Microbial Production of Isoprenoids

Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Isoprenoids are among the most diverse groups of compounds synthesized by biological systems; it has been estimated that there are approximately 30,000–50,000 known isoprenoids, which include the terpenoids and carotenoids. Isoprenoids are important in maintaining membrane fluidity, electron transport, protein prenylation, and cellular and organismal development and in controlling pests. Many isoprenoids have found application as fragrances and essential oils, pharmaceuticals, specialty and commodity chemicals, and most recently biofuels. To make all of these applications of isoprenoids possible, their production in microbial hosts is essential. Recently, there has been much progress in producing these complex hydrocarbons in both Escherichia coli and Saccharomyces cerevisiae. In this chapter, we review recent progress in this area.

References

  1. Ajikumar PK et al (2010) Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia Coli. Science (New York) 330(6000):70–74CrossRefGoogle Scholar
  2. Albertsen L et al (2011) Diversion of flux toward sesquiterpene production in saccharomyces cerevisiae by fusion of host and heterologous enzymes. Appl Environ Microbiol 77(3):1033–1040PubMedCrossRefGoogle Scholar
  3. Alonso-Gutierrez J et al (2013) Metabolic engineering of Escherichia Coli for limonene and perillyl alcohol production. Metab Eng 19:33–41PubMedCrossRefGoogle Scholar
  4. Alonso-Gutierrez J et al (2015) Principal Component Analysis of Proteomics (PCAP) as a tool to direct metabolic engineering. Metab Eng 28:123–133PubMedCrossRefGoogle Scholar
  5. Andersen-Ranberg J et al (2016) Expanding the landscape of diterpene structural diversity through stereochemically controlled combinatorial biosynthesis. Angew Chem 55(6):2142–2146CrossRefGoogle Scholar
  6. Anthony JR et al (2009) Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia Coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Metab Eng 11(1):13–19PubMedCrossRefGoogle Scholar
  7. Beller HR, Lee TS, Katz L (2015) Natural products as biofuels and bio-based chemicals: fatty acids and isoprenoids. Nat Prod Rep 32(10):1508–1526PubMedCrossRefGoogle Scholar
  8. Bertea CM, Schalk M, Karp F, Maffei M, Croteau R (2001) Demonstration that menthofuran synthase of mint (Mentha) is a cytochrome P450 monooxygenase: cloning, functional expression, and characterization of the responsible gene. Arch Biochem Biophys 390(2):279–286PubMedCrossRefGoogle Scholar
  9. Biggs BW et al (2016) Overcoming heterologous protein interdependency to optimize P450-mediated taxol precursor synthesis in Escherichia Coli. Proc Natl Acad Sci U S A 113(12):3209–3214PubMedPubMedCentralCrossRefGoogle Scholar
  10. Blumberg PM (1988) Protein kinase C as the receptor for the phorbol ester tumor promoters: sixth rhoads memorial award lecture. Cancer Res 48(1):1–8PubMedGoogle Scholar
  11. Bromann K, Toivari M, Viljanen K, Ruohonen L, Nakari-Setälä T (2016) Engineering aspergillus nidulans for heterologous ent-kaurene and gamma-terpinene production. Appl Microbiol Biotechnol 100(14):6345–6359PubMedCrossRefGoogle Scholar
  12. Campos N et al (2001) Escherichia Coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate: a novel system for the genetic analysis of the 2-C-methyl-D-erythritol 4-phosphate pathway for isoprenoid biosynthesis. Biochem J 353(Pt 1):59–67PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cankar K et al (2011) A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene. FEBS Lett 585(1):178–182PubMedCrossRefGoogle Scholar
  14. Cann AF, Liao JC (2010) Pentanol isomer synthesis in engineered microorganisms. Appl Microbiol Biotechnol 85(4):893–899PubMedCrossRefGoogle Scholar
  15. Carter OA, Peters RJ, Croteau R (2003) Monoterpene biosynthesis pathway construction in Escherichia Coli. Phytochemistry 64(2):425–433PubMedCrossRefGoogle Scholar
