Genetic Engineering for Removal of Sulfur from Fuel Aromatic Heterocycles

Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Aromatic sulfur heterocyclic (ASH) compounds are among the most toxic and recalcitrant contaminants of fossil fuels and may cause serious environmental (e.g., acid precipitation), industrial (e.g., catalyst poisoning), and health problems (e.g., cardiopulmonary diseases). Different biochemical pathways for ASH degradation have been described in a wide variety of microorganisms. These pathways, which are encoded either on plasmids or on the host chromosome, usually are not essential for growth but rather allow to exploit a specific environmental niche or condition. Dibenzothiophene (DBT) is widely use as model ASH compound. A sulfur-specific pathway for DBT biodesulfurization (dsz pathway or 4S pathway) has been extensively studied at the physiological, biochemical, and genetic levels. The distribution and conservation of the dsz genes in a wide variety of bacteria strongly suggest that these genes are commonly subjected to horizontal gene transfer in nature. Despite the fact that an efficient ASH biodesulfurization depends on the expression, activity, feedback inhibition, and substrate range of the dsz gene products, host cell contributions also play an essential role in achieving higher activities, which are pivotal from a biotechnological point of view to develop a commercially viable biodesulfurization process. Factors, such as the cell-reducing power, cytoplasmic oxygen levels, transmembrane trafficking of substrates and products, solvent tolerance, and the ability of the cells to access and uptake the aromatic compounds, may influence strongly the biodesulfurization efficiency. A large number of recombinant bacteria have been engineered to overcome the major bottlenecks of the biodesulfurization process. The increased use of high-throughput omic techniques, as well as systems biology and synthetic biology approaches, is contributing significantly to unravel the intricate regulatory and metabolic networks that govern the degradation of ASHs. These studies will pave the way for further metabolic flux modeling and for the rational design of synthetic metabolic pathways or bacterial consortia for upgrading large volumes of fossil fuels, one of the greatest challenges addressed by current biotechnology. Moreover, existing desulfurization biocatalysts can also potentially be used in a variety of applications, e.g., synthesis of higher-value oil-based chemicals that have barely begun to be explored.

Notes

Acknowledgments

Work was supported by the Ministry of Economy and Competitiveness of Spain Grants BIO2012-39501, BIO2012-39695-C02-01, BIO2015-66960-C3-3-R, and PCIN2014-113, European Union Grants FP7-KBBE 6-311815 and H2020-FET-OPEN 686585, and Fundación Ramón Areces XVII Concurso Nacional.

References

  1. Abin-Fuentes A, Mohamed ME, Wang D, Prather K (2013) Exploring the mechanism of biocatalyst inhibition in microbial desulfurization. Appl Environ Microbiol 79:7807–7817PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adak S, Begley TP (2016) Dibenzothiophene catabolism proceeds via a flavin-N5-oxide intermediate. J Am Chem Soc 138:6424–6426PubMedCrossRefGoogle Scholar
  3. Aggarwal S, Karimi IA, Lee DY (2011a) Reconstruction of a genome-scale metabolic network of Rhodococcus erythropolis for desulfurization studies. Mol BioSyst 7:3122–3131PubMedCrossRefGoogle Scholar
