Application of Microorganisms to the Processing and Upgrading of Crude Oil and Fractions

  • M. Ayala
  • R. Vazquez-Duhalt
  • M. Morales
  • S. Le Borgne
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Biotechnology has been successfully applied at the industrial level in the medical, fine chemical, agricultural, and food sectors. Several applications of biotechnology in the oil and energy industry in the future can also be foreseen. The production of biofuels in large volumes is now a reality, although there are some concerns about the use of land, water, and crops to produce fuels. In the oil industry, biotechnology has found its place in bioremediation and microbial enhanced oil recovery (MEOR). There are other opportunities in the processing (biorefining) and upgrading (bio-upgrading) of problematic oil fractions and heavy crude oils. In the context of increasing energy demand, conventional oil depletion, climate change, and increased environmental regulations on atmospheric emissions, biotechnologies such as biodesulfurization, biodenitrogenation, and aromatic ring opening (biodearomatization) and upgrading of heavy oils (degradation of asphaltenes and removal of metals) recover interest. In this chapter we revise the status of current regulations regarding fuel properties that have repercussions on its environmental impact, such as sulfur and nitrogen content, cetane number, and aromatic content, mainly in the EU and USA. We describe the cumulative and highlight the recent scientific and technological advances of these biotechnologies; their advantages and limitations are also discussed. On this basis, the possibility of integration in oil production plants and future oil refineries and biorefineries for the production of oil, fuels, and chemicals is analyzed.

References

  1. Ahlbrandt TS (2006) Global petroleum reserves, resources and forecasts. In: Mabro R (ed) Oil in the 21st century. Issues, challenges and opportunities. Oxford University Press, OxfordGoogle Scholar
  2. Akhtar N, Ghauri MA, Akhtar K (2016) Dibenzothiophene desulfurization capability and evolutionary divergence of newly isolated bacteria. Arch Microbiol 198:509–519PubMedCrossRefGoogle Scholar
  3. Alazard-Toux N (2011) Heavy crude oils in the perspective of world oil demand. In: Huc A-Y (ed) Heavy crude oils: from geology to upgrading. IFP Energies nouvelles, ParisGoogle Scholar
  4. Ali HR, Ismail DA, El-Gendy NS (2014) The biotreatment of oil-polluted seawater by biosurfactant producer halotolerant Pseudomonas aeruginosa Asph2. Energy Sources A 36:1429–1436CrossRefGoogle Scholar
  5. Alves L, Paixão SM (2014) Enhancement of dibenzothiophene desulfurization by Gordonia alkanivorans strain 1B using sugar beet molasses as alternative carbon source. Appl Biochem Biotechnol 172:3297–3305PubMedCrossRefGoogle Scholar
  6. Alves L, Marques S, Matos J, Tenreiro R, Gírio FM (2008) Dibenzothiophene desulfurization by Gordonia alkanivorans strain 1B using recycled paper sludge hydrolyzate. Chemosphere 70:967–973PubMedCrossRefGoogle Scholar
  7. Alves L, Paixão SM, Pacheco R, Ferreira AF, Silva CM (2015) Biodesulphurization of fossil fuels: energy, emissions and cost analysis. RSC Adv 5:34047–34057CrossRefGoogle Scholar
  8. Ancheyta J (2016) Deactivation of heavy oil hydroprocessing catalysts: fundamentals and modeling. Wiley, HobokenCrossRefGoogle Scholar
  9. Arensdorf JJ, Loomis AK, DiGrazia PM, Monticello DJ, Pienkos PT (2002) Chemostat approach for the directed evolution of biodesulfurization gain-of-function mutants. Appl Environ Microbiol 68:691–698PubMedPubMedCentralCrossRefGoogle Scholar
  10. Atlas RM, Aislabie J (1992) Process for biotechnological upgrading of shale oil. US Patent No. 5,143,827Google Scholar
  11. Ayala M, Le Borgne S (2010) Microorganisms utilizing sulfur-containing hydrocarbons. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, BerlinGoogle Scholar
  12. Ayala M, Tinoco R, Hernandez V, Bremauntz P, Vazquez-Duhalt R (1998) Biocatalytic oxidation of fuel as an alternative to biodesulfurization. Fuel Process Technol 57:101–111CrossRefGoogle Scholar
  13. Ayala M, Robledo NR, Lopez-Munguia A, Vazquez-Duhalt R (2000) Substrate specificity and ionization potential in chloroperoxidase-catalyzed oxidation of diesel fuel. Environ Sci Technol 34:2804–2809CrossRefGoogle Scholar
  14. Ayala M, Verdin J, Vazquez-Duhalt R (2007) The prospects for peroxidase-based biorefining of petroleum fuels. Biocatal Biotrans 25:114–129CrossRefGoogle Scholar