  16. Chandran SS, Kealey JT, Reeves CD (2011) Microbial production of isoprenoids. Process Biochem 46(9):1703–1710CrossRefGoogle Scholar
  17. Chang MCY, Eachus RA, Trieu W, Ro D-K, Keasling JD (2007) Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat Chem Biol 3(5):274–277PubMedCrossRefGoogle Scholar
  18. Chappell J (1995) Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annu Rev Plant Physiol Plant Mol Biol 46(1):521–547CrossRefGoogle Scholar
  19. Chiba R, Minami A, Gomi K, Oikawa H (2013) Identification of ophiobolin F synthase by a genome mining approach: a sesterterpene synthase from Aspergillus clavatus. Org Lett 15(3):594–597PubMedCrossRefGoogle Scholar
  20. Chubukov V et al (2015) Acute limonene toxicity in Escherichia coli is caused by limonene hydroperoxide and alleviated by a point mutation in alkyl hydroperoxidase AhpC. Appl Environ Microbiol 81(14):4690–4696PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chuck CJ, Donnelly J (2014) The compatibility of potential bioderived fuels with jet A-1 aviation kerosene. Appl Energy 118:83–91CrossRefGoogle Scholar
  22. Collu G et al (2001) Geraniol 10-hydroxylase1, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett 508(2):215–220PubMedCrossRefGoogle Scholar
  23. Croteau R, Ketchum REB, Long RM, Kaspera R, Wildung MR (2006) Taxol biosynthesis and molecular genetics. Phytochem Rev Proc Phytochem Soc Eur 5(1):75–97CrossRefGoogle Scholar
  24. Cuellar MC, Heijnen JJ, van der Wielen LAM (2013) Large-scale production of diesel-like biofuels – process design as an inherent part of microorganism development. Biotechnol J 8(6):682–689PubMedCrossRefGoogle Scholar
  25. Cui L, Su X-z S (2009) Discovery, mechanisms of action and combination therapy of artemisinin. Expert Rev Anti-Infect Ther 7(8):999–1013PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cusidó RM et al (1999) Production of taxol® and baccatin III by a selected taxus baccata callus line and its derived cell suspension culture. Plant Sci 146(2):101–107CrossRefGoogle Scholar
  27. Davies FK, Work VH, Beliaev AS, Posewitz MC (2014) Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. Pcc 7002. Front Bioeng Biotechnol 2:21PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dejong JHM et al (2006) Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol Bioeng 93(2):212–224PubMedCrossRefGoogle Scholar
  29. Dickschat JS (2016) Bacterial terpene cyclases. Nat Prod Rep 33(1):87–110PubMedCrossRefGoogle Scholar
  30. Ding M-Z et al (2014) Biosynthesis of taxadiene in Saccharomyces cerevisiae: selection of geranylgeranyl diphosphate synthase directed by a computer-aided docking strategy. PLoS ONE 9(10):e109348PubMedPubMedCentralCrossRefGoogle Scholar
  31. Eisenreich W et al (1998) The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chem Biol 5(9):221–233CrossRefGoogle Scholar
  32. Engels B, Dahm P, Jennewein S (2008) Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards taxol (Paclitaxel) production. Metab Eng 10(3–4):201–206PubMedCrossRefGoogle Scholar
  33. Formighieri C, Melis A (2014) Carbon partitioning to the terpenoid biosynthetic pathway enables heterologous β-phellandrene production in Escherichia coli cultures. Arch Microbiol 196(12):853–861PubMedCrossRefGoogle Scholar
  34. Fortman JL et al (2008) Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol 26(7):375–381PubMedCrossRefGoogle Scholar
  35. Fraga BM (2005) Natural sesquiterpenoids. Nat Prod Rep 22(4):465–486PubMedCrossRefGoogle Scholar
  36. Gelb MH et al (1995) The inhibition of protein prenyltransferases by oxygenated metabolites of limonene and perillyl alcohol. Cancer Lett 91(2):169–175PubMedCrossRefGoogle Scholar
  37. George KW, Thompson MG et al (2015a) Metabolic engineering for the high-yield production of isoprenoid-based c5 alcohols in E. coli. Sci Rep 5:11128PubMedPubMedCentralCrossRefGoogle Scholar