  4. Aggarwal S, Karimi IA, Lee DY (2011b) Flux-based analysis of sulfur metabolism in desulfurizing strains of Rhodococcus erythropolis. FEMS Microbiol Lett 315:115–121PubMedCrossRefGoogle Scholar
  5. Aggarwal S, Karimi IA, Kilbane JJ II, Lee DY (2012) Roles of sulfite oxidoreductase and sulfite reductase in improving desulfurization by Rhodococcus erythropolis. Mol BioSyst 8:2724–2732PubMedCrossRefGoogle Scholar
  6. Aggarwal S, Karimi IA, Ivan GR (2013) In silico modeling and evaluation of Gordonia alkanivorans for biodesulfurization. Mol BioSyst 9:2530–2540PubMedCrossRefGoogle Scholar
  7. Ahmad A, Chauhan AK, Javed S, Kumar A (2014) Desulfurization of thianthrene by a Gordonia sp. IITR100. Biotechnol Lett 36:2209–2214PubMedCrossRefGoogle Scholar
  8. Akhtar N, Ghauri MA, Anwar MA, Akhtar K (2009) Analysis of the dibenzothiophene metabolic pathway in a newly isolated Rhodococcus spp. FEMS Microbiol Lett 301:95–102PubMedCrossRefGoogle Scholar
  9. Akhtar N, Ghauri MA, Anwar MA, Heaphy S (2015) Phylogenetic characterization and novelty of organic sulphur metabolizing genes of Rhodococcus spp. (Eu-32). Biotechnol Lett 37:837–847PubMedCrossRefGoogle Scholar
  10. Alves L, Paixão SM (2011) Toxicity evaluation of 2-hydroxybiphenyl and other compounds involved in studies of fossil fuels biodesulphurisation. Bioresour Technol 102:9162–9166PubMedCrossRefGoogle Scholar
  11. Alves L, Matos J, Tenreiro R, Gírio FM (2008) Evidence for the role of zinc on the performance of dibenzothiophene desulfurization by Gordonia alkanivorans strain 1B. J Ind Microbiol Biotechnol 35:69–73PubMedCrossRefGoogle Scholar
  12. Andreolli M, Lampis S, Zenaro E, Salkinoja-Salonen M, Vallini G (2011) Burkholderia fungorum DBT1: a promising bacterial strain for bioremediation of PAHs-contaminated soils. FEMS Microbiol Lett 319:11–18PubMedCrossRefGoogle Scholar
  13. Arensdorf JJ, Loomis AK, DiGrazia PM, Monticello DJ, Pienkos PT (2002) Chemostat approach for the directed evolution of biodesulfurization gain-of-function mutants. Appl Environ Microbiol 68:691–698PubMedPubMedCentralCrossRefGoogle Scholar
  14. Ayala M, Tinoco R, Hernandez V, Bremauntz P, Vazquez-Duhalt R (1998) Biocatalytic oxidation of fuel as an alternative to biodesulfurization. Fuel Process Technol 57:101–111CrossRefGoogle Scholar
  15. Benedetti I, de Lorenzo V, Nikel PI (2016) Genetic programming of catalytic Pseudomonas putida biofilms for boosting biodegradation of haloalkanes. Metab Eng 33:109–118PubMedCrossRefGoogle Scholar
  16. Bhatia S, Sharma DK (2010a) Mining of genomic databases to identify novel biodesulfurizing microorganisms. J Ind Microbiol Biotechnol 37:425–429PubMedCrossRefGoogle Scholar
  17. Bhatia S, Sharma DK (2010b) Biodesulfurization of dibenzothiophene, its alkylated derivatives and crude oil by a newly isolated strain Pantoea agglomerans D23W3. Biochem Eng J 50:104–109CrossRefGoogle Scholar
  18. Bhatia S, Sharma DK (2012) Thermophilic desulfurization of dibenzothiophene and different petroleum oils by Klebsiella sp. 13T. Environ Sci Pollut Res Int 19:3491–3497PubMedCrossRefGoogle Scholar
  19. Boniek D, Figueiredo D, dos Santos AFB, de Resende Stoianoff MA (2015) Biodesulfurization: a mini review about the immediate search for the future technology. Clean Techn Environ Policy 17:29–37CrossRefGoogle Scholar
