Contributions of Membrane Lipids to Bacterial Cell Homeostasis upon Osmotic Challenge

  • T. RomantsovEmail author
  • J. M. WoodEmail author
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Changing environmental osmotic pressure causes transmembrane water fluxes that may impair cellular functions. Bacteria mitigate water fluxes by controlling the solute content of their cytoplasm. Increasing osmotic pressure triggers solute synthesis or uptake via osmosensing transporters, whereas osmotic downshock triggers solute release via mechanosensitive channels. Membrane lipids are implicated in the subcellular localization and function of membrane-based osmoregulatory systems. Zwitterionic phosphatidylethanolamine (PE) and anionic phosphatidylglycerol (PG) and cardiolipin (CL) are the predominant phospholipids in most bacteria, but their proportions vary widely. For many species, anionic lipids increase in proportion during cultivation in high salinity media. Evidence suggests that interactions among anionic lipid headgroups and cytoplasm-exposed areas of osmosensory transporters ProP, BetP, and OpuA are fundamental to their osmosensory response. CL-dependent targeting of transporter ProP to the CL-rich environment at the poles of Escherichia coli cells further modulates the osmolality response. Protein-lipid interactions are also fundamental to the gating of mechanosensitive channels MscL and MscS by membrane tension. Future work should encompass further characterization of the impacts of lipid composition on key physical properties of the membrane, as well as the regulation of lipid composition and membrane properties in response to environmental cues. The roles of lipids in the structural mechanisms of osmosensing and mechanosensitive channel gating are not fully understood. Osmosensory systems provide useful paradigms for the study of both protein-lipid interactions and the role of subcellular localization in bacterial lipid and protein function.



The authors are grateful for helpful discussions with Ronald N. McElhaney (University of Alberta), Robert S. Hodges (University of Colorado), Kerwyn C. Huang (Stanford University), Tariq Akhtar and Leonid Brown (University of Guelph), and members of the Wood laboratory. We also thank the Natural Sciences and Engineering Research Council of Canada and the Canadian Institutes for Health Research for financial support.


  1. Agmo Hernández V, Eriksson EK, Edwards K (2015) Ubiquinone-10 alters mechanical properties and increases stability of phospholipid membranes. Biochim Biophys Acta 1848:2233–2243PubMedCrossRefGoogle Scholar
  2. Anishkin A, Loukin SH, Teng J, Kung C (2014) Feeling the hidden mechanical forces in lipid bilayer is an original sense. Proc Natl Acad Sci U S A 111:7898–7905PubMedPubMedCentralCrossRefGoogle Scholar
  3. Barak I, Muchova K (2013) The role of lipid domains in bacterial cell processes. Int J Mol Sci 14:4050–4065PubMedPubMedCentralCrossRefGoogle Scholar
  4. Barák I, Muchová K, Wilkinson AJ, O’Toole PJ, Pavlendová N (2008) Lipid spirals in Bacillus subtilis and their role in cell division. Mol Microbiol 68:1315–1327PubMedPubMedCentralCrossRefGoogle Scholar
  5. Battle AR, Ridone P, Bavi N, Nakayama Y, Nikolaev YA, Martinac B (2015) Lipid–protein interactions: lessons learned from stress. Biochim Biophys Acta 1848:1744–1756PubMedCrossRefGoogle Scholar
  6. Benesch MGK, Lewis RNAH, McElhaney RN (2015) On the miscibility of cardiolipin with 1,2-diacyl phosphoglycerides: binary mixtures of dimyristoylphosphatidylglycerol and tetramyristoylcardiolipin. Biochim Biophys Acta 1848:2878–2888PubMedCrossRefGoogle Scholar