  38. George KW, Alonso-Gutierrez J, Keasling JD, Lee TS (2015b) Isoprenoid drugs, biofuels, and chemicals – artemisinin, farnesene, and beyond. Adv Biochem Eng Biotechnol 148:355–389PubMedGoogle Scholar
  39. Góngora-Castillo E et al (2012) Development of transcriptomic resources for interrogating the biosynthesis of monoterpene indole alkaloids in medicinal plant species. PLoS ONE 7(12):e52506PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gould MN (1997) Cancer chemoprevention and therapy by monoterpenes. Environ Health Perspect 105(4):977–979PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hahn FM, Poulter CD (1995) Isolation of schizosaccharomyces pombe isopentenyl diphosphate isomerase cDNA clones by complementation and synthesis of the enzyme in Escherichia coli. J Biol Chem 270(19):11298–11303PubMedCrossRefGoogle Scholar
  42. Halaweish FT, Kronberg S, Hubert MB, Rice JA (2002) Toxic and aversive diterpenes of Euphorbia esula. J Chem Ecol 28(8):1599–1611PubMedCrossRefGoogle Scholar
  43. Hamberger B, Bak S (2013) Plant p450s as versatile drivers for evolution of species-specific chemical diversity. Philos Trans R Soc Lond Ser B Biol Sci 368(1612):20120426CrossRefGoogle Scholar
  44. Hamberger B, Ohnishi T, Hamberger B, Séguin A, Bohlmann J (2011) Evolution of diterpene metabolism: sitka spruce cyp720b4 catalyzes multiple oxidations in resin acid biosynthesis of conifer defense against insects. Plant Physiol 157(4):1677–1695PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hampton RY, Garza RM (2009) Protein quality control as a strategy for cellular regulation: lessons from ubiquitin-mediated regulation of the sterol pathway. Chem Rev 109(4):1561–1574PubMedCrossRefGoogle Scholar
  46. Hampton R, Dimster-Denk D, Rine J (1996) The biology of HMG-CoA reductase: the pros of contra-regulation. Trends Biochem Sci 21(4):140–145PubMedCrossRefGoogle Scholar
  47. Harvey BG, Wright ME, Quintana RL (2010) High-density renewable fuels based on the selective dimerization of pinenes. Energy Fuels Am Chem Soc J 24(1):267–273CrossRefGoogle Scholar
  48. Haudenschild C, Schalk M, Karp F, Croteau R (2000) Functional expression of regiospecific cytochrome P450 limonene hydroxylases from mint (Mentha spp.) in Escherichia coli and Saccharomyces cerevisiae. Arch Biochem Biophys 379(1):127–136PubMedCrossRefGoogle Scholar
  49. Hefner J et al (1996) Cytochrome P450-catalyzed hydroxylation of taxa-4(5),11(12)-diene to taxa-4(20),11(12)-dien-5a-o1: the first oxygenation step in taxol biosynthesis. Chem Biol 3(6):479–489PubMedCrossRefGoogle Scholar
  50. Hellier P, Al-Haj L, Talibi M, Purton S, Ladommatos N (2013) Combustion and emissions characterization of terpenes with a view to their biological production in Cyanobacteria. Fuel 111:670–688CrossRefGoogle Scholar
  51. Hohl RJ (1996) Monoterpenes as regulators of malignant cell proliferation. Adv Exp Med Biol 401:137–146PubMedCrossRefGoogle Scholar
  52. Horton CE, Huang K-X, Bennett GN, Rudolph FB (2003) Heterologous expression of the Saccharomyces cerevisiae alcohol acetyltransferase genes in Clostridium acetobutylicum and Escherichia coli for the production of isoamyl acetate. J Ind Microbiol Biotechnol 30(7):427–432PubMedCrossRefGoogle Scholar
  53. Horwitz AA et al (2015) Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-cas. Cell Syst 1(1):88–96PubMedCrossRefGoogle Scholar
  54. Huang KX, Huang QL, Wildung MR, Croteau R, Scott AI (1998) Overproduction, in Escherichia coli, of soluble taxadiene synthase, a key enzyme in the taxol biosynthetic pathway. Protein Expr Purif 13(1):90–96PubMedCrossRefGoogle Scholar
  55. Hull A, Golubkov I, Kronberg B, Marandzheva T, van Stam J (2006) An alternative fuel for spark ignition engines. Int J Eng Res 7(3):203–214CrossRefGoogle Scholar
  56. Ignea C, Pontini M, Maffei ME, Makris AM, Kampranis SC (2014) Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase. ACS Synth Biol [Electron Resour] 3(5):298–306CrossRefGoogle Scholar