  20. Bordoloi NK, Bhagowati P, Chaudhuri MK, Mukherjee AK (2016) Proteomics and metabolomics analyses to elucidate the desulfurization pathway of Chelatococcus sp. PLoS One 11:e0153547PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bressler DC, Fedorak PM (2000) Bacterial metabolism of fluorene, dibenzofuran, dibenzothiophene, and carbazole. Can J Microbiol 46:397–409PubMedCrossRefGoogle Scholar
  22. Butler RR, Wang J, Stark BC, Pombert JF (2016) Complete genome sequences of two interactive moderate thermophiles, Paenibacillus naphtalenovorans 32O-Y and Paenibacillus sp. 32O-W. Genome Announc 4:e01717–e01715PubMedPubMedCentralCrossRefGoogle Scholar
  23. Calzada J, Zamarro MT, Alcón A, Santos VE, Díaz E, García HL, García-Ochoa F (2009) Analysis of dibenzothiophene desulfurization in a recombinant Pseudomonas putida strain. Appl Environ Microbiol 75:875–877PubMedCrossRefGoogle Scholar
  24. Carmona M, Prieto MA, Galán B, García JL, Díaz E (2008) Signaling networks and design of pollutant biosensors. In: Díaz E (ed) Microbial biodegradation. Genomics and molecular biology. Caister Academic Press, Norfolk, pp 97–143Google Scholar
  25. Chen H, Zhang WJ, Cai YB, Zhang Y, Li W (2008) Elucidation of 2-hydroxybiphenyl effect on dibenzothiophene desulfurization by Microbacterium sp. strain ZD-M2. Bioresour Technol 99:6928–6933PubMedCrossRefGoogle Scholar
  26. Chen H, Cai YB, Zhang WJ, Li W (2009) Methoxylation pathway in biodesulfurization of model organosulfur compounds with Mycobacterium sp. Bioresour Technol 100:2085–2087PubMedCrossRefGoogle Scholar
  27. Coco WM, Levinson WE, Crist MJ, Hektor HJ, Darzins A, Pienkos PT, Squires CH, Monticello DJ (2001) DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat Biotechnol 19:354–359PubMedCrossRefGoogle Scholar
  28. Czechowska K, Reimmann C, van der Meer JR (2013) Characterization of a MexAB-OprM efflux system necessary for productive metabolism of Pseudomonas azelaica HBP1 on 2-hydroxybiphenyl. Front Microbiol 4:203PubMedPubMedCentralCrossRefGoogle Scholar
  29. Denome SA, Olson ES, Young KD (1993) Identification and cloning of genes involved in specific desulfurization of dibenzothiophene by Rhodococcus sp. strain IGTS8. Appl Environ Microbiol 59:2837–2843PubMedPubMedCentralGoogle Scholar
  30. Denome SA, Oldfield C, Nash LJ, Young KD (1994) Characterization of the desulfurization genes from Rhodococcus sp. strain IGTS8. J Bacteriol 176:6707–6716PubMedPubMedCentralCrossRefGoogle Scholar
  31. Duan X, Zhang L, Zhou D, Ji K, Ma T, Shui W, Li G, Li X (2013) Crystallization and preliminary structural analysis of dibenzothiophene monooxygenase (DszC) from Rhodococcus erythropolis. Acta Crystallogr Sect F Struct Biol Cryst Commun 69:597–601PubMedPubMedCentralCrossRefGoogle Scholar
  32. Duarte GF, Rosado AS, Seldin L, de Araujo W, van Elsas JD (2001) Analysis of bacterial community structure in sulfurous-oil-containing soils and detection of species carrying dibenzothiophene desulfurization (dsz) genes. Appl Environ Microbiol 67:1052–1062PubMedPubMedCentralCrossRefGoogle Scholar
  33. El-Said Mohamed M, García JL, Martínez I, Del Cerro C, Nogales J, Díaz E (2015a) Genome sequence of Pseudomonas azelaica strain Aramco J. Genome Announc 3 pii: e00037–15.Google Scholar
