Advertisement

Protein Lipidation, Elucidation by Chemical Proteomics, and Its Functional Roles

  • Gemma TriolaEmail author
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Protein lipidation regulates the localization and function of membrane-associated proteins. Many efforts have been done in the last decade to develop methods allowing the global analysis of lipidated proteins. The use of bioorthogonal reactions combined with mass spectrometry has provided a powerful method to systematically analyze these modified proteins, thereby revealing the key role of lipid anchors in controlling protein activity both in health and disease. The knowledge gained in this emerging field will strongly benefit from the recent advances in quantitative chemical proteomics enabling the simultaneous analysis of healthy and diseased patients and leading ultimately to the identification of potential targets for therapeutic interventions.

References

  1. Ashby MN (1998) CaaX converting enzymes. Curr Opin Lipidol 9:99–102PubMedCrossRefPubMedCentralGoogle Scholar
  2. Berry AFH, Heal WP, Tarafder AK, Tolmachova T, Baron RA, Seabra MC, Tate EW (2010) Rapid multilabel detection of geranylgeranylated proteins by using bioorthogonal ligation chemistry. ChemBioChem 11:771–773PubMedCrossRefPubMedCentralGoogle Scholar
  3. Bowyer PW, Tate EW, Leatherbarrow RJ, Holder AA, Smith DF, Brown KA (2008) N-myristoyltransferase: a prospective drug target for protozoan parasites. ChemMedChem 3:402–408PubMedCrossRefPubMedCentralGoogle Scholar
  4. Broncel M, Serwa RA, Ciepla P, Krause E, Dallman MJ, Magee AI, Tate EW (2015) Multifunctional reagents for quantitative proteome-wide analysis of protein modification in human cells and dynamic profiling of protein lipidation during vertebrate development. Angew Chem Int Ed Engl 54:5948–5951PubMedPubMedCentralCrossRefGoogle Scholar
  5. Buddelmeijer N (2015) The molecular mechanism of bacterial lipoprotein modification – how, when and why? FEMS Microbiol Rev 39:246–261PubMedCrossRefPubMedCentralGoogle Scholar
  6. Buglino JA, Resh MD (2008) Hhat is a palmitoylacyltransferase with specificity for N-palmitoylation of Sonic Hedgehog. J Biol Chem 283:22076–22088PubMedPubMedCentralCrossRefGoogle Scholar
  7. Burnaevskiy N, Peng T, Reddick LE, Hang HC, Alto NM (2015) Myristoylome profiling reveals a concerted mechanism of ARF GTPase deacylation by the bacterial protease IpaJ. Mol Cell 58:110–122PubMedPubMedCentralCrossRefGoogle Scholar
  8. Chan LN, Hart C, Guo L, Nyberg T, Davies BS, Fong LG, Young SG, Agnew BJ, Tamanoi F (2009) A novel approach to tag and identify geranylgeranylated proteins. Electrophoresis 30:3598–3606PubMedPubMedCentralCrossRefGoogle Scholar
  9. Charron G, Zhang MZM, Yount JS, Wilson J, Raghavan AS, Shamir E, Hang HC (2009) Robust fluorescent detection of protein fatty-acylation with chemical reporters. J Am Chem Soc 131:4967–4975PubMedCrossRefPubMedCentralGoogle Scholar
  10. Charron G, Li MM, MacDonald MR, Hang HC (2013) Prenylome profiling reveals S-farnesylation is crucial for membrane targeting and antiviral activity of ZAP long-isoform. Proc Natl Acad Sci U S A 110:11085–11090PubMedPubMedCentralCrossRefGoogle Scholar
  11. Choy A, Dancourt J, Mugo B, O’Connor TJ, Isberg RR, Melia TJ, Roy CR (2012) The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 338:1072–1076PubMedPubMedCentralCrossRefGoogle Scholar
  12. Ciepla P, Konitsiotis AD, Serwa RA, Masumoto N, Leong WP, Dallman MJ, Magee AI, Tate EW (2014) New chemical probes targeting cholesterylation of Sonic Hedgehog in human cells and zebrafish. Chem Sci 5:4249–4259PubMedPubMedCentralCrossRefGoogle Scholar
  13. Colquhoun DR, Lyashkov AE, Ubaida Mohien C, Aquino VN, Bullock BT, Dinglasan RR, Agnew BJ, Graham DR (2015) Bioorthogonal mimetics of palmitoyl-CoA and myristoyl-CoA and their subsequent isolation by click chemistry and characterization by mass spectrometry reveal novel acylated host-proteins modified by HIV-1 infection. Proteomics 15:2066–2077PubMedCrossRefPubMedCentralGoogle Scholar