  57. Ignea C et al (2015) Efficient diterpene production in yeast by engineering Erg20p into a geranylgeranyl diphosphate synthase. Metab Eng 27:65–75PubMedCrossRefGoogle Scholar
  58. Ignea C et al (2016) Carnosic acid biosynthesis elucidated by a synthetic biology platform. Proc Natl Acad Sci U S A 113(13):3681–3686PubMedPubMedCentralCrossRefGoogle Scholar
  59. Jennewein S, Croteau R (2001) Taxol: biosynthesis, molecular genetics, and biotechnological applications. Appl Microbiol Biotechnol 57(1–2):13–19PubMedGoogle Scholar
  60. Jiao W, Dong W, Li Z, Deng M, Runhua L (2009) Lathyrane diterpenes from Euphorbia lathyris as modulators of multidrug resistance and their crystal structures. Bioorg Med Chem 17(13):4786–4792PubMedCrossRefGoogle Scholar
  61. Kang M-K, Eom J-H, Kim Y, Um Y, Woo HM (2014) Biosynthesis of pinene from glucose using metabolically-engineered Corynebacterium glutamicum. Biotechnol Lett 36(10):2069–2077PubMedCrossRefGoogle Scholar
  62. Kaspera R, Croteau R (2006) Cytochrome P450 oxygenases of taxol biosynthesis. Phytochem Rev Proc Phytochem Soc Eur 5(2–3):433–444CrossRefGoogle Scholar
  63. Kim E-M, Eom J-H, Um Y, Kim Y, Woo HM (2015) Microbial synthesis of myrcene by metabolically engineered Escherichia coli. J Agric Food Chem 63(18):4606–4612PubMedCrossRefGoogle Scholar
  64. King AJ et al (2016) A cytochrome P450-mediated intramolecular carbon-carbon ring closure in the biosynthesis of multidrug-resistance-reversing lathyrane diterpenoids. Chembiochem 17(17):1593–1597PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60:335–355PubMedCrossRefGoogle Scholar
  66. Kirby J et al (2010) Cloning of casbene and neocembrene synthases from Euphorbiaceae plants and expression in Saccharomyces cerevisiae. Phytochemistry 71(13):1466–1473PubMedCrossRefGoogle Scholar
  67. Kiyota H, Okuda Y, Ito M, Hirai MY, Ikeuchi M (2014) Engineering of Cyanobacteria for the photosynthetic production of limonene from CO2. J Biotechnol 185:1–7PubMedCrossRefGoogle Scholar
  68. Köllner TG, Gershenzon J, Degenhardt J (2009) Molecular and biochemical evolution of maize terpene synthase 10, an enzyme of indirect defense. Phytochemistry 70(9):1139–1145PubMedCrossRefGoogle Scholar
  69. Kung Y et al (2014) Constructing tailored isoprenoid products by structure-guided modification of geranylgeranyl reductase. Structure 22(7):1028–1036PubMedCrossRefGoogle Scholar
  70. Lange BM, Rujan T, Martin W, Croteau R (2000) Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci U S A 97(24):13172–13177PubMedPubMedCentralCrossRefGoogle Scholar
  71. Lee ME, DeLoache WC, Cervantes B, Dueber JE (2015) A highly characterized yeast toolkit for modular, multipart assembly. ACS Synth Biol [Electron Resour] 4(9):975–986.Google Scholar
  72. Leipoldt F et al (2015) Diversity of ABBA prenyltransferases in marine Streptomyces sp. CNQ-509: promiscuous enzymes for the biosynthesis of mixed terpenoid compounds. PLoS ONE 10(12):e0143237PubMedPubMedCentralCrossRefGoogle Scholar
  73. Liao P, Hemmerlin A, Bach TJ, Chye M-L (2016) The potential of the mevalonate pathway for enhanced isoprenoid production. Biotechnol Adv 34(5):697–713PubMedCrossRefGoogle Scholar
  74. Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in Cyanobacteria, using Synechocystis as the model organism. Metab Eng 12(1):70–79PubMedCrossRefGoogle Scholar
  75. Lois LM et al (1998) Cloning and characterization of a gene from Escherichia coli encoding a transketolase-like enzyme that catalyzes the synthesis of D-1-deoxyxylulose 5-phosphate, a common precursor for isoprenoid, thiamin, and pyridoxol biosynthesis. Proc Natl Acad Sci U S A 95(5):2105–2110PubMedPubMedCentralCrossRefGoogle Scholar
  76. Lubertozzi D, Keasling JD (2008) Expression of a synthetic artemesia annua amorphadiene synthase in Aspergillus nidulans yields altered product distribution. J Ind Microbiol Biotechnol 35(10):1191–1198PubMedCrossRefGoogle Scholar