  34. El-Said Mohamed M, Al-Yacoub ZH, Vedakumar JV (2015b) Biocatalytic desulfurization of thiophenic compounds and crude oil by newly isolated bacteria. Front Microbiol 6:112Google Scholar
  35. Frassinetti S, Setti L, Corti A, Farrinelli P, Montevecchi P, Vallini G (1998) Biodegradation of dibenzothiophene by a nodulating isolate of Rhizobium meliloti. Can J Microbiol 44:289–297PubMedCrossRefGoogle Scholar
  36. Furuya T, Takahashi S, Ishii Y, Kino K, Kirimura K (2004) Cloning of a gene encoding flavin reductase coupling with dibenzothiophene monooxygenase through coexpression screening using indigo production as selective indication. Biochem Biophys Res Commun 313:570–575PubMedCrossRefGoogle Scholar
  37. Furuya T, Takahashi S, Iwasaki Y, Ishii Y, Kino K, Kirimura K (2005) Gene cloning and characterization of Mycobacterium phlei flavin reductase involved in dibenzothiophene desulfurization. J Biosci Bioeng 99:577–585PubMedCrossRefGoogle Scholar
  38. Galán B, Díaz E, García JL (2000) Enhancing desulfurization by engineering a flavin reductase-encoding gene cassette in recombinant biocatalysts. Environ Microbiol 2:687–694PubMedCrossRefGoogle Scholar
  39. Gallardo ME, Ferrández A, de Lorenzo V, García JL, Díaz E (1997) Designing recombinant Pseudomonas strains to enhance biodesulfurization. J Bacteriol 179:7156–7160PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gilbert SC, Morton J, Buchanan S, Oldfield C, McRoberts A (1998) Isolation of a unique benzothiophene-desulphurizing bacterium, Gordona sp. strain 213E (NCIMB 40816), and characterization of the desulphurization pathway. Microbiology 144:2545–2553PubMedCrossRefGoogle Scholar
  41. Gray KA, Pogrebinsky OS, Mrachko GT, Xi L, Monticello DJ, Squires CH (1996) Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat Biotechnol 14:1705–1709PubMedCrossRefGoogle Scholar
  42. Gray KA, Mrachko GT, Squires CH (2003) Biodesulfurization of fossil fuels. Curr Opin Microbiol 6:229–235PubMedCrossRefGoogle Scholar
  43. Guan LJ, Lee WC, Wang S, Ohshiro T, Izumi Y, Ohtsuka J, Tanokura M (2015) Crystal structures of apo-DszC and FMN-bound DszC from Rhodococcus erythropolis D-1. FEBS J 282:3126–3135PubMedCrossRefGoogle Scholar
  44. Gunam IB, Yamamura K, Sujaya IN, Antara NS, Aryanta WR, Tanaka M, Tomita F, Sone T, Asano K (2013) Biodesulfurization of dibenzothiophene and its derivatives using resting and immobilized cells of Sphingomonas subarctica T7b. J Microbiol Biotechnol 23:473–478PubMedCrossRefGoogle Scholar
  45. Guobin S, Jianmin X, Chen G, Huizhou L, Jiayong C (2005) Biodesulfurization using Pseudomonas delafieldii in magnetic polyvinyl alcohol beads. Lett Appl Microbiol 40:30–36PubMedCrossRefGoogle Scholar
  46. Gupta N, Roychoudhury PK, Deb JK (2005) Biotechnology of desulfurization of diesel: prospects and challenges. Appl Microbiol Biotechnol 66:356–366PubMedCrossRefGoogle Scholar
  47. Hirano S, Kitauchi F, Haruki M, Imanaka T, Morikawa M, Kanaya S (2004) Isolation and characterization of Xanthobacter polyaromaticivorans sp. nov. 127W that degrades polycyclic and heterocyclic aromatic compounds under extremely low oxygen conditions. Biosci Biotechnol Biochem 68:557–564PubMedCrossRefGoogle Scholar
  48. Hirasawa K, Ishii Y, Kobayashi M, Koizumi K, Maruhashi K (2001) Improvement of desulfurization activity in Rhodococcus erythropolis KA2-5-1 by genetic engineering. Biosci Biotechnol Biochem 65:239–246PubMedCrossRefGoogle Scholar