  15. Bachmann RT, Johnson AC, Edyvean RGJ (2014) Biotechnology in the petroleum industry: an overview. Int Biodeterior Biodegrad 86:225–237CrossRefGoogle Scholar
  16. Bej SK, Dalai AK, Adjaye J (2001) Comparison of hydrogenation of basic and nonbasic nitrogen compounds present in oil sands derived heavy gas oil. Energy Fuel 15:377–383CrossRefGoogle Scholar
  17. Bertrand JC, Rambeloarisoa E, Rontani JF, Giusti G, Mattei G (1983) Microbial degradation of crude oil in sea water in continuous culture. Biotechnol Lett 5:567–572CrossRefGoogle Scholar
  18. BGR (2015) Energy study 2015. Reserves, resources and availability of energy resources. Federal Institute of Geoscience and Natural Resources, HannoverGoogle Scholar
  19. Bhatia S, Sharma DK (2006) Emerging role of biorefining of heavier crude oils and integration of biorefining with petroleum refineries in the future. Petrol Sci Technol 24:1125–1159CrossRefGoogle Scholar
  20. Bhatia S, Sharma DK (2010) Mining of genomic databases to identify novel biodesulfurizing microorganisms. J Ind Microbiol Biotechnol 37:425–429PubMedCrossRefGoogle Scholar
  21. Biernat K, Grzelak PL (2015) Biorefinery systems as an element of sustainable development. In: Biernat K (ed) Biofuels – status and perspective. Croatia, InTechCrossRefGoogle Scholar
  22. Boltes K, Alonso del Aguila R, García-Calvo E (2013) Effect of mass transfer on biodesulfurization kinetics of alkylated forms of dibenzothiophene by Pseudomonas putida CECT5279. J Chem Technol Biotechnol 88:422–431CrossRefGoogle Scholar
  23. Bonde SE, Nunn D (2003b) Technical progress report for the biocatalytic desulfurization project. DOE Award Number: DE-FC26-02NT15340 Report Start Date: 9/19/2002 – Report End Date: 12/19/2002Google Scholar
  24. Bonde SE, Nunn D (2003a) Technical progress report for the biocatalytic desulfurization project. DOE Award Number: DE-FC26-02NT15340. Report Start Date: 03/20/2003 – Report End Date: 06/19/2003Google Scholar
  25. Boniek D, Figueiredo D, dos AFB S, de Resende Stoianoff MA (2015) Biodesulfurization: a mini review about the immediate search for the future technology. Clean Technol Environ Policy 17:29CrossRefGoogle Scholar
  26. Bordoloi NK, Rai SK, Chaudhuri MK, Mukherjee AK (2014) Deep-desulfurization of dibenzothiophene and its derivatives present in diesel oil by a newly isolated bacterium Achromobacter sp. to reduce the environmental pollution from fossil fuel combustion. Fuel Process Technol 119:236–244CrossRefGoogle Scholar
  27. Bublitz F, Guenther T, Fritsche W (1994) Screening of fungi for the biological modification of hard coal and coal derivatives. Fuel Process Technol 40:347–354CrossRefGoogle Scholar
  28. Castorena G, Suárez C, Valdez I, Amador G, Fernández L, Le Borgne S (2002) Sulfur-selective desulfurization of dibenzothiophene and diesel oil by newly isolated Rhodococcus sp. strains. FEMS Microbiol Lett 215:157–161PubMedCrossRefGoogle Scholar
  29. Castorena G, Mugica V, Le Borgne S, Acuña ME, Bustos-Jaimes I, Aburto J (2006) Carbazole biodegradation in gas oil/water biphasic media by a new isolated bacterium Burkholderia sp. Strain IMP5GC. J Appl Microbiol 100:739–745PubMedCrossRefGoogle Scholar
  30. Cerniglia CE, Sutherland JB (2010) Degradation of polycyclic aromatic hydrocarbons by fungi. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 2079–2110CrossRefGoogle Scholar
  31. Chen H, Zhang WJ, Chen JM, Cai YB, Li W (2008) Desulfurization of various organic sulfur compounds and the mixture of DBT+4,6-DMDBT by Mycobacterium sp. ZD-19. Bioresour Technol 99:3630–3634PubMedCrossRefGoogle Scholar
  32. Choi KH, Korai Y, Mochida I, Ryub JW, Min W (2004) Impact of removal extent of nitrogen species in gas oil on its HDS performance: an efficient approach to its ultra deep desulfurization. Appl Catal B-Environ 50:9–16CrossRefGoogle Scholar
  33. Chong P, Xuejing Y, Xianchen F, Xinlu H, Zhenmin C, Ronghui Z, Rong G (2015) Development of light cycle oil (LCO) hydrocracking technology over a commercial W-Ni based catalyst. China Pet Process Technol 17(4):30–36Google Scholar
  34. Choudhary TV, Parrott S, Johnson B (2008) Unraveling heavy oil desulfurization chemistry: targeting clean fuels. Environ Sci Technol 42:1944–1947PubMedCrossRefGoogle Scholar
  35. Coco WM, Levinson WE, Crist MJ, Hektor HJ, Darzins A, Pienkos PK, Squires CH, Monticello DJ (2001) DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat Biotechnol 19:354–359PubMedCrossRefGoogle Scholar
  36. Conesa A, Punt PJ, van den Hondel CAMJJ (2002) Fungal peroxidases: molecular aspects and applications. J Biotechnol 93:143–115PubMedCrossRefGoogle Scholar
  37. da Silva M, Esposito E, Moody JD, Canhos VP, Cerniglia CE (2004) Metabolism of aromatic hydrocarbons by the filamentous fungus Cyclothyrium sp. Chemosphere 57:943–952PubMedCrossRefGoogle Scholar
  38. Davies JJ, Evans WC (1964) Oxidative metabolism of naphthalene by soil pseudomonads. The ring-fission mechanism. Biochem J 9:251–261CrossRefGoogle Scholar
  39. de Weert S, Lokman BC (2010) Heterologous expression of peroxidases. In: Torres E, Ayala M (eds) Biocatalysis based on Heme peroxidases. Springer, BerlinGoogle Scholar
  40. Demirbas A, Bafail A, Nizami A-S (2016) Heavy oil upgrading: unlocking the future fuel supply. Pet Sci Technol 34:303–308CrossRefGoogle Scholar
  41. Dulac J (2012) Global transport outlook to 2050. Targets and scenarios for a low-carbon transport sector. OECD/IEA, ParisGoogle Scholar
  42. Éigenson AS, Ivchenko EG (1977) Distribution of sulfur and nitrogen in fractions from crude oil and residues. Chem Technol Fuels Oils 13:542–544CrossRefGoogle Scholar
  43. El-Gendy NS, Speight JG (2016) Handbook of refinery desulfurization. CRC Press, Taylor & Francis, Boca RatonGoogle Scholar
  44. Ellis LBM, Roe D, Wackett LP (2006) The University of Minnesota biocatalysis biodegradation database: the first decade. Nucl Acids Res 34:D517–D521PubMedCrossRefGoogle Scholar
  45. EPA (2003) The effect of cetane number increase due to additives on NOx emissions from heavy-duty highway engines. Final technical report.https://www3.epa.gov/otaq/models/analysis/r03002.pdf. Last accessed: 1 Oct 2016
  46. EPA (2007) Control of hazardous air pollutants from mobile sources, final rule. Fed Regist 72:8428–8570Google Scholar
  47. EPA (2008) Control of hazardous air pollutants from mobile sources: early credit technology requirement revision. Fed Regist 73:61358–61363Google Scholar
  48. EPA (2014) Control of air pollution from motor vehicles: tier 3 motor vehicle emission and fuel standards; final rule. Fed Regist 79:23413–23886 www.gpo.gov/fdsys/pkg/FR-2014-04-28/pdf/2014-06954.pdf Google Scholar
  49. ExxonMobil (2016) Global transportation demand by fuel. In The outlook for energy, a view to 2040, outlook for energy charts. http://corporate.exxonmobil.com/en/energy/energy-outlook/charts-2016/global-transportation-demand-by-fuel?parentId=d7323290-c766-440a-8e68-094d67a30841
  50. Fadhil AMA, Al-Jailawi MH, Mahdi MS (2014) Isolation and characterization of a new thermophilic, carbazole degrading bacterium (Anoxybacillus rupiensis) Strain Ir3 (JQ912241). Int J Adv Res 2:795–805Google Scholar
  51. Fedorak PM, Semple KM, Vazquez-Duhalt R, Westlake DWS (1993) Chloroperoxidase mediated modifications of petroporphyrins and asphaltenes. Enzym Microb Technol 15:429–437CrossRefGoogle Scholar
  52. Foght JM (2004) Whole-cell bioprocessing of aromatic compounds in crude oil and fuels. In: Vazquez-Duhalt R, Quintero-Ramirez R (eds) Studies in surface science and catalysis: petroleum biotechnology: developments and perspectives, vol 151. Elsevier, Amsterdam, pp 145–175CrossRefGoogle Scholar
  53. Folsom BR, Schieche DR, DiGrazia PM, Werner J, Palmer S (1999) Microbial desulfurization of alkylated dibenzothiophenes from a hydrodesulfurized middle distillate by Rhodococcus erythropolis I-19. Appl Environ Microbiol 65:4967–4972PubMedPubMedCentralGoogle Scholar
  54. Gai Z, Yu B, Li L, Wang Y, Ma C, Feng J, Deng Z, Xu P (2007) Cometabolic degradation of dibenzofuran and dibenzothiophene by a newly isolated carbazole-degrading Sphingomonas sp. strain. Appl Environ Microbiol 73:2832–2838PubMedPubMedCentralCrossRefGoogle Scholar
  55. Garcia-Arellano H, Buenrostro-Gonzalez E, Vazquez-Duhalt R (2004) Biocatalytic transformation of petroporphyrins by chemical modified cytochrome c. Biotechnol Bioeng 85:790–798PubMedCrossRefGoogle Scholar
  56. Gray KA, Pogrebinsky OS, Mrachko GT, Xi L, Monticello DJ, Squires CH (1996) Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat Biotechnol 14:1705–1709PubMedCrossRefGoogle Scholar
  57. Groenzin H, Mullins OC (2000) Molecular size and structures of asphaltenes from various sources. Energy Fuel 14:677–684CrossRefGoogle Scholar
  58. Grossman MJ, Lee MK, Prince RC, Garrett KK, George GN, Pickering IJ (1999) Microbial desulfurization of a crude oil middle-distillate fraction: analysis of the extent of sulfur removal and the effect of removal on remaining sulfur. Appl Environ Microbiol 65:181–188PubMedPubMedCentralGoogle Scholar