  77. Luo P, Wang YH, Wang GD, Essenberg M, Chen XY (2001) Molecular cloning and functional identification of (+)-delta-cadinene-8-hydroxylase, a cytochrome P450 mono-oxygenase (CYP706B1) of cotton sesquiterpene biosynthesis. Plant J Cell Mol Biol 28(1):95–104CrossRefGoogle Scholar
  78. Luo D et al (2016) Oxidation and cyclization of casbene in the biosynthesis of Euphorbia factors from mature seeds of Euphorbia lathyris L. Proc Natl Acad Sci U S A 113(34):5082–5089CrossRefGoogle Scholar
  79. Lupien S, Karp F, Ponnamperuma K, Wildung M, Croteau R (1995) Cytochrome P450 limonene hydroxylases of Mentha species. Drug Metabol Drug Interact 12(3–4):245–260PubMedGoogle Scholar
  80. Mack JH, Rapp VH, Broeckelmann M, Lee TS, Dibble RW (2014) Investigation of biofuels from microorganism metabolism for use as anti-knock additives. Fuel 117:939–943CrossRefGoogle Scholar
  81. Martin VJJ, Yoshikuni Y, Keasling JD (2001) The in vivo synthesis of plant sesquiterpenes by Escherichia coli. J Biochem Microbiol Technol Eng 75(5):497–503Google Scholar
  82. Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21(7):796–802PubMedCrossRefGoogle Scholar
  83. Martin DM, Fäldt J, Bohlmann J (2004) Functional characterization of nine norway spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-D subfamily. Plant Physiol 135(4):1908–1927PubMedPubMedCentralCrossRefGoogle Scholar
  84. Marwick C (2005) Researchers investigate potential use of plant as a pain killer. BMJ (Clin Res Ed) 331(7525):1104CrossRefGoogle Scholar
  85. McCaskill D, Croteau R (1997) Prospects for the bioengineering of isoprenoid biosynthesis. Adv Biochem Eng Biotechnol 55:107–146PubMedGoogle Scholar
  86. McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7(7):1015–1026PubMedPubMedCentralCrossRefGoogle Scholar
  87. Meadows AL et al (2016) Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature 537(7622):694–697PubMedCrossRefGoogle Scholar
  88. Meigs TE, Roseman DS, Simoni RD (1996) Regulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase degradation by the nonsterol mevalonate metabolite farnesol in vivo. J Biol Chem 271(14):7916–7922PubMedCrossRefGoogle Scholar
  89. Melillo E, Setroikromo R, Quax WJ, Kayser O (2013) Production of α-cuprenene in xanthophyllomyces dendrorhous: a step closer to a potent terpene biofactory. Microb Cell Factories 12:13CrossRefGoogle Scholar
  90. Mercke P, Crock J, Croteau R, Brodelius PE (1999) Cloning, expression, and characterization of epi-cedrol synthase, a sesquiterpene cyclase from Artemisia annua L. Arch Biochem Biophys 369(2):213–222PubMedCrossRefGoogle Scholar
  91. Mercke P, Bengtsson M, Bouwmeester HJ, Posthumus MA, Brodelius PE (2000) Molecular cloning, expression, and characterization of amorpha-4,11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L. Arch Biochem Biophys 381(2):173–180PubMedCrossRefGoogle Scholar
  92. Meylemans HA, Quintana RL, Goldsmith BR, Harvey BG (2011) Solvent-free conversion of linalool to methylcyclopentadiene dimers: a route to renewable high-density fuels. ChemSusChem 4(4):465–469PubMedCrossRefGoogle Scholar
  93. Meylemans HA, Quintana RL, Harvey BG (2012) Efficient conversion of pure and mixed terpene feedstocks to high density fuels. Fuel 97:560–568CrossRefGoogle Scholar
  94. Mi J, Schewe H, Buchhaupt M, Holtmann D, Schrader J (2016) Efficient hydroxylation of 1,8-cineole with monoterpenoid-resistant recombinant Pseudomonas putida GS1. World J Microbiol Biotechnol 32(7):112PubMedCrossRefGoogle Scholar
  95. Narita K, Ohnuma S, Nishino T (1999) Protein design of geranyl diphosphate synthase. Structural features that define the product specificities of prenyltransferases. J Biochem 126(3):566–571PubMedCrossRefGoogle Scholar
  96. Newman JD et al (2006) High-level production of amorpha-4,11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli. Biotechnol Bioeng 95(4):684–691PubMedCrossRefGoogle Scholar