  49. Ishii Y, Konishi J, Suzuki M, Maruhashi K (2000) Cloning and expression of the gene encoding the thermophilic NAD(P)H-FMN oxidoreductase coupling with the desulfurization enzymes from Paenibacillus sp. A11-2. J Biosci Bioeng 90:591–599PubMedCrossRefGoogle Scholar
  50. Ishii Y, Kozaki S, Furuya T, Kino K, Kirimura K (2005) Thermophilic biodesulfurization of various heterocyclic sulfur compounds and crude straight-run light gas oil fraction by a newly isolated strain Mycobacterium phlei WU-0103. Curr Microbiol 50:63–70PubMedCrossRefGoogle Scholar
  51. Kamali N, Tavallaie M, Bambai B, Karkhane AA, Miri M (2010) Site-directed mutagenesis enhances the activity of NADH-FMN oxidoreductase (DszD) activity of Rhodococcus erythropolis. Biotechnol Lett 32:921–927PubMedCrossRefGoogle Scholar
  52. Kawaguchi H, Kobayashi H, Sato K (2012) Metabolic engineering of hydrophobic Rhodococcus opacus for biodesulfurization in oil-water biphasic reaction mixtures. J Biosci Bioeng 113:360–366PubMedCrossRefGoogle Scholar
  53. Kayser KJ, Bielaga-Jones BA, Jackowski K, Odusan O, Kilbane JJ (1993) Utilization of organosulfur compounds by axenic and mixed cultures of Rhodococcus rhodochrous IGTS8. J Gen Microbiol 139:3123–3129CrossRefGoogle Scholar
  54. Khairy H, Wübbeler JH, Steinbüchel A (2015) Biodegradation of the organic disulfide 4,4'-dithiobutyric acid by Rhodococcus spp. Appl Environ Microbiol 81:8294–8306Google Scholar
  55. Kilbane JJ II (2006) Microbial biocatalyst developments to upgrade fossil fuels. Curr Opin Biotechnol 17:305–314PubMedCrossRefGoogle Scholar
  56. Kilbane JJ II, Stark B (2016) Biodesulfurization: a model system for microbial physiology research. World J Microbiol Biotechnol 32:137PubMedCrossRefGoogle Scholar
  57. Kim BH, Kim HY, Kim TS, Park DH (1995) Selectivity of desulfurization activity of Desulfovibrio desulfuricans M6 on different petroleum products. Fuel Process Technol 43:87–94CrossRefGoogle Scholar
  58. Kirimura K, Harada K, Iwasawa H, Tanaka T, Iwasaki Y, Furuya T, Ishii Y, Kino K (2004) Identification and functional analysis of the genes encoding dibenzothiophene-desulfurizing enzymes from thermophilic bacteria. Appl Microbiol Biotechnol 65:703–713PubMedCrossRefGoogle Scholar
  59. Kirkwood KM, Ebert S, Foght JM, Fedorak PM, Gray MR (2005) Bacterial biodegradation of aliphatic sulfides under aerobic carbon-or sulfur-limited growth conditions. J Appl Microbiol 99:1444–1454PubMedCrossRefGoogle Scholar
  60. Kirkwood KM, Foght JM, Gray MR (2007) Selectivity among organic sulfur compounds in one-and two-liquid-phase cultures of Rhodococcus sp. strain JVH1. Biodegradation 18:473–480PubMedCrossRefGoogle Scholar
  61. Kodama K, Umehara K, Shimizu K, Nakatani S, Minoda Y, Yamada K (1973) Identification of microbial products from dibenzothiophene and its proposed oxidation pathway. Agric Biol Chem 37:45–50CrossRefGoogle Scholar
  62. Lee WC, Ohshiro T, Matsubara T, Izumi Y, Tanokura M (2006) Crystal structure and desulfurization mechanism of 2′-hydroxybiphenyl-2-sulfinic acid desulfinase. J Biol Chem 281:32534–32539PubMedCrossRefGoogle Scholar
  63. Li ZM, Squires CH, Monticello DJ, Childs JD (1996) Genetic analysis of the dsz promoter and associated regulatory regions of Rhodococcus erythropolis IGTS8. J Bacteriol 178:6409–6418PubMedPubMedCentralCrossRefGoogle Scholar