  7. Bialecka-Fornal M, Lee HJ, DeBerg HA, Gandhi CS, Phillips R (2012) Single-cell census of mechanosensitive channels in living bacteria. PLoS One 7:e33077PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bialecka-Fornal M, Lee HJ, Phillips R (2015) The rate of osmotic downshock determines the survival probability of bacterial mechanosensitive channel mutants. J Bacteriol 197:231–237PubMedCrossRefGoogle Scholar
  9. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917PubMedCrossRefGoogle Scholar
  10. Boekema EJ, Scheffers DJ, van Bezouwen LS, Bolhuis H, Folea IM (2013) Focus on membrane differentiation and membrane domains in the prokaryotic cell. J Mol Microbiol Biotechnol 23:345–356PubMedCrossRefGoogle Scholar
  11. Booth IR, Blount P (2012) The MscS and MscL families of mechanosensitive channels act as microbial emergency release valves. J Bacteriol 194:4802–4809PubMedPubMedCentralCrossRefGoogle Scholar
  12. Boucher PA, Morris CE, Joos B (2009) Mechanosensitive closed-closed transitions in large membrane proteins: osmoprotection and tension damping. Biophys J 97:2761–2770PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bramkamp M, Lopez D (2015) Exploring the existence of lipid rafts in bacteria. Microbiol Mol Biol Rev 79:81–100PubMedPubMedCentralCrossRefGoogle Scholar
  14. Brown GR, Sutcliffe IC, Bendell D, Cummings SP (2000) The modification of the membrane of Oceanomonas baumannii when subjected to both osmotic and organic solvent stress. FEMS Microbiol Lett 189:149–154PubMedCrossRefPubMedCentralGoogle Scholar
  15. Brown GR, Sutcliffe IC, Cummings SP (2003) Combined solvent and water activity stresses on turgor regulation and membrane adaptation in Oceanimonas baumannii ATCC 700832. Antonie Van Leeuwenhoek 83:275–283PubMedCrossRefPubMedCentralGoogle Scholar
  16. Busiek KK, Margolin W (2015) Bacterial actin and tubulin homologs in cell growth and division. Curr Biol 25:R243–R254PubMedPubMedCentralCrossRefGoogle Scholar
  17. Catucci L, Depalo N, Lattanzio VMT, Agostiano A, Corcelli, A (2004) Neosynthesis of cardiolipin in Rhodobacter sphaeroides under osmotic stress. Biochem 43:15066–15072.CrossRefGoogle Scholar
  18. Cronan JE (2003) Bacterial membrane lipids: where do we stand? Annu Rev Microbiol 57:203–224PubMedCrossRefPubMedCentralGoogle Scholar
  19. Culham DE, Meinecke M, Wood JM (2012) Impacts of the osmolality and the lumenal ionic strength on osmosensory transporter ProP in proteoliposomes. J Biol Chem 287:27813–27822PubMedPubMedCentralCrossRefGoogle Scholar
  20. Culham DE, Shkel IA, Record MT, Wood JM (2016) Contributions of Coulombic and Hofmeister effects to the osmotic activation of Escherichia coli transporter ProP. Biochemistry 55:1301–1313PubMedPubMedCentralCrossRefGoogle Scholar
  21. Danevcic T, Rilfors L, Strancar J, Lindblom G, Stopar D (2005) Effects of lipid composition on the membrane activity and lipid phase behaviour of Vibrio sp. DSM14379 cells grown at various NaCl concentrations. Biochim Biophys Acta 1712:1–8PubMedCrossRefGoogle Scholar
  22. Dare K, Shepherd J, Roy H, Seveau S, Ibba M (2014) LysPGS formation in Listeria monocytogenes has broad roles in maintaining membrane integrity beyond antimicrobial peptide resistance. Virulence 5:534–546PubMedPubMedCentralCrossRefGoogle Scholar
  23. de Wit G, Danial JSH, Kukura P, Wallace MI (2015) Dynamic label-free imaging of lipid nanodomains. Proc Natl Acad Sci U S A 112:12299–12303PubMedPubMedCentralCrossRefGoogle Scholar