  97. O’Connor SE, Maresh JJ (2006) Chemistry and biology of monoterpene indole alkaloid biosynthesis. Nat Prod Rep 23(4):532–547PubMedCrossRefGoogle Scholar
  98. Ohnuma S et al (1996) Conversion from farnesyl diphosphate synthase to geranylgeranyl diphosphate synthase by random chemical mutagenesis. J Biol Chem 271(17):10087–10095PubMedCrossRefGoogle Scholar
  99. Okamoto S et al (2011) A short-chain dehydrogenase involved in terpene metabolism from Zingiber zerumbet. FEBS J 278(16):2892–2900PubMedCrossRefGoogle Scholar
  100. Ozaki T, Zhao P, Shinada T, Nishiyama M, Kuzuyama T (2014) Cyclolavandulyl skeleton biosynthesis via both condensation and cyclization catalyzed by an unprecedented member of the cis-isoprenyl diphosphate synthase superfamily. J Am Chem Soc 136(13):4837–4840PubMedCrossRefGoogle Scholar
  101. Özaydın B, Burd H, Lee TS, Keasling JD (2013) Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production. Metab Eng 15:174–183PubMedCrossRefGoogle Scholar
  102. Paddon CJ et al (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496(7446):528–532PubMedCrossRefGoogle Scholar
  103. Peralta-Yahya PP, Keasling JD (2010) Advanced biofuel production in microbes. Biotechnol J 5(2):147–162PubMedCrossRefGoogle Scholar
  104. Peralta-Yahya PP et al (2011) Identification and microbial production of a terpene-based advanced biofuel. Nat Commun 2:483PubMedPubMedCentralCrossRefGoogle Scholar
  105. Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488(7411):320–328PubMedCrossRefGoogle Scholar
  106. Phelan RM, Sekurova ON, Keasling JD, Zotchev SB (2015) Engineering terpene biosynthesis in streptomyces for production of the advanced biofuel precursor bisabolene. ACS Synth Biol [Electron Resour] 4(4):393–399CrossRefGoogle Scholar
  107. Phulara SC, Chaturvedi P, Gupta P (2016) Isoprenoid-based biofuels: homologous expression and heterologous expression in prokaryotes. Appl Environ Microbiol 82(19):5730–5740PubMedPubMedCentralCrossRefGoogle Scholar
  108. Picaud S, Brodelius M, Brodelius PE (2005) Expression, purification and characterization of recombinant (E)-beta-farnesene synthase from Artemisia annua. Phytochemistry 66(9):961–967PubMedCrossRefGoogle Scholar
  109. Pitera DJ, Paddon CJ, Newman JD, Keasling JD (2007) Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng 9(2):193–207PubMedCrossRefGoogle Scholar
  110. Potter D, Miziorko HM (1997) Identification of catalytic residues in human mevalonate kinase. J Biol Chem 272(41):25449–25454PubMedCrossRefGoogle Scholar
  111. Ralston L et al (2001) Cloning, heterologous expression, and functional characterization of 5-epi-aristolochene-1,3-dihydroxylase from tobacco (Nicotiana tabacum). Arch Biochem Biophys 393(2):222–235PubMedCrossRefGoogle Scholar
  112. Reiling KK et al (2004) Mono and diterpene production in Escherichia coli. Biotechnol Bioeng 87(2):200–212PubMedCrossRefGoogle Scholar
  113. Reinsvold RE, Jinkerson RE, Radakovits R, Posewitz MC, Basu C (2011) The production of the sesquiterpene β-caryophyllene in a transgenic strain of the Cyanobacterium Synechocystis. J Plant Physiol 168(8):848–852PubMedCrossRefGoogle Scholar
  114. Renninger N, McPhee D (2008) Fuel compositions comprising farnesane and farnesane derivatives and method of making and using same. US Patent 20,080,098,645Google Scholar
  115. Ro D-K et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086):940–943PubMedCrossRefGoogle Scholar
  116. Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295(Pt 2):517–524PubMedPubMedCentralCrossRefGoogle Scholar
  117. Roth RJ, Acton N (1989) A simple conversion of artemisinic acid into artemisinin. J Nat Prod 52(5):1183–1185PubMedCrossRefGoogle Scholar
  118. Rude MA, Schirmer A (2009) New microbial fuels: a biotech perspective. Curr Opin Microbiol 12(3):274–281PubMedCrossRefGoogle Scholar
  119. Ryder JA (2009) Jet fuel compositions. US Patent 7,589,243Google Scholar
  120. Sarria S, Wong B, Martín HG, Keasling JD, Peralta-Yahya P (2014) Microbial synthesis of pinene. ACS Synth Biol [Electron Resour] 3(7):466–475CrossRefGoogle Scholar