  64. Li GQ, Li SS, Zhang ML, Wang J, Zhu L, Liang FL, Liu RL, Ma T (2008a) Genetic rearrangement strategy for optimizing the dibenzothiophene biodesulfurization pathway in Rhodococcus erythropolis. Appl Environ Microbiol 74:971–976PubMedCrossRefGoogle Scholar
  65. Li GQ, Li SS, Qu SW, Liu QK, Ma T, Zhu L, Liang FL, Liu RL (2008b) Improved biodesulfurization of hydrodesulfurized diesel oil using Rhodococcus erythropolis and Gordonia sp. Biotechnol Lett 30:1759–1764PubMedCrossRefGoogle Scholar
  66. Li J, Feng J, Li Q, Ma C, Yu B, Gao C, Wu G, Xu P (2009) Both FMNH2 and FADH2 can be utilized by the dibenzothiophene monooxygenase from a desulfurizing bacterium Mycobacterium goodii X7B. Bioresour Technol 100:2594–2599PubMedCrossRefGoogle Scholar
  67. Li Q, Feng J, Gao C, Li F, Yu C, Meng L, Zhang Z, Ma C, Gu L, Wu G, Xu P (2012) Purification and characterization of a flavin reductase from the biodesulfurizing bacterium Mycobacterium goodii X7B. Process Biochem 47:1144–1149CrossRefGoogle Scholar
  68. Liu S, Zhang C, Su T, Wei T, Zhu D, Wang K, Huang Y, Dong Y, Yin K, Xu S, Xu P, Gu L (2014) Crystal structure of DszC from Rhodococcus sp. XP at 1.79 Å. Proteins 82:1708–1720PubMedCrossRefGoogle Scholar
  69. Ma T, Li G, Li J, Liang F, Liu R (2006) Desulfurization of dibenzothiophene by Bacillus subtilis recombinants carrying dszABC and dszD genes. Biotechnol Lett 28:1095–1100PubMedCrossRefGoogle Scholar
  70. Martín AB, Alcón A, Santos VE, García-Ochoa F (2004) Production of a biocatalyst of Pseudomonas putida CECT5279 for dibenzothiophene (DBT) biodesulfurization for different media compositions. Energy Fuel 18:851–857CrossRefGoogle Scholar
  71. Martín AB, Alcón A, Santos VE, García-Ochoa F (2005) Production of a biocatalyst of Pseudomonas putida CECT5279 for DBT biodesulfurization: influence of the operational conditions. Energy Fuel 19:775–782CrossRefGoogle Scholar
  72. Martínez I, Santos VE, Alcón A, García-Ochoa F (2015) Enhancement of the biodesulfurization capacity of Pseudomonas putida CECT5279 by co-substrate addition. Process Biochem 50:119–124CrossRefGoogle Scholar
  73. Martínez I, Mohamed ME, Rozas D, García JL, Díaz E (2016) Engineering synthetic bacterial consortia for enhanced desulfurization and revalorization of oil sulfur compounds. Metab Eng 35:46–54PubMedCrossRefGoogle Scholar
  74. Mohebali G, Ball AS (2016) Biodesulfurization of diesel fuels – past, present and future perspectives. Int Biodeterior Biodegrad 110:163–180CrossRefGoogle Scholar
  75. Monticello DJ (2000) Biodesulfurization and the upgrading of petroleum distillates. Curr Opin Biotechnol 11:540–546PubMedCrossRefGoogle Scholar
  76. Noda K, Watanabe K, Maruhashi K (2002) Cloning of a rhodococcal promoter using a transposon for dibenzothiophene desulfurization. Biotechnol Lett 24:1875–1882CrossRefGoogle Scholar
  77. Noda K, Watanabe K, Maruhashi K (2003) Recombinant Pseudomonas putida carrying both the dsz and hcu genes can desulfurize dibenzothiophene in n-tetradecane. Biotechnol Lett 25:1147–1150PubMedCrossRefGoogle Scholar
  78. Nomura N, Takada M, Okada H, Shinohara Y, Nakajima-Kambe T, Nakahara T, Uchiyama H (2005) Identification and functional analysis of genes required for desulfurization of alkyl dibenzothiophenes of Mycobacterium sp. G3. J Biosci Bioeng 100:398–402PubMedCrossRefGoogle Scholar