  24. Edwards MD, Black S, Rasmussen T, Rasmussen A, Stokes NR, Stephen T-L, Miller S, Booth IR (2012) Characterization of three novel mechanosensitive channel activities in Escherichia coli. Channels 6:272–281PubMedPubMedCentralCrossRefGoogle Scholar
  25. Fishov I, Norris V (2012) Membrane heterogeneity created by transertion is a global regulator in bacteria. Curr Opin Microbiol 15:724–730PubMedCrossRefGoogle Scholar
  26. Fishov I, Woldringh C (1999) Visualization of membrane domains in Escherichia coli. Mol Microbiol 32:1166–1172CrossRefGoogle Scholar
  27. Frias M, Benesch MGK, Lewis RNAH, McElhaney RN (2011) On the miscibility of cardiolipin with 1,2-diacyl phosphoglycerides: binary mixtures of dimyristoylphosphatidylethanolamine and tetramyristoylcardiolipin. Biochim Biophys Acta 1808:774–783PubMedCrossRefGoogle Scholar
  28. Gennis RB (1989) Biomembranes: molecular structure and function. Springer, New YorkCrossRefGoogle Scholar
  29. Gill RL, Castaing J-P, Hsin J, Tan IS, Wang X, Huang KC, Tian F, Ramamurthi KS (2015) Structural basis for the geometry-driven localization of a small protein. Proc Natl Acad Sci 112:E1908–E1915PubMedCrossRefGoogle Scholar
  30. Govindarajan S, Elisha Y, Nevo-Dinur K, Amster-Choder O (2013) The general phosphotransferase system proteins localize to sites of strong negative curvature in bacterial cells. mBio 4:00443-13Google Scholar
  31. Grage SL, Keleshian AM, Turdzeladze T, Battle AR, Tay WC, May RP, Holt SA, Contera SA, Haertlein M, Moulin M et al (2011) Bilayer-mediated clustering and functional interaction of MscL channels. Biophys J 100:1252–1260PubMedPubMedCentralCrossRefGoogle Scholar
  32. Griffin BA, Adams SR, Jones J, Tsien RY (2000) Fluorescent labeling of recombinant proteins in living cells with FlAsH. Methods Enzymol 327:565–578PubMedCrossRefGoogle Scholar
  33. Guillot A, Obis D, Mistou M-Y (2000) Fatty acid membrane composition and activation of glycine-betaine transport in Lactococcus lactis subjected to osmotic stress. Int J Food Microbiol 55:47–51PubMedCrossRefGoogle Scholar
  34. Gul N, Poolman B (2013) Functional reconstitution and osmoregulatory properties of the ProU ABC transporter from Escherichia coli. Mol Membr Biol 30:138–148PubMedCrossRefGoogle Scholar
  35. Guler G, Gartner RM, Ziegler C, Mantele W (2015) Lipid-protein interactions in the regulated betaine symporter BetP probed by infrared spectroscopy. J Biol Chem 291:4295–4307PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gullingsrud J, Schulten K (2004) Lipid bilayer pressure profiles and mechanosensitive channel gating. Biophys J 86:3496–3509PubMedPubMedCentralCrossRefGoogle Scholar
  37. Häse CC, Minchin RF, Kloda A, Martinac B (1997) Cross-linking studies and membrane localization and assembly of radiolabelled large mechanosensitive ion channel (MscL) of Escherichia coli. Biochem Biophys Res Commun 232:777–782PubMedCrossRefGoogle Scholar
  38. Huang KC, Mukhopadhyay R, Wingreen NS (2006) A curvature-mediated mechanism for localization of lipids to bacterial poles. PLoS Comput Biol 2:e151PubMedPubMedCentralCrossRefGoogle Scholar
  39. Huijbregts RP, de Kroon AI, de Kruijff B (2000) Topology and transport of membrane lipids in bacteria. Biochim Biophys Acta 1469:43–61PubMedCrossRefGoogle Scholar
  40. Ingólfsson HI, Arnarez C, Periole X, Marrink SJ (2016) Computational ‘microscopy’ of cellular membranes. J Cell Sci 129:257–268PubMedCrossRefGoogle Scholar
  41. Jyothikumar V, Klanbut K, Tiong J, Roxburgh JS, Hunter IS, Smith TK, Herron PR (2012) Cardiolipin synthase is required for Streptomyces coelicolor morphogenesis. Mol Microbiol 84:181–197PubMedPubMedCentralCrossRefGoogle Scholar
  42. Karasawa A, Erkens GB, Berntsson RPA, Otten R, Schuurman-Wolters GK, Mulder FAA, Poolman B (2011) Cystathionine β-Synthase (CBS) domains 1 and 2 fulfill different roles in ionic strength sensing of the ATP-binding cassette (ABC) transporter OpuA. J Biol Chem 286:37280–37291PubMedPubMedCentralCrossRefGoogle Scholar
  43. Karasawa A, Swier LJYM, Stuart MCA, Brouwers J, Helms B, Poolman B (2013) Physicochemical factors controlling the activity and energy coupling of an ionic strength-gated ATP-binding cassette (ABC) transporter. J Biol Chem 288:29862–29871PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kates M, Syz JY, Gosser D, Haines TH (1993) pH-dissociation characteristics of cardiolipin and its 2′-deoxy analogue. Lipids 28:877–882PubMedCrossRefGoogle Scholar
  45. Kaurola P, Sharma V, Vonk A, Vattulainen I, Róg T (2016) Distribution and dynamics of quinones in the lipid bilayer mimicking the inner membrane of mitochondria. Biochim Biophys Acta 1858:2116–2122PubMedCrossRefGoogle Scholar
  46. Khakbaz P, Klauda JB (2015) Probing the importance of lipid diversity in cell membranes via molecular simulation. Chem Phys Lipids 192:12–22PubMedCrossRefGoogle Scholar
  47. Koppelman C-M, den Blaauwen T, Duursma MC, Heeren RMA, Nanninga N (2001) Escherichia coli minicell membranes are enriched in cardiolipin. J Bacteriol 183:6144–6147PubMedPubMedCentralCrossRefGoogle Scholar
  48. Koprowski P, Grajkowski W, Balcerzak M, Filipiuk I, Fabczak H, Kubalski A (2015) Cytoplasmic domain of MscS interacts with cell division protein FtsZ: a possible non-channel function of the mechanosensitive channel in Escherichia coli. PLoS One 10:e0127029PubMedPubMedCentralCrossRefGoogle Scholar
  49. Koshy C, Ziegler C (2015) Structural insights into functional lipid–protein interactions in secondary transporters. Biochim Biophys Acta 1850:476–487PubMedCrossRefGoogle Scholar
  50. Koshy C, Schweikhard ES, Gartner RM, Perez C, Yildiz O, Ziegler C (2013) Structural evidence for functional lipid interactions in the betaine transporter BetP. EMBO J 32:3096–3105PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kramer R (2010) Bacterial stimulus perception and signal transduction: response to osmotic stress. Chem Rec 10:217–229PubMedCrossRefGoogle Scholar
  52. Kramer R, Nicklisch S, Ott V (2010) Use of liposomes to study cellular osmosensors. Methods Mol Biol 606:21–30PubMedCrossRefGoogle Scholar
  53. Kusaka J, Shuto S, Imai Y, Ishikawa K, Saito T, Natori K, Matsuoka S, Hara H, Matsumoto K (2016) Septal localization by membrane targeting sequences and a conserved sequence essential for activity at the COOH-terminus of Bacillus subtilis cardiolipin synthase. Res Microbiol 167:202–214CrossRefGoogle Scholar
  54. Laganowsky A, Reading E, Allison TM, Ulmschneider MB, Degiacomi MT, Baldwin AJ, Robinson CV (2014) Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510:172–175PubMedPubMedCentralCrossRefGoogle Scholar
  55. Lai Y-T, Chang Y-Y, Hu L, Yang YH, Chao A, Du Z-Y, Tanner JA, Chye M-L, Qian C, Ng K-M et al (2015) Rapid labeling of intracellular His-tagged proteins in living cells. Proc Natl Acad Sci U S A 112:2948–2953PubMedPubMedCentralCrossRefGoogle Scholar
  56. Laloux G, Jacobs-Wagner C (2014) How do bacteria localize proteins to the cell pole? J Cell Sci 127:11–19PubMedPubMedCentralCrossRefGoogle Scholar
  57. Landgraf D, Okumus B, Chien P, Baker TA, Paulsson J (2013) Segregation of molecules at cell division reveals native protein localization. Nat Methods 9:480–486CrossRefGoogle Scholar
  58. Lewis JR, Cafiso DS (1999) Correlation between the free energy of a channel-forming voltage-gated peptide and the spontaneous curvature of bilayer lipids. Biochemistry 38:5932–5938PubMedCrossRefGoogle Scholar
  59. Lewis RNAH, McElhaney RN (2000) Surface charge markedly attenuates the nonlamellar phase-forming propensities of lipid bilayer membranes: calorimetric and 31P-nuclear magnetic resonance studies of mixtures of cationic, anionic, and zwitterionic lipids. Biophys J 79:1455–1464PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lewis RNAH, McElhaney RN (2009) The physicochemical properties of cardiolipin bilayers and cardiolipin-containing lipid membranes. Biochim Biophys Acta 1788:2069–2079PubMedCrossRefGoogle Scholar
  61. Lin TY, Weibel DB (2016) Organization and function of anionic phospholipids in bacteria. Appl Microbiol Biotechnol 100:4255–4267PubMedCrossRefGoogle Scholar
  62. Lin S-Y, Huang M-Z, Chang H-C, Shiea J (2007) Using electrospray-assisted laser desorption/ionization mass spectrometry to characterize organic compounds separated on thin-layer chromatography plates. Anal Chem 79:8789–8795PubMedCrossRefGoogle Scholar
  63. Lopalco P, Angelini R, Lobasso S, Köcher S, Thompson M, Müller V, Corcelli A (2013) Adjusting membrane lipids under salt stress: the case of the moderate halophilic organism Halobacillus halophilus. Environ Microbiol 15:1078–1087PubMedCrossRefGoogle Scholar
  64. López CS, Heras H, Garda H, Ruzal S, Sánchez-Rivas C, Rivas E (2000) Biochemical and biophysical studies of Bacillus subtilis envelopes under hyperosmotic stress. Int J Food Microbiol 55:137–142PubMedCrossRefGoogle Scholar
  65. López CS, Alice AF, Heras H, Rivas EA, Sánchez-Rivas C (2006) Role of anionic phospholipids in the adaptation of Bacillus subtilis to high salinity. Microbiology 152:605–616PubMedCrossRefGoogle Scholar
  66. Maddock JR, Shapiro L (1993) Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259:1717–1723PubMedCrossRefGoogle Scholar
  67. Magalon A, Alberge F (2016) Distribution and dynamics of OXPHOS complexes in the bacterial cytoplasmic membrane. Biochim Biophys Acta 1857:198–213PubMedCrossRefGoogle Scholar
  68. Margolin W (2012) The price of tags in protein localization studies. J Bacteriol 194:6369–6371PubMedPubMedCentralCrossRefGoogle Scholar
  69. Matsumoto K, Kusaka J, Nishibori A, Hara H (2006) Lipid domains in bacterial membranes. Mol Microbiol 61:1110–1117PubMedCrossRefGoogle Scholar
  70. Maximov S, Ott V, Belkoura L, Kämer R (2014) Stimulus analysis of BetP activation under in vivo conditions. Biochim Biophys Acta 1838:1288–1295PubMedCrossRefGoogle Scholar
  71. Mileykovskaya E, Dowhan W (2000) Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange. J Bacteriol 182:1172–1175PubMedPubMedCentralCrossRefGoogle Scholar
  72. Mileykovskaya E, Dowhan W, Birke RL, Zheng D, Lutterodt L, Haines TH (2001) Cardiolipin binds nonyl acridine orange by aggregating the dye at exposed hydrophobic domains on bilayer surfaces. FEBS Lett 507:187–190PubMedCrossRefGoogle Scholar
  73. Mukhopadhyay R, Huang KC, Wingreen NS (2008) Lipid localization in bacterial cells through curvature-mediated microphase separation. Biophys J 95:1034–1049PubMedPubMedCentralCrossRefGoogle Scholar
  74. Nishibori A, Kusaka J, Hara H, Umeda M, Matsumoto K (2005) Phosphatidylethanolamine domains and localization of phospholipid synthases in Bacillus subtilis membranes. J Bacteriol 187:2163–2174PubMedPubMedCentralCrossRefGoogle Scholar
  75. Norman C, Liu ZW, Rigby P, Raso A, Petrov Y, Martinac B (2005) Visualisation of the mechanosensitive channel of large conductance in bacteria using confocal microscopy. Eur Biophys J 34:396–402PubMedCrossRefGoogle Scholar