  121. Schalk M, Croteau R (2000) A single amino acid substitution (F363I) converts the regiochemistry of the spearmint (−)-limonene hydroxylase from a C6- to a C3-hydroxylase. Proc Natl Acad Sci U S A 97(22):11948–11953PubMedPubMedCentralCrossRefGoogle Scholar
  122. Schoendorf A, Rithner CD, Williams RM, Croteau RB (2001) Molecular cloning of a cytochrome P450 taxane 10 beta-hydroxylase cDNA from taxus and functional expression in yeast. Proc Natl Acad Sci U S A 98(4):1501–1506PubMedPubMedCentralCrossRefGoogle Scholar
  123. Schwender J, Seemann M, Lichtenthaler HK, Rohmer M (1996) Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem J 316(1):73–80PubMedPubMedCentralCrossRefGoogle Scholar
  124. Singh R, Vadlani PV, Harrison ML, Bennett GN, San KY (2008) Aerobic production of isoamyl acetate by overexpression of the yeast alcohol acetyl-transferases AFT1 and AFT2 in Escherichia coli and using low-cost fermentation ingredients. Bioprocess Biosyst Eng 31(4):299–306PubMedCrossRefGoogle Scholar
  125. Skeel RT, Khleif SN (eds) (2011) Handbook of cancer chemotherapy. Illustrated. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  126. Srivalli KMR, Lakshmi PK (2012) Overview of P-glycoprotein inhibitors: a rational outlook. Braz J Pharm Sci 48(3):353–367CrossRefGoogle Scholar
  127. Steele CL, Crock J, Bohlmann J, Croteau R (1998) Sesquiterpene synthases from Grand Fir (Abies grandis). Comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of delta-selinene synthase and gamma-humulene synthase. J Biol Chem 273(4):2078–2089PubMedCrossRefGoogle Scholar
  128. Szkopińska A, Swiezewska E, Karst F (2000) The regulation of activity of main mevalonic acid pathway enzymes: farnesyl diphosphate synthase, 3-hydroxy-3-methylglutaryl-CoA reductase, and squalene synthase in yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 267(1):473–477PubMedCrossRefGoogle Scholar
  129. Takahashi S, Kuzuyama T, Seto H (1999) Purification, characterization, and cloning of a eubacterial 3-hydroxy-3-methylglutaryl coenzyme A reductase, a key enzyme involved in biosynthesis of terpenoids. J Bacteriol 181(4):1256–1263PubMedPubMedCentralGoogle Scholar
  130. Takahashi S et al (2007) Functional characterization of premnaspirodiene oxygenase, a cytochrome P450 catalyzing regio- and stereo-specific hydroxylations of diverse sesquiterpene substrates. J Biol Chem 282(43):31744–31754PubMedPubMedCentralCrossRefGoogle Scholar
  131. Takase H et al (2016) Cytochrome P450 CYP71BE5 in grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound (−)-rotundone. J Exp Bot 67(3):787–798PubMedCrossRefGoogle Scholar
  132. Tarshis LC, Mujing Y, Dale Poulter C, Sacchettini JC (1994) Crystal structure of recombinant farnesyl diphosphate synthase at 2.6-.ANG. Resolution. Biochemistry 33(36):10871–10877PubMedCrossRefGoogle Scholar
  133. Tracy NI, Chen D, Crunkleton DW, Price GL (2009) Hydrogenated monoterpenes as diesel fuel additives. Fuel 88(11):2238–2240CrossRefGoogle Scholar
  134. Trikka FA et al (2015) Iterative carotenogenic screens identify combinations of yeast gene deletions that enhance sclareol production. Microb Cell Factories 14:60CrossRefGoogle Scholar
  135. Tsuruta H et al (2009) High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS ONE 4(2):e4489PubMedPubMedCentralCrossRefGoogle Scholar
  136. Unterweger B et al (2016) Characterisation of CYP101J2, CYP101J3 and CYP101J4, Three 1,8-cineole-hydroxylating cytochrome P450 monooxygenases from sphingobium yanoikuyae strain B2. Appl Environ Microbiol 82(22):6507–6517PubMedPubMedCentralCrossRefGoogle Scholar
  137. Vasas A, Hohmann J (2014) Euphorbia diterpenes: isolation, structure, biological activity, and synthesis (2008–2012). Chem Rev 114(17):8579–8612PubMedCrossRefGoogle Scholar
  138. Walker K, Croteau R (2001) Taxol biosynthetic genes. Phytochemistry 58(1):1–7PubMedCrossRefGoogle Scholar