  59. Grossman MJ, Lee MK, Prince RC, Minak-Bernero V, George GN, Pickering IJ (2001) Deep desulfurization of extensively hydrodesulfurized middle distillate oil by Rhodococcus sp. strain ECRD-1. Appl Environ Microbiol 67:1949–1952PubMedPubMedCentralCrossRefGoogle Scholar
  60. Guobin S, Huaiying Z, Weiquan C, Jianmin X, Huizhou L (2005) Improvement of biodesulfurization rate by assembling nanosorbents on the surfaces of microbial cells. Biophys J 89:L58–L60PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hernández-López EL, Ayala M, Vazquez-Duhalt R (2015) Microbial and enzymatic biotransformations of asphaltenes. Pet Sci Technol 33:1019–1027CrossRefGoogle Scholar
  62. Hernandez-Lopez EL, Ayala M, Vazquez-Duhalt R (2015) Microbial and enzymatic biotransformations of asphaltenes. Pet Sci Technol 33:1017–1029CrossRefGoogle Scholar
  63. Hernández-López EL, Ramírez-Puebla ST, Vazquez-Duhalt R (2015) Microarray analysis of Neosartorya fischeri using different carbon sources, petroleum asphaltenes and glucose-peptone. Genomic Data 5:235–237CrossRefGoogle Scholar
  64. Hernández-López EL, Perezgasga L, Huerta-Saquero A, Mouriño-Pérez R, Vazquez-Duhalt R (2016) Biotransformation of petroleum asphaltenes and high molecular weight polycyclic aromatic hydrocarbons by Neosartorya fisheri. Environ Sci Pollut Res 23:10773–10784CrossRefGoogle Scholar
  65. Hirasawa K, Ishii Y, Kobayashi M, Koizumi K, Maruhashi K (2001) Improvement of desulfurization activity in Rhodococcus erythropolis KA2-5-1 by genetic engineering. Biosci Biotechnol Biochem 65:239–246PubMedCrossRefGoogle Scholar
  66. Hofrichter M, Bublitz F, Fritsche W (1997) Fungal attack on coal: I. Modification of hard coal by fungi. Fuel Proc Technol 52:43–53CrossRefGoogle Scholar
  67. International Energy Agency (2015) Key world energy statistics. OECD/IEA, ParisGoogle Scholar
  68. International Energy Agency (2016) Energy and air pollution. World Energy Outlook Special Report. OECD/IEAGoogle Scholar
  69. Ismail W, El-Sayed WS, Abdul Raheem AS, Mohamed ME, El Nayal AM (2016) Biocatalytic desulfurization capabilities of a mixed culture during non-destructive utilization of recalcitrant organosulfur compounds. Front Microbiol 7:266PubMedPubMedCentralGoogle Scholar
  70. Jadeja NB, More RP, Purohit HJ, Kapley A (2014) Metagenomic analysis of oxygenases from activated sludge. Biores Technol 165:250–256CrossRefGoogle Scholar
  71. Jahromi H, Fazaelipoor MH, Ayatollahi S, Niazi A (2014) Asphaltenes biodegradation under shaking and static conditions. Fuel 117:230–225CrossRefGoogle Scholar
  72. Kabe T, Akamatsu K, Ishihara A, Otsuki S, Godo M, Zhang Q, Qian W (1997) Deep hydrodesulfurization of light gas oil. 1. Kinetics and mechanisms of dibenzothiophene hydrodesulfurization. Ind Eng Chem Res 36:5146–5152CrossRefGoogle Scholar
  73. Kayser KJ, Kilbane JJ II (2004) Method for metabolizing carbazole in petroleum US Patent No. 6,943,006Google Scholar
  74. Kilbane JJ (1992) Mutant microorganisms useful for cleavage of organic C-S bonds.US Patent No. 5,104,801Google Scholar
  75. Kilbane JJ (2006) Microbial biocatalyst developments to upgrade fossil fuels. Curr Opin Biotechnol 17:305–314PubMedCrossRefGoogle Scholar
  76. Kilbane JJ II (2016) Future applications of biotechnology to the energy industry. Front Microbiol 7:86PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kilbane JJ II, Stark B (2016) Biodesulfurization: a model system for microbial physiology research. World J Microbiol Biotechnol 32:137PubMedCrossRefGoogle Scholar
  78. Kilbane JJ II, Ranganathan R, Cleveland L (2000) Selective removal of nitrogen from quinoline and petroleum by Pseudomonas ayucida IGTN9M. Appl Environ Microbiol 66:688–693PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kilbane JJ II, Ribeiro, CMS, Linhares MONM (2001) Pseudomonas ayucida useful for cleavage of organic C-N bonds. US Patent No. 6,221,651Google Scholar
  80. Kilbane JJ II, Ribeiro, CMS, Linhares MONM (2003) Bacterial cleavage of only organic C-N bonds of carbonaceous materials to reduce nitrogen content. US Patent No. 6,541,240Google Scholar
  81. Kim JS, Crowley DE (2007) Microbial diversity in natural asphalts of the Rancho La Brea tar pits. Appl Environ Microbiol 73:4579–4591PubMedPubMedCentralCrossRefGoogle Scholar
  82. Konishi J, Ishii Y, Onaka T, Okumura K, Suzuki M (1997) Thermophilic carbon-sulfur-bond-targeted biodesulfurization. Appl Environ Microbiol 63:3164–3169PubMedPubMedCentralGoogle Scholar
  83. Kotlar HK, Brakstad OG, Markussen S, Winnberg A (2004) Use of petroleum biotechnology throughout the value chain of an oil company: an integrated approach. In: Vazquez-Duhalt R, Quintero-Ramirez R (eds) Studies in surface science and catalysis: petroleum biotechnology: developments and perspectives, vol 151. Elsevier, Amsterdam, pp 1–27CrossRefGoogle Scholar
  84. Lacotte DJ, Mille G, Acquaviva M, Bertrand JC (1996) Arabian light 150 asphaltene biotransformation with n-alkanes as co-substrate. Chemosphere 32:1755–1761CrossRefGoogle Scholar
  85. Laredo GC, Leyva S, Alvarez R, Mares MT, Castillo JJ, Cano JL (2002) Nitrogen compounds characterization in atmospheric gasoil and light cycle oil from a blend of Mexican crudes. Fuel 81:1341–1350CrossRefGoogle Scholar
  86. Laredo GC, Altamirano E, De los Reyes JA (2003) Inhibitions effects of nitrogen compounds on the hydrodesulfurization of dibenzothiophene: part 2. Appl Catal A-Gen 243:207–214CrossRefGoogle Scholar
  87. Laredo G, Montesinos A, De los Reyes JA (2004) Inhibition effects observed between dibenzothiophene and carbazole during the hydrotreating process. Appl Catal A-Gen 265:171–183CrossRefGoogle Scholar
  88. Larentis AL, Sampaio HCC, Carneiro CC, Martins OB, Alves TML (2011) Evaluation of growth, carbazole biodegradation and anthranilic acid production by Pseudomonas stutzeri. Braz J Chem Eng 28:37–44CrossRefGoogle Scholar
  89. Larkin MJ, Kulakov LA, Allen CC (2005) Biodegradation and Rhodococcus – masters of catabolic versatility. Curr Opin Biotechnol 16:282–290PubMedCrossRefGoogle Scholar
  90. Lavania M, Cheema S, Sarma PM, Mandal AK, Lal B (2012) Biodegradation of asphalt by Garciaella petrolearia TERIG02 for viscosity reduction of heavy oil. Biodegradation 23:15–24PubMedCrossRefGoogle Scholar
  91. Leliveld RG, Eijsbouts SE (2008) How a 70-year-old catalytic refinery process is still ever dependent on innovation. Catal Today 130:183–190.Google Scholar
  92. Le Borgne S, Quintero R (2003) Biotechnological processes for the refining of petroleum. Fuel Process Technol 81:155–169CrossRefGoogle Scholar
  93. Li L, Xu P, Blankerspoor HD (2004) Degradation of carbazole in the presence of non-aqueous phase liquids by Pseudomonas sp. Biotechnol Lett 26:581–584PubMedCrossRefGoogle Scholar
  94. Li W, Xing J, Xiong X, Huang J, Liu H (2006) Feasibility study on the integration of adsorption/bioregeneration of π-complexation adsorbent for desulfurization. Ind Eng Chem Res 45:2845–2849CrossRefGoogle Scholar
  95. Li GQ, Ma T, Li SS, Li H, Liang FL, Liu RL (2007) Improvement of dibenzothiophene desulfurization activity by removing the gene overlap in the dsz operon. Biosci Biotechnol Biochem 71:849–854PubMedCrossRefGoogle Scholar
  96. Li GQ, Li SS, Zhang ML, Wang J, Zhu L, Liang FL, Liu RL, Ma T (2008a) Genetic rearrangement strategy for optimizing the dibenzothiophene biodesulfurization pathway in Rhodococcus erythropolis. Appl Environ Microbiol 74:971–976PubMedCrossRefGoogle Scholar
  97. Li W, Xing J, Li Y, Xiong X, Li X, Liu H (2008b) Desulfurization and bio-regeneration of adsorbents with magnetic P. delafieldii R-8 cells. Catal Commun 9:376–380CrossRefGoogle Scholar
  98. Li YG, Xing JM, Xiong XC, Li WL, Gao HS, Liu HZ (2008c) Improvement of biodesulfurization activity of alginate immobilized cells in biphasic systems. J Ind Microbiol Biotechnol 35:145–150PubMedCrossRefGoogle Scholar
  99. Li W, Tang H, Liu Q, Xing J, Li Q, Wang D, Yang M, Li X, Liu H (2009) Deep desulfurization of diesel by integrating adsorption and microbial method. Biochem Eng J 44:297–301CrossRefGoogle Scholar
  100. Li Y, Du X, Wu C, Liu X, Wang X, Xu P (2013) An efficient magnetically modified microbial cell biocomposite for carbazole biodegradation. Nanoscale Res Lett 8:522PubMedPubMedCentralCrossRefGoogle Scholar
  101. Maass D, Todescato D, Moritz DE, Oliveira D, de Souza AAU, Souza SMAG (2015) Desulfurization and denitrogenation of heavy gas oil by Rhodococcus erythropolis ATCC 4277. Bioprocess Biosyst Eng 38:1447–1453PubMedCrossRefGoogle Scholar
  102. Martínková L, Uhnáková B, Pátek M, Nesvera J, Kren V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177PubMedCrossRefGoogle Scholar
  103. Matsubara T, Ohshiro T, Nishina Y, Izumi Y (2001) Purification, characterization, and overexpression of flavin reductase involved in dibenzothiophene desulfurization by Rhodococcus erythropolis D-1. Appl Environ Microbiol 67:1179–1184PubMedPubMedCentralCrossRefGoogle Scholar
  104. Mogollon L, Rodriguez R, Larrota W, Ortiz C, Torres R (1998) Biocatalytic removal of nickel and vanadium from petroporphyrins and asphaltenes. Appl Biochem Biotechnol 70–72:765–777PubMedCrossRefGoogle Scholar
  105. Mohebali G, Ball AS (2016) Biodesulfurization of diesel fuels – past, present and future perspectives. Int Biodeterior Biodegrad 110:163–180CrossRefGoogle Scholar
  106. Monot F, Abbad-Andaloussi S, Warzywoda M (2002) Biological culture containing Rhodococcus erythropolis and/or Rhodococcus rhodnii and process for desulfurization of petroleum fraction. U.S. Patent No. 6,337,204Google Scholar
  107. Monticello DJ (2000) Biodesulfurization and the upgrading of petroleum distillates. Curr Opin Biotechnol 11:540–546PubMedCrossRefGoogle Scholar
  108. Monticello DJ, Finnerty WR (1985) Microbial desulfurization of fossil fuels. Annu Rev Microbiol 39:371–389PubMedCrossRefGoogle Scholar
  109. Morales M, Le Borgne S (2010) Microorganisms utilizing nitrogen-containing hydrocarbons. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, BerlinGoogle Scholar
  110. Morales M, Le Borgne S (2014) Protocols for the isolation and preliminary characterization of bacteria for biodesulfurization and biodenitrogenation of petroleum-derived fuels. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and lipid microbiology protocols. Springer, BerlinGoogle Scholar
  111. Mushrush GW, Beal EJ, Hardy DR, Hughes JM (1999) Nitrogen compound distribution in middle distillate fuels derived from petroleum, oil shale, and tar sand sources. Fuel Process Technol 61:197–210CrossRefGoogle Scholar
  112. Ning D, Wang H, Ding C, Lu H (2010) Novel evidence of cytochrome P450-catalyzed oxidation of phenanthrene in Phanerochaete chrysosporium under ligninolytic conditions. Biodegradation 21:889–901PubMedCrossRefGoogle Scholar
  113. Ohshiro T, Ohkita R, Takikawa T, Manabe M, Lee WC, Tanokura M, Izumi Y (2007) Improvement of 2′-hydroxybiphenyl-2-sulfinate desulfinase, an enzyme involved in the dibenzothiophene desulfurization pathway, from Rhodococcus erythropolis KA2-5-1 by site-directed mutagenesis. Biosci Biotechnol Biochem 71:2815–2821PubMedCrossRefGoogle Scholar
  114. Organization of the Petroleum Exporting Countries (2015) 2015 World Oil Outlook. OPECGoogle Scholar
  115. ORNL (2000) An emissions mission: solving the sulfur problem. Oak Ridge Natl Lab Rev 33:6–8Google Scholar
  116. Pan J, Wu F, Wang J, Xu L, Khayyat NH, Stark BC, Kilbane JJ II (2013) Enhancement of desulfurization activity by enzymes of the Rhodococcus dsz operon through coexpression of a high sulfur peptide and directed evolution. Fuel 112:385–390CrossRefGoogle Scholar
  117. Pendrys JP (1989) Biodegradation of asphalt cement-20 by aerobic bacteria. Appl Environ Microbiol 55:1357–1362PubMedPubMedCentralGoogle Scholar
  118. Phale PS, Basu A, Majhi PD, Deversyshetty J, Vamsee-Krishna C, Shrivastava R (2007) Metabolic diversity in bacterial degradation of aromatic compounds. OMICS 11:252–279PubMedCrossRefGoogle Scholar
  119. Pineda-Flores G, Boll-Argüello G, Lira-Galeana C, Mesta-Howard AM (2004) A microbial consortium isolated from a crude oil sample that uses asphaltenes as a carbon and energy source. Biodegradation 15:145–151PubMedCrossRefGoogle Scholar
  120. Quignard A (2011) Upgrading. In: Huc A-Y (ed) Heavy crude oils: from geology to upgrading. IFP Energies nouvelles, ParisGoogle Scholar
  121. Reichmuth DS, Hittle JL, Blanch HW, Keasling JD (2000) Biodesulfurization of dibenzothiophene in Escherichia coli is enhanced by expression of a Vibrio harveyi oxidoreductase gene. Biotechnol Bioeng 67:72–79PubMedCrossRefGoogle Scholar
  122. Reichmuth DS, Blanch HW, Keasling JD (2004) Dibenzothiophene biodesulfurization pathway improvement using diagnostic GFP fusions. Biotechnol Bioeng 88:94–99PubMedCrossRefGoogle Scholar
  123. Reynolds JG (1998) Metals and heteroatoms in heavy crude oils. In: Speight JG (ed) Petroleum chemistry and refining. Taylor & Francis, LondonGoogle Scholar
  124. Rhee SK, Chang JH, Chang YK, Chang HN (1998) Desulfurization of dibenzothiophene and diesel oils by a newly isolated Gordona strain, CYKS1. Appl Environ Microbiol 64:2327–2331PubMedPubMedCentralGoogle Scholar
  125. Rontani JF, Bosser-Joulak F, Rambeloarisoa E, Bertrand JC, Giusti G, Faure R (1985) Analytical study of Asyhart crude oil biodegradation. Chemosphere 14:1413–1422CrossRefGoogle Scholar
  126. Rossini S (2003) The impact of catalytic materials on fuel reformulation. Catal Today 77:467–484CrossRefGoogle Scholar
  127. Saniere A (2011) Definitions and specificities. In: Huc A-Y (ed) Heavy crude oils: from geology to upgrading. IFP Energies nouvelles, ParisGoogle Scholar
  128. Santos SCC, Alviano DS, Alviano CS, Pádula M, Leitao AC, Martins OB, Ribeiro CMS, Sassaki MYM, Matta CPS, Bevilaqua J, Sebastian GV, Seldin L (2006) Characterization of Gordonia sp strain F.5.25.8 capable of dibenzothiophene desulfurization and carbazole utilization. Appl Microbiol Biotechnol 71:355–362PubMedCrossRefGoogle Scholar
  129. Shan G, Xing J, Zhang H, Liu H (2005) Biodesulfurization of dibenzothiophene by microbial cells coated with magnetite nanoparticles. Appl Environ Microbiol 71:4497–4502PubMedPubMedCentralCrossRefGoogle Scholar
  130. Shin S, Sakanishi K, Mochida I (2000) Identification and reactivity of nitrogen molecular species in gas oils. Energy Fuel 14:539–544CrossRefGoogle Scholar
  131. Singh A, Singh B, Ward O (2012) Potential applications of bioprocess technology in petroleum industry. Biodegradation 23:865–880PubMedCrossRefGoogle Scholar
  132. Soleimani M, Bassi A, Margaritis A (2007) Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnol Adv 25:570–596PubMedCrossRefGoogle Scholar
  133. Sood N, Lal B (2008) Isolation and characterization of a potential paraffin-wax degrading thermophilic bacterial strain Geobacillus kaustophilus TERI NSM for application in oil wells with paraffin deposition problems. Chemosphere 70:1445–1451PubMedCrossRefGoogle Scholar
  134. Sousa SF, Sousa JF, Barbosa AC, Ferreira CE, Neves RP, Ribeiro AJ, Fernandes PA, Ramos MJ (2016) Improving the biodesulfurization of crude oil and derivatives: a QM/MM investigation of the catalytic mechanism of NADH-FMN oxidoreductase (DszD). J Phys Chem A 120:5300–5306PubMedCrossRefGoogle Scholar
  135. Speight JG (2011) The refinery of the future. Elsevier, OxfordCrossRefGoogle Scholar
  136. Speight JG (2014) The chemistry and technology of petroleum. CRC Press, Taylor & Francis, Boca RatonGoogle Scholar
  137. Stanislaus A, Marafi A, Rana MS (2010) Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catal Today 153:1–68CrossRefGoogle Scholar
  138. Sugaya K, Nakayama O, Hinata N, Kamekura K, Ito A, Yamagiwa K, Ohkawa A (2001) Biodegradation of quinoline in crude oil. J Chem Technol Biotechnol 76:603–611CrossRefGoogle Scholar
  139. Swaty TE (2005) Global refining industry trends: the present and future. Hydrocarb Process 84:35–46Google Scholar
  140. Syed K, Doddapaneni H, Subramanian V, Lam YW, Yadav JS (2010) Genome-to-function characterization of novel fungal P450 monooxygenases oxidizing polycyclic aromatic hydrocarbons (PAHs). Biochem Biophys Res Commun 399:492–497PubMedPubMedCentralCrossRefGoogle Scholar
  141. Syed K, Porollo A, Lam YW, Grimmett PE, Yadava JS (2013) CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes. Appl Environ Microbiol 79:2692–2702PubMedPubMedCentralCrossRefGoogle Scholar
  142. Szymanska A, Lewandowski M, Sayag C, Djéga-Mariadassou G (2003) Kinetic study of the hydrodenitrogenation of carbazole over bulk molybdenum carbide. J Catal 218:24–31CrossRefGoogle Scholar
  143. Tanaka Y, Yoshikawa O, Maruhashi K, Kurane R (2002) The cbs mutant strain of Rhodococcus erythropolis KA2-5-1 expresses high levels of Dsz enzymes in the presence of sulfate. Arch Microbiol 178:351–357PubMedCrossRefGoogle Scholar
  144. Tang K, Hong X (2014) Application of bacterium HY9 strain for diesel oil denitrogenation. Petrol. Sci Technol 32:2466–2472Google Scholar
  145. Tao F, Yu B, Xu P, Ma CQ (2006) Biodesulfurization in biphasic systems containing organic solvents. Appl Environ Microbiol 72:4604–4609PubMedPubMedCentralCrossRefGoogle Scholar
  146. Tao F, Zhao P, Li Q, Su F, Yu B, Ma C, Tang H, Tai C, Wu G, Xu P (2011) Genome sequence of Rhodococcus erythropolis XP, a biodesulfurizing bacterium with industrial potential. J Bacteriol 193:6422–6423PubMedPubMedCentralCrossRefGoogle Scholar
  147. Tavassoli T, Mousavi SM, Shojaosadati SA, Salehizadeh H (2012) Asphaltene biodegradation using microorganisms isolated from oil samples. Fuel 93:142–148CrossRefGoogle Scholar
  148. The International Council on Clean Transportation (2016) A technical summary of Euro 6/VI vehicle emission standards. http://www.theicct.org/sites/default/files/publications/ICCT_Euro6-VI_briefing_jun2016.pdf
  149. Thouand G, Bauda P, Oudot J, Kirsh G, Sutton C, Vidalie JF (1999) Laboratory evaluation of crude oil biodegradation with commercial or natural microbial inocula. Can J Microbiol 45:106–115PubMedCrossRefGoogle Scholar
  150. Ufarté L, Laville E, Duquesne S, Potocki-Veronese G (2015) Metagenomics for the discovery of pollutant degrading enzymes. Biotechnol Adv 33:1845–1854PubMedCrossRefGoogle Scholar
  151. Uribe-Alvarez C, Ayala M, Perezgasga L, Naranjo L, Urbina H, Vazquez-Duhalt R (2011) First evidence of mineralization of petroleum asphaltenes by a strain of Neosartorya fischeri. Microb Biotechnol 4:663–672PubMedPubMedCentralCrossRefGoogle Scholar
  152. US Department of Transportation, Federal Highway Administration (2009) Web site: http://www.fhwa.dot.gov/environment/freightaq/appendixa.htm
  153. Wammer KH, Peters CA (2005) Polycyclic aromatic hydrocarbon biodegradation rates: a structure-based study. Environ Sci Technol 39:2571–2578PubMedCrossRefGoogle Scholar
  154. Wammer KH, Peters CA (2006) A molecular modeling analysis of polyaromatic hydrocarbon biodegradation by naphthalene dioxygenase. Environ Toxicol Chem 25:912–920PubMedCrossRefGoogle Scholar
  155. Wang Y, Chen Y, Zhou Q, Huang S, Ning K, Xu J, Kalin RM, Rolfe S, Huang WE (2012) A culture-independent approach to unravel uncultured bacteria and functional genes in a complex microbial community. PloS One 7:e47530PubMedPubMedCentralCrossRefGoogle Scholar
  156. Winkler JD, Kao KC (2014) Recent advances in the evolutionary engineering of industrial biocatalysts. Genomics 104:406–411PubMedCrossRefGoogle Scholar
  157. Wyndham RC, Costerton JW (1981) In vitro microbial degradation of bituminous hydrocarbons and in situ colonization of bitumen surfaces within the Athabasca oil sands deposit. Appl Environ Microbiol 41:791–800PubMedPubMedCentralGoogle Scholar
  158. Xiong X, Xing J, Li X, Bai X, Li W, Li Y, Liu H (2007) Enhancement of biodesulfurization in two-liquid systems by heterogeneous expression of Vitreoscilla hemoglobin. Appl Environ Microbiol 73:2394–2397PubMedPubMedCentralCrossRefGoogle Scholar
  159. Yanto DHY, Tachibana S (2013) Biodegradation of petroleum hydrocarbons by a newly isolated Pestalotiopsis sp NG007. Int Biodet Biodegrad 85:438–450Google Scholar
  160. Yanto DHY, Tachibana S (2014) Potential of fungal co-culturing for accelerated biodegradation of petroleum hydrocarbons in soil. J Hazard Mater 278:454–463PubMedCrossRefGoogle Scholar
  161. Yu L, Meyer T, Folsom B (1998) Oil/water/biocatalyst three-phase separation process. US Patent No 5,772,901Google Scholar
  162. Yu B, Ma C, Zhou W, Zhu S, Wang Y, Qu J, Li F, Xu P (2006a) Simultaneous biodetoxification of S, N, and O pollutants by engineering of a carbazole-degrading gene cassette in a recombinant biocatalyst. Appl Environ Microbiol 72:7373–7376PubMedPubMedCentralCrossRefGoogle Scholar
  163. Yu B, Xu P, Shi Q, Ma C (2006b) Deep desulfurization of diesel oil and crude oils by a newly isolated Rhodococcus erythropolis strain. Appl Environ Microbiol 72:54–58PubMedPubMedCentralCrossRefGoogle Scholar
  164. Yu B, Tao F, Li F, Hou J, Tang H, Ma C, Xu P (2015) Complete genome sequence of Mycobacterium goodii X7B, a facultative thermophilic biodesulfurizing bacterium with industrial potential. J Biotechnol 212:56–57PubMedCrossRefGoogle Scholar
  165. Zakaria BS, Nassar HN, NSh EL-G, El-Temtamy SA, Sherif SM (2016) Denitrogenation of carbazole by a novel strain Bacillus clausii BS1 isolated from Egyptian Coke. Energy Sources A Recover Util Environ Eff 38:1840–1851CrossRefGoogle Scholar
  166. Zakaria BS, Nassar HS, Saed D, EL-Gendy NS (2015) Enhancement of carbazole denitrogenation rate using magnetically decorated Bacillus clausii BS1. Petrol Sci Technol 33:802–811CrossRefGoogle Scholar
  167. Zeuthen P, Knudsen KG, Whitehurst DD (2001) Organic nitrogen compounds in gasoil blends, their hydrotreated products and the importance to hydrotreatment. Catal Today 65:307–314CrossRefGoogle Scholar
  168. Zhang SH, Chen H, Li W (2013) Kinetic analysis of biodesulfurization of model oil containing multiple alkyl dibenzothiophenes. Appl Microbiol Biotechnol 97:2193–2200PubMedCrossRefGoogle Scholar
  169. ZoBell CE (1946) Action of microorganisms on hydrocarbons. Bacteriol Rev 10:1–49PubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • M. Ayala
    • 1
  • R. Vazquez-Duhalt
    • 2
  • M. Morales
    • 3
  • S. Le Borgne
    • 3
  1. 1.Department of Cellular Engineering and BiocatalysisInstituto de Biotecnologia, UNAMCuernavacaMexico
  2. 2.Department of BionanotechnologyCentro de Nanociencias y Nanotecnologia, UNAMEnsenadaMexico
  3. 3.Department of Process and TechnologyUAM-CuajimalpaMexico CityMexico

Personalised recommendations