  76. Oliver PM, Crooks JA, Leidl M, Yoon EJ, Saghatelian A, Weibel DB (2014) Localization of anionic phospholipids in Escherichia coli cells. J Bacteriol 196:3386–3398PubMedPubMedCentralCrossRefGoogle Scholar
  77. Olofsson G, Sparr E (2013) Ionization constants pKa of cardiolipin. PLoS One 8:e73040PubMedPubMedCentralCrossRefGoogle Scholar
  78. Parkin J, Chavent M, Khalid S (2015) Molecular simulations of Gram-negative bacterial membranes: a vignette of some recent successes. Biophys J 109:461–468PubMedPubMedCentralCrossRefGoogle Scholar
  79. Pliotas C, Dahl ACE, Rasmussen T, Mahendran KR, Smith TK, Marius P, Gault J, Banda T, Rasmussen A, Miller S et al (2015) The role of lipids in mechanosensation. Nat Struct Mol Biol 22:991–998PubMedPubMedCentralCrossRefGoogle Scholar
  80. Poolman B, Spitzer JJ, Wood JM (2004) Bacterial Osmosensing: roles of membrane structure and electrostatics in lipid-protein and protein-protein interactions. Biochim Biophys Acta 1666:88–104PubMedCrossRefGoogle Scholar
  81. Quinn PJ (2012) Lipid–lipid interactions in bilayer membranes: married couples and casual liaisons. Prog Lipid Res 51:179–198PubMedCrossRefPubMedCentralGoogle Scholar
  82. Ramamurthi KS, Lecuyer S, Stone HA, Losick R (2009) Geometric cue for protein localization in a bacterium. Science 323:1354–1357PubMedPubMedCentralCrossRefGoogle Scholar
  83. Rasmussen T (2016) How do mechanosensitive channels sense membrane tension? Biochem Soc Trans 44:1019–1025PubMedCrossRefPubMedCentralGoogle Scholar
  84. Renner LD, Weibel DB (2011) Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes. Proc Natl Acad Sci U S A 108:6264–6269PubMedPubMedCentralCrossRefGoogle Scholar
  85. Roggiani M, Goulian M (2015) Chromosome-membrane interactions in bacteria. Annu Rev Genet 49:115–129PubMedCrossRefPubMedCentralGoogle Scholar
  86. Romantsov T, Helbig S, Culham DE, Gill C, Stalker L, Wood JM (2007) Cardiolipin promotes polar localization of osmosensory transporter ProP in Escherichia coli. Mol Microbiol 64:1455–1465CrossRefGoogle Scholar
  87. Romantsov T, Stalker L, Culham DE, Wood JM (2008) Cardiolipin controls the osmotic stress response and the subcellular location of transporter ProP in Escherichia coli. J Biol Chem 283:12314–12323PubMedCrossRefGoogle Scholar
  88. Romantsov T, Battle AR, Hendel JM, Martinac B, Wood JM (2009a) Protein localization in Escherichia coli cells: comparison of cytoplasmic membrane proteins ProP, LacY, ProW, AqpZ, MscS, and MscL. J Bacteriol 192:912–924PubMedPubMedCentralCrossRefGoogle Scholar
  89. Romantsov T, Guan Z, Wood JM (2009b) Cardiolipin and the osmotic stress responses of bacteria. Biochim Biophys Acta 1788:2092–2100PubMedPubMedCentralCrossRefGoogle Scholar
  90. Sáenz JP, Sezgin E, Schwille P, Simons K (2012) Functional convergence of hopanoids and sterols in membrane ordering. Proc Natl Acad Sci U S A 109:14236–14240PubMedPubMedCentralCrossRefGoogle Scholar
  91. Sevin DC, Sauer U (2014) Ubiquinone accumulation improves osmotic-stress tolerance in Escherichia coli. Nat Chem Biol 10:266–272PubMedCrossRefGoogle Scholar
  92. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909PubMedCrossRefGoogle Scholar
  93. Shapiro L, McAdams HH, Losick R (2009) Why and how bacteria localize proteins. Science 326:1225–1228PubMedCrossRefGoogle Scholar
  94. Strahl H, Burmann F, Hamoen LW (2014) The actin homologue MreB organizes the bacterial cell membrane. Nat Commun 5:3442PubMedPubMedCentralCrossRefGoogle Scholar
  95. Treuner-Lange A, Sogaard-Andersen L (2014) Regulation of cell polarity in bacteria. J Cell Biol 206:7–17PubMedPubMedCentralCrossRefGoogle Scholar
  96. Tsatskis Y, Khambati J, Dobson M, Bogdanov M, Dowhan W, Wood JM (2005) The osmotic activation of transporter ProP is tuned by both its C-terminal coiled-coil and osmotically induced changes in phospholipid composition. J Biol Chem 280:41387–41394PubMedCrossRefGoogle Scholar
  97. Tsuzuki M, Moskvin OV, Kuribayashi M, Sato K, Retamal S, Abo M (2011) Salt stress-induced changes in the transcriptome, compatible solutes, and membrane lipids in the facultatively phototrophic bacterium Rhodobacter sphaeroides. Appl Environ Microbiol 77:7551–7559.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Vanounou S, Pines D, Pines E, Parola AH, Fishov I (2002) Coexistence of domains with distinct order and polarity in fluid bacterial membranes. Photochem Photobiol 76:1–11CrossRefGoogle Scholar
  99. Vanounou S, Parola AH, Fishov I (2003) Phosphatidylethanolamine and phosphatidylglycerol are segregated into different domains in bacterial membrane. A study with pyrene-labelled phospholipids. Mol Microbiol 49:1067–1079PubMedCrossRefGoogle Scholar
  100. Wang W, Black SS, Edwards MD, Miller S, Bartlett W, Dong C, Naismith J, Booth IR (2008) The structure of an open form of an E. coli mechanosensitive channel reveals the molecular basis of gating. Science 321:1179–1183PubMedPubMedCentralCrossRefGoogle Scholar
  101. Wolters JC, Berntsson RP, Gul N, Karasawa A, Thunnissen AM, Slotboom DJ, Poolman B (2010) Ligand binding and crystal structures of the substrate-binding domain of the ABC transporter OpuA. PLoS One 5:e10361PubMedPubMedCentralCrossRefGoogle Scholar
  102. Wood JM (1999) Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev 63:230–262PubMedPubMedCentralGoogle Scholar
  103. Wood JM (2007) Bacterial osmosensing transporters. Methods Enzymol 428:77–107PubMedCrossRefGoogle Scholar
  104. Wood JM (2011) Bacterial osmoregulation: a paradigm for the study of cellular homeostasis. Annu Rev Microbiol 65:215–238PubMedCrossRefGoogle Scholar
  105. Wood JM (2015) Bacterial responses to osmotic challenges. J Gen Physiol 145:381–388PubMedPubMedCentralCrossRefGoogle Scholar
  106. Wu EL, Cheng X, Jo S, Rui H, Song KC, Davila-Contreras EM, Qi YF, Lee JM, Monje-Galvan V, Venable RM et al (2014) CHARMM-GUI membrane builder toward realistic biological membrane simulations. J Comput Chem 35:1997–2004PubMedPubMedCentralCrossRefGoogle Scholar
  107. Yeagle PL (2011) The structure of biological membranes, 3rd edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  108. Zaritsky A, Woldringh C, Fishov I, Vischer NO, Einav M (1999) Varying division planes of secondary constrictions in spheroidal Escherichia coli cells. Microbiology 145:1015–1022PubMedCrossRefGoogle Scholar
  109. Zhang XC, Liu Z, Li J (2016) From membrane tension to channel gating: a principal energy transfer mechanism for mechanosensitive channels. Protein Sci 25:1954–1964PubMedPubMedCentralCrossRefGoogle Scholar
  110. Zhong D, Blount P (2014) Electrostatics at the membrane define MscL channel mechanosensitivity and kinetics. FASEB J 28:5234–5241PubMedPubMedCentralCrossRefGoogle Scholar
  111. Zoetewey DL, Tripet BP, Kutateladze TG, Overduin MJ, Wood JM, Hodges RS (2003) Solution structure of the C-terminal antiparallel coiled-coil domain from Escherichia coli osmosensor ProP. J Mol Biol 334:1063–1076PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Molecular and Cellular BiologyUniversity of GuelphGuelphCanada

Personalised recommendations