muscle fibers and fiber bundles. J Biomech 44(4):771–773. CrossRefPubMedGoogle Scholar
  47. Montgomery RD (1962) Growth of human striated muscle. Nature 195:194–195CrossRefPubMedGoogle Scholar
  48. Moss FP, Leblond CP (1971) Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec 170(4):421–435. CrossRefPubMedGoogle Scholar
  49. Murphy MM, Lawson JA, Mathew SJ, Hutcheson DA, Kardon G (2011) Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138(17):3625–3637. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Nishimura T, Nakamura K, Kishioka Y, Kato-Mori Y, Wakamatsu J, Hattori A (2008) Inhibition of matrix metalloproteinases suppresses the migration of skeletal muscle cells. J Muscle Res Cell Motil 29(1):37–44. CrossRefPubMedGoogle Scholar
  51. Noble JJ, Fry NR, Lewis AP, Keevil SF, Gough M, Shortland AP (2014) Lower limb muscle volumes in bilateral spastic cerebral palsy. Brain Dev 36(4):294–300. CrossRefPubMedGoogle Scholar
  52. Nordmark E, Hagglund G, Lauge-Pedersen H, Wagner P, Westbom L (2009) Development of lower limb range of motion from early childhood to adolescence in cerebral palsy: a population-based study. BMC Med 7(1):65. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Oeffinger D, Conaway M, Stevenson R, Hall J, Shapiro R, Tylkowski C (2010) Tibial length growth curves for ambulatory children and adolescents with cerebral palsy. Dev Med Child Neu 52(9):e195–e201. CrossRefGoogle Scholar
  54. Oustanina S, Hause G, Braun T (2004) Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification. EMBO J 23(16):3430–3439CrossRefPubMedPubMedCentralGoogle Scholar
  55. Pallafacchina G, Francois S, Regnault B, Czarny B, Dive V, Cumano A, Montarras D, Buckingham M (2010) An adult tissue-specific stem cell in its niche: a gene profiling analysis of in vivo quiescent and activated muscle satellite cells. Stem Cell Res 4(2):77–91. CrossRefPubMedGoogle Scholar
  56. Patel TJ, Lieber RL (1997) Force transmission in skeletal muscle: from actomyosin to external tendons. Exerc Sport Sci Rev 25:321–363CrossRefPubMedGoogle Scholar
  57. Pawlikowski B, Pulliam C, Betta ND, Kardon G, Olwin BB (2015) Pervasive satellite cell contribution to uninjured adult muscle fibers. Skelet Muscle 5(1):1–13. CrossRefGoogle Scholar
  58. Pontén E, Gantelius S, Lieber RL (2007) Intraoperative muscle measurements reveal a relationship between contracture formation and muscle remodeling. Muscle Nerve 36(1):47–54. CrossRefPubMedGoogle Scholar
  59. Rethlefsen SA, Healy BS, Wren TA, Skaggs DL, Kay RM (2006) Causes of intoeing gait in children with cerebral palsy. J Bone Joint Surg Am 88(10):2175–2180. PubMedGoogle Scholar
  60. Rodda JM, Graham HK, Carson L, Galea MP, Wolfe R (2004) Sagittal gait patterns in spastic diplegia. J Bone Joint Surg Br Vol 86-B(2):251–258. CrossRefGoogle Scholar
  61. Sambasivan R, Yao R, Kissenpfennig A, Van Wittenberghe L, Paldi A, Gayraud-Morel B, Guenou H, Malissen B, Tajbakhsh S, Galy A (2011) Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138(17):3647–3656. CrossRefPubMedGoogle Scholar
  62. Schiaffino S, Rossi AC, Smerdu V, Leinwand LA, Reggiani C (2015) Developmental myosins: expression patterns and functional significance. Skelet Muscle 5(1):22. CrossRefPubMedPubMedCentralGoogle Scholar
  63. Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102(6):777–786CrossRefPubMedGoogle Scholar