  139. Wang K (2000) Isoprenyl diphosphate synthases. Biochim Biophys Acta (BBA) Mol Cell Biol Lipids 1529(1–3):33–48CrossRefGoogle Scholar
  140. Wang Y-H, Essenberg M (2010) Inhibitor and substrate activities of sesquiterpene olefins toward +−δ-cadinene-8-hydroxylase, a cytochrome P450 monooxygenase (CYP706B1). Phytochemistry 71(16):1825–1831PubMedCrossRefGoogle Scholar
  141. Wang C, Yoon S-H et al (2011a) Metabolic engineering of Escherichia coli for α-farnesene production. Metab Eng 13(6):648–655PubMedCrossRefGoogle Scholar
  142. Wang C, Kim J-Y, Choi E-S, Kim S-W (2011b) Microbial production of farnesol (FOH): current states and beyond. Process Biochem 46(6):1221–1229CrossRefGoogle Scholar
  143. Wang H, Zou Z, Wang S, Gong M (2013) Global analysis of transcriptome responses and gene expression profiles to cold stress of Jatropha curcas L. PLoS ONE 8(12):e82817PubMedPubMedCentralCrossRefGoogle Scholar
  144. Wang H-B, Wang X-Y, Liu L-P, Qin G-W, Kang T-G (2015) Tigliane diterpenoids from the Euphorbiaceae and Thymelaeaceae families. Chem Rev 115(9):2975–3011PubMedCrossRefGoogle Scholar
  145. Weaver LJ et al (2015) A kinetic-based approach to understanding heterologous mevalonate pathway function in E. coli. Biotechnol Bioeng 112(1):111–119PubMedCrossRefGoogle Scholar
  146. Westfall PJ et al (2012) Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci U S A 109(3):E111–E118PubMedPubMedCentralCrossRefGoogle Scholar
  147. Withers ST, Gottlieb SS, Lieu B, Newman JD, Keasling JD (2007) Identification of isopentenol biosynthetic genes from Bacillus subtilis by a screening method based on isoprenoid precursor toxicity. Appl Environ Microbiol 73(19):6277–6283PubMedPubMedCentralCrossRefGoogle Scholar
  148. Wriessnegger T et al (2014) Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris. Metab Eng 24:18–29PubMedCrossRefGoogle Scholar
  149. Wüst M, Croteau RB (2002) Hydroxylation of specifically deuterated limonene enantiomers by cytochrome p450 limonene-6-hydroxylase reveals the mechanism of multiple product formation. Biochemistry 41(6):1820–1827PubMedCrossRefGoogle Scholar
  150. Yang Y, Dec JE, Dronniou N, Simmons B (2010) Characteristics of isopentanol as a fuel for HCCI engines. SAE Int J Fuels Lubr 3(2):725–741CrossRefGoogle Scholar
  151. Yang J et al (2013) Metabolic engineering of Escherichia coli for the biosynthesis of alpha-Pinene. Biotechnol Biofuels 6(1):60PubMedPubMedCentralCrossRefGoogle Scholar
  152. Yang C et al (2016) Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli. Metab Eng 37:79–91PubMedCrossRefGoogle Scholar
  153. Yoshikuni Y, Ferrin TE, Keasling JD (2006) Designed divergent evolution of enzyme function. Nature 440(7087):1078–1082PubMedCrossRefGoogle Scholar
  154. Yu F et al (2011) Zingiber zerumbet CYP71BA1 catalyzes the conversion of α-humulene to 8-hydroxy-α-humulene in zerumbone biosynthesis. Cell Mol Life Sci 68(6):1033–1040PubMedCrossRefGoogle Scholar
  155. Zerbe P et al (2013) Gene discovery of modular diterpene metabolism in nonmodel systems. Plant Physiol 162(2):1073–1091PubMedPubMedCentralCrossRefGoogle Scholar
  156. Zhan X, Zhang Y-H, Chen D-F, Simonsen HT (2014) Metabolic engineering of the moss physcomitrella patens to produce the sesquiterpenoids patchoulol and α/β-santalene. Front Plant Sci 5:636PubMedPubMedCentralCrossRefGoogle Scholar
  157. Zhang H et al (2014) Microbial production of sabinene – a new terpene-based precursor of advanced biofuel. Microb Cell Factories 13:20CrossRefGoogle Scholar
  158. Zhou K, Qiao K, Edgar S, Stephanopoulos G (2015) Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat Biotechnol 33(4):377–383PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Joint BioEnergy InstituteEmeryvilleUSA
  2. 2.Departments of Chemical Engineering and BioengineeringUniversity of California at BerkeleyBerkeleyUSA
  3. 3.Physical Biosciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations