Abstract

The increasing concern for nondegradable plastic wastes effect as well as the need for new alternative materials to petrochemical plastics has triggered out much interest into biotechnological biopolymers. Polymers exist in all microorganisms and their environments, showing different biological functions and rather diverse and fascinating properties with a wide range of countless “potentially” biotechnological and industrial applications. Bio-based polymers are expected to triplicate their production capacity in 2021. Polyhydroxyalkanoates (PHAs), polylactides (PLA), polycaprolactone (PCL), starch- and cellulose-based polymers, or chitin (chitosan) are some examples of these biopolymers. In fact, PLA and PHA polymers together with bio-based PET polymers show the fastest rates of market growth. In this chapter various biopolymers and their applications, covering areas such as packaging, medicine, agriculture, tissue engineering, or pharmaceuticals, are discussed. Overall, this review shows biopolymers as a good and “natural” alternative to conventional and nonbiodegradable plastics.

References

  1. Abou-Zeid DM, Müller RJ, Deckwer WD (2001) Degradation of natural and synthetic polyesters under anaerobic conditions. J Biotechnol 86:113–126PubMedCrossRefGoogle Scholar
  2. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472PubMedPubMedCentralGoogle Scholar
  3. Andrady AL (2017) The plastic in microplastics: a review. Mar Pollut Bull 119:12–22PubMedCrossRefGoogle Scholar
  4. Andrady AL, Neal MA (2009) Applications and societal benefits of plastics Philosophical Transactions of the Royal Society B: Biological Sciences. vol 364, Issue 1526, pp1977–1984Google Scholar
  5. Arrieta MP, López J, Ferrándiz S, Peltzer MA (2013) Characterization of PLA-limonene blends for food packaging applications. Polym Test 32:760–768CrossRefGoogle Scholar
  6. Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93:467–474CrossRefGoogle Scholar
  7. Avérous L (2008). Polylactic acid: synthesis, properties and applications, Chap 21. In: Belgacem N, Gandini A (eds) Monomers, polymers and composites from renewable resources. Elsevier Limited Publication, Location, Oxford, pp 433–450Google Scholar
  8. Avgoustakis K (2008). Polylactic-co-glycolic acid (PLGA). Encyclopedia of biomaterials and biomedical engineering, 2nd edn (online version). CRC Press, Boca Raton (CA), pp 2259–2269Google Scholar
  9. Babel W, Riis V, Hainich E (1990) Mikrobelle thermoplaste: biosynthese, eigenschaften und anwendung. Plaste Und Kautschuk 37:109–115Google Scholar
  10. Bassas M, Rodriguez E, Llorens J, Manresa A (2006) Poly(3-hydroxyalkanoate) produced from Pseudomonas aeruginosa 42A2 (NCBIM 40045): effect of fatty acid nature as nutrient. J Non-Cryst Solids 352:2259–2263CrossRefGoogle Scholar
  11. Bassas-Galià M, Gonzalez A, Micaux F, Gaillard V, Piantini U, Schintke S, Zinn M, Mathieu M (2015) Chemical modification of polyhydroxyalkanoates (PHAs) for the preparation of hybrid biomaterials. CHIMIA Int J Chem 69:627–630CrossRefGoogle Scholar
  12. Basta AH, El-Saied H (2009) Performance of improved bacterial cellulose application in the production of functional paper. J Appl Microbiol 107:2098–2107PubMedCrossRefGoogle Scholar
  13. Bohmert-Tatarev K, McAvoy S, Daughtry S, Peoples OP, Snell KD (2011) High levels of bioplastic are produced in fertile transplastomic tobacco plants engineered with a synthetic operon for the production of polyhydroxybutyrate. Plant Physiol 155:1690PubMedPubMedCentralCrossRefGoogle Scholar
  14. Boley A, Müller WR, Haider G (2000) Biodegradable polymers as solid substrate and biofilm carrier for denitrification in recirculated aquaculture systems. Aquac Eng 22:75–85CrossRefGoogle Scholar
  15. Caliceti P, Salmaso S, Elvassore N, Bertucco A (2004) Effective protein release from PEG/PLA nano-particles produced by compressed gas anti-solvent precipitation techniques. J Control Release 94:195–205PubMedCrossRefGoogle Scholar
  16. Cao Q, Zhang J, Liu H, Wu Q, Chen J, Chen G-Q (2014) The mechanism of anti-osteoporosis effects of 3-hydroxybutyrate and derivatives under simulated microgravity. Biomaterials 35:8273–8283PubMedCrossRefGoogle Scholar
  17. Castelli F, Conti B, Maccarrone DE, Conte U, Puglisi G (1998) Comparative study of [`]in vitro’ release of anti-inflammatory drugs from polylactide-co-glycolide microspheres. Int J Pharm 176:85–98CrossRefGoogle Scholar
  18. Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23:1273–1335CrossRefGoogle Scholar
  19. Chandy T, Das Robert GS, Gundu FW, Rao HR (2002) Development of polylactide microspheres for protein encapsulation and delivery. J Appl Polym Sci 86:1285–1295CrossRefGoogle Scholar
  20. Chen G-Q (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38:2434–2446PubMedCrossRefGoogle Scholar
  21. Chen GQ, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578PubMedCrossRefGoogle Scholar
  22. Chiba T, Nakai T (1985) A synthetic approach to (+)-thienamycin from methyl (R)-3-hydroxybutanoate. A new entry to (3R, 4R)-3-[(R)-1-hydroxyethyl]-4-acetoxy-2-azetidinone. Chem Lett:651–655Google Scholar
  23. Choi S, Song CW, Shin JH, Lee SY (2015) Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng 28:223–239PubMedCrossRefGoogle Scholar
  24. Choi SY, Park SJ, Kim WJ, Yang JE, Lee H, Shin J, Lee SY (2016) One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli. Nat Biotechnol 34:435–440PubMedCrossRefGoogle Scholar
  25. Clarinval AM, Halleux J (2005) Classification of biodegradable polymers. In: Smith R (ed) Biodegradable polymers for industrial applications. CRC, Boca Raton, pp 3–56CrossRefGoogle Scholar
  26. Comiskey B, Albert JD, Yoshizawa H, Jacobson J (1998) An electrophoretic ink for all-printed reflective electronic displays. Nature 394:253–255CrossRefGoogle Scholar
  27. Czaja W, Krystynowicz A, Bielecki S, Brown RM Jr (2006) Microbial cellulose – the natural power to heal wounds. Biomaterials 27:145–151PubMedCrossRefGoogle Scholar
  28. Dai Z-W, Zou X-H, Chen G-Q (2009) Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) as an injectable implant system for prevention of post-surgical tissue adhesion. Biomaterials 30:3075–3083PubMedCrossRefGoogle Scholar
  29. Daniels AU, Chang MKO, Andriano KP, Heller J (1990) Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. J Appl Biomater 1:57–78PubMedCrossRefGoogle Scholar
  30. de Olyveira GM, Manzine Costa LM, Basmaji P, Xavier Filho L (2012) Bacterial nanocellulose for medicine regenerative. J Nanotechnol Eng Med 2:034001–034008CrossRefGoogle Scholar
  31. Dinjaski N, Prieto MA (2015) Smart polyhydroxyalkanoate nanobeads by protein based functionalization. Nanomedicine 11:885–899PubMedCrossRefGoogle Scholar
  32. Dong Y, Feng SS (2007) In vitro and in vivo evaluation of methoxy polyethylene glycol-polylactide (MPEG-PLA) nanoparticles for small-molecule drug chemotherapy. Biomaterials 28:4154–4160PubMedCrossRefGoogle Scholar
  33. Elnashar M (2011) Biotechnology of biopolymers. InTech, RijekaCrossRefGoogle Scholar
  34. Elsabee MZ, Abdou ES (2013) Chitosan based edible films and coatings: a review. Mater Sci Eng C 33:1819–1841CrossRefGoogle Scholar
  35. Esa F, Tasirin SM, Rahman NA (2014) Overview of bacterial cellulose production and application. Agric Agric Sci Procedia 2:113–119CrossRefGoogle Scholar
  36. Evans BR, O’Neill HM, Malyvanh VP, Lee I, Woodward J (2003) Palladium-bacterial cellulose membranes for fuel cells. Biosens Bioelectron 18:917–923PubMedCrossRefGoogle Scholar
  37. Fallik E, Okon Y (1996) Inoculants of Azospirillum brasilense: Biomass production, survival and growth promotion of Setaria italica and Zea mays. Soil Biol Biochem 28:123–126CrossRefGoogle Scholar
  38. Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications – a comprehensive review. Adv Drug Deliv Rev 107:367–392PubMedCrossRefGoogle Scholar
  39. Fontana J, De Souza A, Fontana C, Torriani I, Moreschi J, Gallotti B, De Souza S, Narcisco G, Bichara J, Farah L (1990) Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem Biotechnol 24–25:253–264PubMedCrossRefGoogle Scholar
  40. Franklin NB, Cooksey KD, Getty KJ (2004) Inhibition of Listeria monocytogenes on the surface of individually packaged hot dogs with a packaging film coating containing nisin. J Food Prot 67:480–485PubMedCrossRefGoogle Scholar
  41. Garcia B, Olivera ER, Minambres B, Fernandez-Valverde M, Canedo LM, Prieto MA, Garcia JL, Martinez M, Luengo JM (1999) Novel biodegradable aromatic plastics from a bacterial source. Genetic and biochemical studies on a route of the phenylacetyl-CoA catabolon. J Biol Chem 274:29228–29241PubMedCrossRefGoogle Scholar
  42. Garde A, Schmidt AS, Jonsson G, Andersen M, Thomsen AB, Ahring BK, Kiel P (2000) Agricultural rops and residuals as a basis for polylactate production in Denmark. Food Biopack Conference, CopenahagenGoogle Scholar
  43. Glenn GM, Orts W, Imam S, Chiou B-S, Wood DF (2014) Chapter 15 – starch plastic packaging and agriculture applications. In: Halley P, Avérous L (eds) Starch polymers. Elsevier, Amsterdam, pp 421–452CrossRefGoogle Scholar
  44. Gupta AP, Kumar V (2007) New emerging trends in synthetic biodegradable polymers – polylactide: a critique. Eur Polym J 43:4053–4074CrossRefGoogle Scholar
  45. Hiraishi A, Khan ST (2003) Application of polyhydroxyalkanoates for denitrification in water and wastewater treatment. Appl Microbiol Biotechnol 61:103–109PubMedCrossRefGoogle Scholar
  46. Hocking PJ, Marchessault RH (1994) Biopolyesters. In: GJL G (ed) . Blackie Academic & Professional, LondonCrossRefGoogle Scholar
  47. Hu Y, Jiang X, Ding Y, Zhang L, Yang C, Zhang J, Chen J, Yang Y (2003) Preparation and drug release behaviors of nimodipine-loaded poly(caprolactone)-poly(ethylene oxide)-polylactide amphiphilic copolymer nanoparticles. Biomaterials 24:2395–2404PubMedCrossRefGoogle Scholar
  48. Ikada Y, Shikinami Y, Hara Y, Tagawa M, Fukada E (1996) Enhancement of bone formation by drawn poly(L-lactide). J Biomed Mater Res 30:553–558PubMedCrossRefGoogle Scholar
  49. Jang Y-S, Kim B, Shin JH, Choi YJ, Choi S, Song CW, Lee J, Park HG, Lee SY (2012) Bio-based production of C2–C6 platform chemicals. Biotechnol Bioeng 109:2437–2459PubMedCrossRefGoogle Scholar
  50. Jin T, Zhang H (2008) Biodegradable polylactic acid polymer with nisin for use in antimicrobial food packaging. J Food Sci 73:M127–M134PubMedCrossRefGoogle Scholar
  51. Jin T, Liu L, Zhang H, Hicks K (2009) Antimicrobial activity of nisin incorporated in pectin and polylactic acid composite films against Listeria monocytogenes. Int J Food Sci Technol 44:322–329CrossRefGoogle Scholar
  52. Jung YK, Lee SY (2011) Efficient production of polylactic acid and its copolymers by metabolically engineered Escherichia coli. J Biotechnol 151:94–101PubMedCrossRefGoogle Scholar
  53. Jung YK, Kim TY, Park SJ, Lee SY (2010) Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol Bioeng 105:161–171PubMedCrossRefGoogle Scholar
  54. Kassab AC, Xu K, Denkbas EB, Dou Y, Zhao S, Piskin E (1997) Rifampicin carrying polyhydroxybutyrate microspheres as a potential chemoembolization agent. J Biomater Sci Polym Ed 8:947–961PubMedCrossRefGoogle Scholar
  55. Khan ST, Horiba Y, Yamamoto M, Hiraishi A (2002) Members of the family Comamonadaceae as primary poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-degrading denitrifiers in activated sludge as revealed by a polyphasic approach. Appl Environ Microbiol 68:3206–3214PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kılıçay E, Demirbilek M, Türk M, Güven E, Hazer B, Denkbas EB (2011) Preparation and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHX) based nanoparticles for targeted cancer therapy. Eur J Pharm Sci 44:310–320PubMedCrossRefGoogle Scholar
  57. Kittur FS, Kumar KR, Thraranathan RN (1998) Functional packanging properties of chitosan films. Zeitschrift für Lebensmittel Untersuchung und Forschung 206:44CrossRefGoogle Scholar
  58. Kolybaba M, Tabil LG, Panigrahi S, Crerar WJ, Powell T, Wang B (2003) Biodegradable polymers: past, present, and future. CSAE/ASAE Annual Intersectional Meeting, FargoGoogle Scholar
  59. Kristo E, Koutsoumanis KP, Biliaderis CG (2008) Thermal, mechanical and water vapor barrier properties of sodium caseinate films containing antimicrobials and their inhibitory action on Listeria monocytogenes. Food Hydrocoll 22:373–386CrossRefGoogle Scholar
  60. Krochta JM, De Mulder-Johnston CLC (1997) Edible and biodegradable polymer films: challenges and opportunities. Food Technol 51:60–74Google Scholar
  61. Lantano C, Alfieri I, Cavazza A, Corradini C, Lorenzi A, Zucchetto N, Montenero A (2014) Natamycin based sol–gel antimicrobial coatings on polylactic acid films for food packaging. Food Chem 165:342–347PubMedCrossRefGoogle Scholar
  62. Lauzier CA, Monasterios CJ, Saracovan I, Marchessault RH, Ramsay BA (1993) Film formation and paper coating with poly(ß-hydroxyalkanoate), a biodegradable latex. TAPPI J 76:71–77Google Scholar
  63. Leaversuch R (2002) Biodegradable polyesters: packaging goes green. Plast Technol 48:66–73Google Scholar
  64. Lee JW, Na D, Park JM, Lee J, Choi S, Lee SY (2012) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol 8:536–546PubMedCrossRefGoogle Scholar
  65. Liu LS, Finkenstadt VL, Liu CK, Jin T, Fishman ML, Hicks KB (2007) Preparation of poly(lactic acid) and pectin composite films intended for applications in antimicrobial packaging. J Appl Polym Sci 106:801–810CrossRefGoogle Scholar
  66. Lü J-M, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, Chen C (2009) Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 9:325–341PubMedPubMedCentralCrossRefGoogle Scholar
  67. Lu X-Y, Ciraolo E, Stefenia R, Chen G-Q, Zhang Y, Hirsch E (2011) Sustained release of PI3K inhibitor from PHA nanoparticles and in vitro growth inhibition of cancer cell lines. Appl Microbiol Biotechnol 89:1423–1433PubMedCrossRefGoogle Scholar
  68. Luengo JM, Garcia B, Sandoval A, Naharro G, Olivera ER (2003) Bioplastics from microorganisms. Curr Opin Microbiol 6:251–260PubMedCrossRefGoogle Scholar
  69. Madhavan Nampoothiri K, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501PubMedCrossRefGoogle Scholar
  70. Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53PubMedPubMedCentralGoogle Scholar
  71. Makino Y, Hirata T (1997) Modified atmosphere packaging of fresh produce with a biodegradable laminate of chitosan-cellulose and polycaprolactone. Postharvest Biol Technol 10:247–254CrossRefGoogle Scholar
  72. Martino VP, Jiménez A, Ruseckaite RA, Avérous L (2011) Structure and properties of clay nano-biocomposites based on poly(lactic acid) plasticized with polyadipates. Polym Adv Technol 22:2206–2213CrossRefGoogle Scholar
  73. Mascheroni E, Guillard V, Nalin F, Mora L, Piergiovanni L (2010) Diffusivity of propolis compounds in polylactic acid polymer for the development of anti-microbial packaging films. J Food Eng 98:294–301CrossRefGoogle Scholar
  74. Matsumoto K, Murata T, Nagao R, Nomura CT, Arai S, Arai Y, Takase K, Nakashita H, Taguchi S, Shimada H (2009) Production of short-chain-length/medium-chain-length polyhydroxyalkanoate (PHA) copolymer in the plastid of Arabidopsis thaliana using an engineered 3-ketoacyl-acyl carrier protein synthase III. Biomacromolecules 10:686–690PubMedCrossRefGoogle Scholar
  75. Mendelson K, Aikawa E, Mettler BA, Sales V, Martin D, Mayer JE, Schoen FJ (2007) Healing and remodeling of bioengineered pulmonary artery patches implanted in sheep. Cardiovasc Pathol 16:277–282PubMedCrossRefGoogle Scholar
  76. Mergaert J, Boley A, Cnockaert MC, Müller W-R, Swings J (2001) Identity and potential functions of heterotrophic bacterial isolates from a continuous-upflow fixed-bed reactor for denitrification of drinking water with bacterial polyester as source of carbon and electron donor. Syst Appl Microbiol 24:303–310PubMedCrossRefGoogle Scholar
  77. Mittendorf V, Robertson EJ, Leech RM, Krüger N, Steinbüchel A, Poirier Y (1998) Synthesis of medium-chain-length polyhydroxyalkanoates in Arabidopsis thaliana using intermediates of peroxisomal fatty acid oxidation. Proc Natl Acad Sci U S A 95:13397–13402PubMedPubMedCentralCrossRefGoogle Scholar
  78. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276–277:1–24CrossRefGoogle Scholar
  79. Nawrath C, Poirier Y, Somerville C (1994) Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation. Proc Natl Acad Sci U S A 91:12,760–12,764CrossRefGoogle Scholar
  80. Nguyen VT, Gidley MJ, Dykes GA (2008) Potential of a nisin-containing bacterial cellulose film to inhibit Listeria monocytogenes on processed meats. Food Microbiol 25:471–478PubMedCrossRefGoogle Scholar
  81. Obuchi S, Ogawa S (2010) Packaging and other commercial applications. In: Poly(lactic acid). John Wiley & Sons, Inc., New York, pp 457–467CrossRefGoogle Scholar
  82. Olivera ER, Carnicero D, Jodra R, Minambres B, Garcia B, Abraham GA, Gallardo A, Roman JS, Garcia JL, Naharro G, Luengo JM (2001) Genetically engineered Pseudomonas: a factory of new bioplastics with broad applications. Environ Microbiol 3:612–618PubMedCrossRefGoogle Scholar
  83. Opitz F, Schenke-Layland K, Cohnert TU, Starcher B, Halbhuber KJ, Martin DP, Stock UA (2004) Tissue engineering of aortic tissue: dire consequence of suboptimal elastic fiber synthesis in vivo. Cardiovasc Res 63:719–730PubMedCrossRefGoogle Scholar
  84. Ouchi T, Saito T, Kontani T, Ohya Y (2004) Encapsulation and/or release behavior of bovine serum albumin within and from polylactide-grafted dextran microspheres. Macromol Biosci 4:458–463PubMedCrossRefGoogle Scholar
  85. Özge Erdohan Z, Çam B, Turhan KN (2013) Characterization of antimicrobial polylactic acid based films. J Food Eng 119:308–315CrossRefGoogle Scholar
  86. Park Y-M, Shin B-A, I-J O (2008) Poly(L-lactic acid)/polyethylenimine nanoparticles as plasmid DNA carriers. Arch Pharm Res 31:96–102PubMedCrossRefGoogle Scholar
  87. Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247CrossRefGoogle Scholar
  88. Poirier Y, Dennis DE, Klomparens K, Somerville C (1992) Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants. Science 256:520–523PubMedCrossRefGoogle Scholar
  89. Prieto M, de Eugenio L, Galan B, Luengo J, Witholt B (2007) Synthesis and degradation of polyhydroxyalkanoates. In: Ramos JL, Filloux YA (eds) Pseudomonas: a model system in biology. Pseudomonas. Berlin Germany, SpringerGoogle Scholar
  90. Qu X-H, Wu Q, Liang J, Zou B, Chen G-Q (2006) Effect of 3-hydroxyhexanoate content in poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) on in vitro growth and differentiation of smooth muscle cells. Biomaterials 27:2944–2950PubMedCrossRefGoogle Scholar
  91. Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27CrossRefGoogle Scholar
  92. Reddy CSK, Ghai R, Rashmi, Kalia VC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146PubMedCrossRefGoogle Scholar
  93. Rehm BH, Kruger N, Steinbüchel A (1998) A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis. The PHAG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein-coenzyme a transferase. J Biol Chem 273:24044–24051PubMedCrossRefGoogle Scholar
  94. Ruth K, Grubelnik A, Hartmann R, Egli T, Zinn M, Ren Q (2007) Efficient production of (R)-3-hydroxycarboxylic acids by biotechnological conversion of polyhydroxyalkanoates and their purification. Biomacromolecules 8:279–286PubMedCrossRefGoogle Scholar
  95. Salmaso S, Elvassore N, Bertucco A, Lante A, Caliceti P (2004) Nisin-loaded poly-L-lactide nano-particles produced by CO2 anti-solvent precipitation for sustained antimicrobial activity. Int J Pharm 287:163–173PubMedCrossRefGoogle Scholar
  96. Sandoval A, Arias-Barrau E, Bermejo F, Canedo L, Naharro G, Olivera ER, Luengo JM (2005) Production of 3-hydroxy-n-phenylalkanoic acids by a genetically engineered strain of Pseudomonas putida. Appl Microbiol Biotechnol 67:97–105PubMedCrossRefGoogle Scholar
  97. Saxena AK, Baumgart H, Komann C, Ainoedhofer H, Soltysiak P, Kofler K, Höllwarth ME (2010) Esophagus tissue engineering: in situ generation of rudimentary tubular vascularized esophageal conduit using the ovine model. J Pediatr Surg 45:859–864PubMedCrossRefGoogle Scholar
  98. Seebach D, Chow HF, Jackson RFW, Sutter MA, Thaisrivongs S, Zimmermann J (1986) (+)-11,11prime-Di-<I>O</I>-methylelaiophylidene – preparation from elaiophylin and total synthesis from (<I>R</I>)-3-hydroxybutyrate and (<I>S</I>)-malate. Liebigs Annalen der Chemie 1986:1281–1308CrossRefGoogle Scholar
  99. Sendil D, Gursel I, Wise DL, Hasirci V (1999) Antibiotic release from biodegradable PHBV microparticles. J Control Release 59:207–217PubMedCrossRefGoogle Scholar
  100. Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265PubMedCrossRefGoogle Scholar
  101. Shi X, Jiang J, Sun L, Gan Z (2011) Hydrolysis and biomineralization of porous PLA microspheres and their influence on cell growth. Colloids Surf B: Biointerfaces 85:73–80PubMedCrossRefGoogle Scholar
  102. Shimao M (2001) Biodegradation of plastics. Curr Opin Biotechnol 12:242–247PubMedCrossRefGoogle Scholar
  103. Siegenthaler KO, Künkel A, Skupin G, Yamamoto M (2012) Ecoflex® and Ecovio®: biodegradable, performance-enabling plastics. In: Rieger B, Künkel A, Coates GW, Reichardt R, Dinjus E, Zevaco TA (eds) Synthetic biodegradable polymers. Springer, Berlin, pp 91–136Google Scholar
  104. Singh M, Shirley B, Bajwa K, Samara E, Hora M, O’Hagan D (2001) Controlled release of recombinant insulin-like growth factor from a novel formulation of polylactide-co-glycolide microparticles. J Control Release 70:21–28PubMedCrossRefGoogle Scholar
  105. Siracusa V, Blanco I, Romani S, Tylewicz U, Rocculi P, Rosa MD (2012) Poly(lactic acid)-modified films for food packaging application: physical, mechanical, and barrier behavior. J Appl Polym Sci 125:E390–E401CrossRefGoogle Scholar
  106. Siragusa GR, Cutter CN, Willett JL (1999) Incorporation of bacteriocin in plastic retains activity and inhibits surface growth of bacteria on meat. Food Microbiol 16:229–235CrossRefGoogle Scholar
  107. Snell KD, Peoples OP (2002) Polyhydroxyalkanoate polymers and their production in transgenic plants. Metab Eng 4:29–40PubMedCrossRefGoogle Scholar
  108. Sodian R, Loebe M, Hein A, Martin DP, Hoerstrup SP, Potapov EV, Hausmann H, Lueth T, Hetzer R (2002) Application of stereolithography for scaffold fabrication for tissue engineered heart valves. ASAIO J 48:12–16PubMedCrossRefGoogle Scholar
  109. Steinbüchel A (2005) Non-biodegradable biopolymers from renewable resources: perspectives and impacts. Curr Opin Biotechnol 16:607–613PubMedCrossRefGoogle Scholar
  110. Steinbüchel A, Hein S (2001) Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms. Adv Biochem Eng Biotechnol 71:81–123PubMedGoogle Scholar
  111. Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228CrossRefGoogle Scholar
  112. Stevens ES (2003) What makes green plastics green? Biocycle 44:24–27Google Scholar
  113. Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555CrossRefGoogle Scholar
  114. Swain SK, Kisku SK, Sahoo G (2014) Preparation of thermal resistant gas barrier chitosan nanobiocomposites. Polym Compos 35:2324–2328CrossRefGoogle Scholar
  115. Thompson RC, Moore CJ, vom Saal FS, Swan SH (2009) Plastics, the environment and human health: current consensus and future trends. Philos Trans R Soc B 364:2153CrossRefGoogle Scholar
  116. Tuil R, Schennink G, Beukelaer HD, Heemst JV, Jaeger R (2000) Converting biobased polymers into food packagings. Procedings of the Food Biopack Conference, CopenhagenGoogle Scholar
  117. Ul-Islam M, Khan S, Khattak WA, Ullah MW, Park JK (2015) Synthesis, chemistry, and medical application of bacterial cellulose nanocomposites. In: Thakur VK, Thakur MK (eds) Eco-friendly polymer nanocomposites: chemistry and applications. Springer India, New Delhi, pp 399–437CrossRefGoogle Scholar
  118. Valentin HE, Broyles DL, Casagrande LA, Colburn SM, Creely WL, DeLaquil PA, Felton HM, Gonzalez KA, Houmiel KL, Lutke K, Mahadeo DA, Mitsky TA, Padgette SR, Reiser SE, Slater S, Stark DM, Stock RT, Stone DA, Taylor NB, Thorne GM, Tran M, Gruys KJ (1999) PHA production, from bacteria to plants. Int J Biol Macromol 25:303–306PubMedCrossRefGoogle Scholar
  119. Van Beilen JB, Poirier Y (2008) Production of renewable polymers from crop plants. Plant J 54:684–701PubMedCrossRefGoogle Scholar
  120. Verlinden RAJ, Hill DJ, Kenward MA, Williams CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102:1437–1449PubMedCrossRefGoogle Scholar
  121. Wang Y, Bian Y-Z, Wu Q, Chen G-Q (2008) Evaluation of three-dimensional scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials 29:2858–2868PubMedCrossRefGoogle Scholar
  122. Weber CJ (2000). Biobased packaging materials for the food industry: status and perspectives : a european concerted action pp 1–136Google Scholar
  123. Williams SF, Martin DP, Horowitz DM, Peoples OP (1999) PHA applications: addressing the price performance issue. I Tissue engineering. Int J Biol Macromol 25:111–121PubMedCrossRefGoogle Scholar
  124. Witholt B, Kessler B (1999) Perspectives of medium chain length poly(hydroxyalkanoates), a versatile set of bacterial bioplastics. Curr Opin Biotechnol 10:279–285PubMedCrossRefGoogle Scholar
  125. Wu Q, Wang Y, Chen G-Q (2009) Medical application of microbial biopolyesters polyhydroxyalkanoates. Artif Cells Blood Substitutes Biotechnol 37:1–12CrossRefGoogle Scholar
  126. Yang TH, Kim TW, Kang HO, Lee S-H, Lee EJ, Lim S-C, Oh SO, Song A-J, Park SJ, Lee SY (2010) Biosynthesis of polylactic acid and its copolymers using evolved propionate CoA transferase and PHA synthase. Biotechnol Bioeng 105:150–160PubMedCrossRefGoogle Scholar
  127. Yao D, Zhang W, Zhou JG (2009) Controllable growth of gradient porous structures. Biomacromolecules 10:1282–1286PubMedCrossRefGoogle Scholar
  128. Zhang B, Carlson R, Srienc F (2006) Engineering the monomer composition of polyhydroxyalkanoates synthesized in Saccharomyces cerevisiae. Appl Environ Microbiol 72:536–543PubMedPubMedCentralCrossRefGoogle Scholar
  129. Zhang J, Cao Q, Li S, Lu X, Zhao Y, Guan J-S, Chen J-C, Wu Q, Chen G-Q (2013a) 3-Hydroxybutyrate methyl ester as a potential drug against Alzheimer’s disease via mitochondria protection mechanism. Biomaterials 34:7552–7562PubMedCrossRefGoogle Scholar
  130. Zhang Y, Chan HF, Leong KW (2013b) Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev 65:104–120PubMedCrossRefGoogle Scholar
  131. Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 53:5–21PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute of Life TechnologiesUniversity of Applied Sciences Western SwitzerlandSionSwitzerland

Personalised recommendations