  64. Smith LR, Chambers HG, Lieber RL (2013) Reduced satellite cell population may lead to contractures in children with cerebral palsy. Dev Med Child Neurol 55(3):264–270. CrossRefPubMedGoogle Scholar
  65. Smith LR, Chambers HG, Subramaniam S, Lieber RL (2012) Transcriptional abnormalities of hamstring muscle contractures in children with cerebral palsy. PLoS One 7(8):e40686. CrossRefPubMedPubMedCentralGoogle Scholar
  66. Smith LR, Lee KS, Ward SR, Chambers HG, Lieber RL (2011) Hamstring contractures in children with spastic cerebral palsy result from a stiffer extracellular matrix and increased in vivo sarcomere length. J Physiol 589(Pt 10):2625–2639. CrossRefPubMedPubMedCentralGoogle Scholar
  67. Smith LR, Pontén E, Hedström Y, Ward SR, Chambers HG, Subramaniam S, Lieber RL (2009) Novel transcriptional profile in wrist muscles from cerebral palsy patients. BMC Med Genet 2:44. Google Scholar
  68. Tedroff K, Granath F, Forssberg H, Haglund-Akerlind Y (2009) Long-term effects of botulinum toxin A in children with cerebral palsy. Dev Med Child Neurol 51(2):120–127. CrossRefPubMedGoogle Scholar
  69. Tedroff K, Löwing K, Jacobson D, Åström E (2011) Does loss of spasticity matter? A 10-year follow-up after selective dorsal rhizotomy in cerebral palsy. Dev Med Child Neurol 53(8):724–729. CrossRefPubMedGoogle Scholar
  70. Thomason P, Rodda J, Sangeux M, Selber P, Kerr G (2012) Management of children with ambulatory cerebral palsy: an evidence-based review. Commentary by Hugh Williamson gait laboratory staff. J Pediatr Orthop 32(Suppl 2):S182–S186. CrossRefPubMedGoogle Scholar
  71. Van Naarden Braun K, Doernberg N, Schieve L, Christensen D, Goodman A, Yeargin-Allsopp M (2016) Birth prevalence of cerebral palsy: a population-based study. Pediatrics 137(1):1–9. Google Scholar
  72. von Maltzahn J, Jones AE, Parks RJ, Rudnicki MA (2013) Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. Proc Natl Acad Sci 110(41):16474–16479. CrossRefGoogle Scholar
  73. Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100(1):157–168. CrossRefPubMedGoogle Scholar
  74. Willerslev-Olsen M, Lorentzen J, Sinkjær T, Nielsen JBO (2013) Passive muscle properties are altered in children with cerebral palsy before the age of 3 years and are difficult to distinguish clinically from spasticity. Dev Med Child Neurol 55(7):617–623. CrossRefPubMedGoogle Scholar
  75. Williams PE, Goldspink G (1971) Longitudinal growth of striated muscle fibres. J Cell Sci 9(3):751–767PubMedGoogle Scholar
  76. Williams PE, Goldspink G (1973) The effect of immobilization on the longitudinal growth of striated muscle fibres. J Anat 116(Pt 1):45–55PubMedPubMedCentralGoogle Scholar
  77. Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93(1):23–67. CrossRefPubMedPubMedCentralGoogle Scholar
  78. Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, Beauchamp JR (2004) Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol 166(3):347–357. CrossRefPubMedPubMedCentralGoogle Scholar
  79. Zogby AM, Dayanidhi S, Chambers HG, Schenk S, Lieber RL (2017) Skeletal muscle fiber-type specific succinate dehydrogenase activity in cerebral palsy. Muscle Nerve 55(1):122–124. CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Shirley Ryan AbilityLabChicagoUSA

Section editors and affiliations

  • Freeman Miller
    • 1
  • Steven Bachrach
    • 2
  1. 1.AI DuPont Hospital for ChildrenWilmingtonUSA
  2. 2.Al duPont Hospital for ChildrenWilmingtonUSA

Personalised recommendations