  79. Nuhu AA (2013) Bio-catalytic desulfurization of fossil fuels: a mini review. Rev Environ Sci Biotechnol 12:9–23CrossRefGoogle Scholar
  80. Ohshiro T, Izumi Y (1999) Microbial desulfurization of organic sulfur compounds in petroleum. Biosci Biotechnol Biochem 63:1–9PubMedCrossRefGoogle Scholar
  81. Ohshiro T, Ishii Y, Matsubara T, Ueda K, Izumi Y, Kino K, Kirimura K (2005) Dibenzothiophene desulfurizing enzymes from moderately thermophilic bacterium Bacillus subtilis WU-S2B: purification, characterization and overexpression. J Biosci Bioeng 100:266–273PubMedCrossRefGoogle Scholar
  82. Ohshiro T, Ohkita R, Takikawa T, Manabe M, Lee WC, Tanokura M, Izumi Y (2007) Improvement of 2′-hydroxybiphenyl-2-sulfinate desulfinase, an enzyme involved in the dibenzothiophene desulfurization pathway, from Rhodococcus erythropolis KA2-5-1 by site-directed mutagenesis. Biosci Biotechnol Biochem 71:2815–2821PubMedCrossRefGoogle Scholar
  83. Pan J, Wu F, Wang J, Yu L, Hassanzadeh K, Stark BC, Kilbane JJ (2013) Enhancement of desulfurization activity by enzymes of the Rhodococcus dsz operon through coexpression of a high sulfur peptide and directed evolution. Fuel 112:385–390CrossRefGoogle Scholar
  84. Piddington CS, Kovacevich BR, Rambosek J (1995) Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8. Appl Environ Microbiol 61:468–475PubMedPubMedCentralGoogle Scholar
  85. Pokorna D, Zabranska J (2015) Sulfur-oxidizing bacteria in environmental technology. Biotechnol Adv 33:1246–1259PubMedCrossRefGoogle Scholar
  86. Raheb J, Hajipour MJ (2011) The stable rhamnolipid biosurfactant production in genetically engineered Pseudomonas strain reduced energy consumption in biodesulfurization. Energy Sources A 33:2113–2121CrossRefGoogle Scholar
  87. Reichmuth DS, Hittle JL, Blanch HW, Keasling JD (2000) Biodesulfurization of dibenzothiophene in Escherichia coli is enhanced by expression of a Vibrio harveyi oxidoreductase gene. Biotechnol Bioeng 67:72–79PubMedCrossRefGoogle Scholar
  88. Reichmuth DS, Blanch HW, Keasling JD (2004) Dibenzothiophene biodesulfurization pathway improvement using diagnostic GFP fusions. Biotechnol Bioeng 88:94–99PubMedCrossRefGoogle Scholar
  89. Schreinier BP, Stevens SE Jr, Sing T (1988) Oxidation of thianthrene by the ligninase of Phanerochaete chysosporium. Appl Environ Microbiol 54:1858–1860Google Scholar
  90. Shavandi M, Sadeghizadeh M, Zomorodipour A, Khajeh K (2009) Biodesulfurization of dibenzothiophene by recombinant Gordonia alkanivorans RIPI90A. Bioresour Technol 100:475–479PubMedCrossRefGoogle Scholar
  91. Shavandi M, Sadeghizadeh M, Khajeh K, Mohebali G, Zomorodipour A (2010) Genomic structure and promoter analysis of the dsz operon for dibenzothiophene biodesulfurization from Gordonia alkanivorans RIPI90A. Appl Microbiol Biotechnol 87:1455–1461PubMedCrossRefGoogle Scholar
  92. Soleimani M, Bassi A, Margaritis A (2007) Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnol Adv 25:570–596PubMedCrossRefGoogle Scholar
  93. Sousa SF, Sousa JFM, Barbosa ACC, Ferreira CE, Neves RPP, Rubeiro AJM, Fernandes PA, Ramos MJ (2016) Improving the biodesulfurization of crude oil and derivatives: a QM/MM investigation of the catalytic mechanism of NADH-FMN oxidoreductase (DszD). J Phys Chem 120:5300–5306CrossRefGoogle Scholar
  94. Takahashi S, Furuya T, Ishii Y, Kino K, Kirimura K (2009) Characterization of a flavin reductase from a thermophilic dibenzothiophene-desulfurizing bacterium, Bacillus subtilis WU-S2B. J Biosci Bioeng 107:38–41PubMedCrossRefGoogle Scholar
  95. Tanaka Y, Yoshikawa O, Maruhashi K, Kurane R (2002) The cbs mutant strain of Rhodococcus erythropolis KA2-5-1 expresses high levels of Dsz enzymes in the presence of sulfate. Arch Microbiol 178:351–357PubMedCrossRefGoogle Scholar
  96. Tao F, Yu B, Xu P, Ma CQ (2006) Biodesulfurization in biphasic systems containing organic solvents. Appl Environ Microbiol 72:4604–4609PubMedPubMedCentralCrossRefGoogle Scholar
  97. Tao F, Zhao P, Li Q, Su F, Yu B, Ma C, Tang H, Tai C, Wu G, Xu P (2011a) Genome sequence of Rhodococcus erythropolis XP, a biodesulfurizing bacterium with industrial potential. J Bacteriol 193:6422–6423PubMedPubMedCentralCrossRefGoogle Scholar
  98. Tao F, Tang H, Gai Z, Su F, Wang X, He X, Xu P (2011b) Genome sequence of Pseudomonas putida Idaho, a unique organic-solvent-tolerant bacterium. J Bacteriol 193:7011–7012PubMedPubMedCentralCrossRefGoogle Scholar
  99. Torktaz I, Etemadifar Z, Derikvand P (2012) Comparative modeling of DszC, an enzyme in biodesulfurization, and performing in silico point mutations for increasing tendency to oil. Bioinformation 8:246–250PubMedPubMedCentralCrossRefGoogle Scholar
  100. van Afferden M, Schacht S, Klein J, Trüper HG (1990) Degradation of dibenzothiophene by Brevibacterium sp. DO. Arch Microbiol 153:324–328CrossRefGoogle Scholar
  101. Wang Z, Wang D, Li Q, Li W, Tang H, Xing J (2011) Enhanced biodesulfurization by expression of dibenzothiophene uptake genes in Rhodococcus erythropolis. World J Microbiol Biotechnol 27:1965–1970CrossRefGoogle Scholar
  102. Wang W, Ma T, Lian K, Zhang Y, Tian H, Ji K, Li G (2013) Genetic analysis of benzothiophene biodesulfurization of Gordonia terrae strain C-6. PLoS One 8:e84386PubMedPubMedCentralCrossRefGoogle Scholar
  103. Wang J, Davaadelger B, Salazar JK, Butler RR, Pombert JF (2015) Isolation and characterization of an interactive culture of two Paenibacillus species with moderately thermophilic desulfurization ability. Biotechnol Lett 37:2201–2211PubMedCrossRefGoogle Scholar
  104. Watanabe K, Noda K, Maruhashi K (2003) Enhanced desulfurization in a transposon-mutant strain of Rhodococcus erythropolis. Biotechnol Lett 25:1299–1304PubMedCrossRefGoogle Scholar
  105. Xiong X, Xing J, Li X, Bai X, Li W, Li Y, Liu H (2007) Enhancement of biodesulfurization in two-liquid systems by heterogeneous expression of Vitreoscilla hemoglobin. Appl Environ Microbiol 73:2394–2397PubMedPubMedCentralCrossRefGoogle Scholar
  106. Xu P, Yu B, Li F, Cai XF, Ma CQ (2006) Microbial degradation of sulfur, nitrogen and oxygen heterocycles. Trends Microbiol 14:398–405PubMedCrossRefGoogle Scholar
  107. Yu B, Ma C, Zhou W, Zhu S, Wang Y, Qu J, Li F, Xu P (2006) Simultaneous biodetoxification of S, N, and O pollutants by engineering of a carbazole-degrading gene cassette in a recombinant biocatalyst. Appl Environ Microbiol 72:7373–7376PubMedPubMedCentralCrossRefGoogle Scholar
  108. Zhang L, Duan X, Zhou D, Dong Z, Ji K, Meng W, Li G, Li X, Yang H, Ma T, Rao Z (2014) Structural insights into the stabilization of active, tetrameric DszC by its C-terminus. Proteins 82:2733–2743PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Environmental BiologyCentro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas (CSIC)MadridSpain

Personalised recommendations