  14. Cortes LK, Vainauskas S, Dai N, McClung CM, Shah M, Benner JS, Correa IR Jr, VerBerkmoes NC, Taron CH (2014) Proteomic identification of mammalian cell surface derived glycosylphosphatidylinositol-anchored proteins through selective glycan enrichment. Proteomics 14:2471–2484PubMedPubMedCentralCrossRefGoogle Scholar
  15. Das U, Kumar S, Dimmock JR, Sharma RK (2012) Inhibition of protein N-myristoylation: a therapeutic protocol in developing anticancer agents. Curr Cancer Drug Targets 12:667–692PubMedCrossRefPubMedCentralGoogle Scholar
  16. Distefano MD, DeGraw AJ, Palsuledesai C, Ochocki JD, Dozier JK, Lenevich S, Rashidian M (2010) Evaluation of alkyne-modified isoprenoids as chemical reporters of protein prenylation. Chem Biol Drug Des 76:460–471PubMedPubMedCentralCrossRefGoogle Scholar
  17. Dowal L, Yang W, Freeman MR, Steen H, Flaumenhaft R (2011) Proteomic analysis of palmitoylated platelet proteins. Blood 118:e62–e73PubMedPubMedCentralCrossRefGoogle Scholar
  18. Drisdel RC, Green WN (2004) Labeling and quantifying sites of protein palmitoylation. BioTechniques 36:276–285PubMedCrossRefPubMedCentralGoogle Scholar
  19. Ducker CE, Upson JJ, French KJ, Smith CD (2005) Two N-myristoyltransferase isozymes play unique roles in protein myristoylation, proliferation, and apoptosis. Mol Cancer Res 3:463–476PubMedPubMedCentralCrossRefGoogle Scholar
  20. El-Husseini AED, Bredt DS (2002) Protein palmitoylation: a regulator of neuronal development and function. Nat Rev Neurosci 3:791–802CrossRefGoogle Scholar
  21. Elortza F, Nuhse TS, Foster LJ, Stensballe A, Peck SC, Jensen ON (2003) Proteomic analysis of glycosylphosphatidylinositol-anchored membrane proteins. Mol Cell Proteomics 2:1261–1270PubMedCrossRefPubMedCentralGoogle Scholar
  22. Farazi TA, Waksman G, Gordon JI (2001) The biology and enzymology of protein N-myristoylation. J Biol Chem 276:39501–39504PubMedCrossRefPubMedCentralGoogle Scholar
  23. Foe IT, Child MA, Majmudar JD, Krishnamurthy S, van der Linden WA, Ward GE, Martin BR, Bogyo M (2015) Global analysis of palmitoylated proteins in Toxoplasma gondii. Cell Host Microbe 18:501–511PubMedPubMedCentralCrossRefGoogle Scholar
  24. Forrester MT, Hess DT, Thompson JW, Hultman R, Moseley MA, Stamler JS, Casey PJ (2011) Site-specific analysis of protein S-acylation by resin-assisted capture. J Lipid Res 52:393–398PubMedPubMedCentralCrossRefGoogle Scholar
  25. Fujita M, Kinoshita T (2010) Structural remodeling of GPI anchors during biosynthesis and after attachment to proteins. FEBS Lett 584:1670–1677PubMedCrossRefGoogle Scholar
  26. Furuishi K, Matsuoka H, Takama M, Takahashi I, Misumi S, Shoji S (1997) Blockage of N-myristoylation of HIV-1 gag induces the production of impotent progeny virus. Biochem Biophys Res Commun 237:504–511PubMedCrossRefGoogle Scholar
  27. Gerlach H, Laumann V, Martens S, Becker CFW, Goody RS, Geyer M (2010) HIV-1 Nef membrane association depends on charge, curvature, composition and sequence. Nat Chem Biol 6:46–53PubMedCrossRefGoogle Scholar
  28. Giang DG, Cravatt BF (1998) A second mammalian N-myristoyltransferase. J Biol Chem 273:6595–6598PubMedCrossRefGoogle Scholar
  29. Guan Z (2002) Identification and localization of the fatty acid modification in ghrelin by electron capture dissociation. J Am Soc Mass Spectrom 13:1443–1447PubMedCrossRefPubMedCentralGoogle Scholar
  30. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999PubMedCrossRefPubMedCentralGoogle Scholar
  31. Hall TMT, Porter JA, Young KE, Koonin EV, Beachy PA, Leahy DJ (1997) Crystal structure of a Hedgehog autoprocessing domain: homology between hedgehog and self-splicing proteins. Cell 91:85–97PubMedCrossRefPubMedCentralGoogle Scholar
  32. Hannoush RN, Arenas-Ramirez N (2009) Imaging the lipidome: omega-alkynyl fatty acids for detection and cellular visualization of lipid-modified proteins. ACS Chem Biol 4:581–587PubMedCrossRefPubMedCentralGoogle Scholar
  33. Hannoush AN, Sun J (2010) The chemical toolbox for monitoring protein fatty acylation and prenylation. Nat Chem Biol 6:498–506PubMedCrossRefPubMedCentralGoogle Scholar
  34. Heal WP, Wickramasinghe SR, Bowyer PW, Holder AA, Smith DF, Leatherbarrow RJ, Tate EW (2008) Site-specific N-terminal labelling of proteins in vitro and in vivo using N-myristoyl transferase and bioorthogonal ligation chemistry. Chem Commun (4):480–482Google Scholar
  35. Heal WP, Jovanovic B, Bessin S, Wright MH, Magee AI, Tate EW (2011a) Bioorthogonal chemical tagging of protein cholesterylation in living cells. Chem Commun 47:4081–4083CrossRefGoogle Scholar
  36. Heal WP, Wright MH, Thinon E, Tate EW (2011b) Multifunctional protein labeling via enzymatic N-terminal tagging and elaboration by click chemistry. Nat Protoc 7:105–117PubMedCrossRefPubMedCentralGoogle Scholar
  37. Hoffman MD, Kast J (2006) Mass spectrometric characterization of lipid-modified peptides for the analysis of acylated proteins. J Mass Spectrom 41:229–241PubMedCrossRefPubMedCentralGoogle Scholar
  38. Huang K, Sanders S, Singaraja R, Orban P, Cijsouw T, Arstikaitis P, Yanai A, Hayden MR, El-Husseini A (2009) Neuronal palmitoyl acyl transferases exhibit distinct substrate specificity. FASEB J 23:2605–2615PubMedPubMedCentralCrossRefGoogle Scholar
  39. Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M et al (2000) A ubiquitin-like system mediates protein lipidation. Nature 408:488–492PubMedCrossRefPubMedCentralGoogle Scholar
  40. Itzen A, Goody RS (2011) GTPases involved in vesicular trafficking: structures and mechanisms. Semin Cell Dev Biol 22:48–56PubMedCrossRefPubMedCentralGoogle Scholar
  41. Ivaldi C, Martin BR, Kieffer-Jaquinod S, Chapel A, Levade T, Garin J, Journet A (2012) Proteomic analysis of S-acylated proteins in human B cells reveals palmitoylation of the immune regulators CD20 and CD23. PLoS One 7:e37187PubMedPubMedCentralCrossRefGoogle Scholar
  42. Ji Y, Leymarie N, Haeussler DJ, Bachschmid MM, Costello CE, Lin C (2013) Direct detection of S-palmitoylation by mass spectrometry. Anal Chem 85:11952–11959PubMedPubMedCentralCrossRefGoogle Scholar
  43. Jiang H, Khan S, Wang Y, Charron G, He B, Sebastian C, Du J, Kim R, Ge E, Mostoslavsky R et al (2013) SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496:110–113PubMedPubMedCentralCrossRefGoogle Scholar
  44. Jones ML, Collins MO, Goulding D, Choudhary JS, Rayner JC (2012) Analysis of protein palmitoylation reveals a pervasive role in Plasmodium development and pathogenesis. Cell Host Microbe 12:246–258PubMedPubMedCentralCrossRefGoogle Scholar
  45. Julius M, Marmor MD (2000) The function of GPI-anchored proteins in T cell development, activation and regulation of homeostasis. J Biol Regul Homeost Agents 14:99–115PubMedPubMedCentralGoogle Scholar
  46. Kaczorowska MA, Cooper HJ (2013) Electron capture dissociation and collision induced dissociation of S-dipalmitoylated peptides. J Am Soc Mass Spectrom 24:1224–1227PubMedCrossRefPubMedCentralGoogle Scholar
  47. Kang RJ, Wan JM, Arstikaitis P, Takahashi H, Huang K, Bailey AO, Thompson JX, Roth AF, Drisdel RC, Mastro R et al (2008) Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation. Nature 456:904–909PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kho Y, Kim SC, Jiang C, Barma D, Kwon SW, Cheng JK, Jaunbergs J, Weinbaum C, Tamanoi F, Falck J et al (2004) A tagging-via-substrate technology for detection and proteomics of farnesylated proteins. Proc Natl Acad Sci U S A 101:12479–12484PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y (2000) The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 151:263–275PubMedPubMedCentralCrossRefGoogle Scholar
  50. Konstantinopoulos PA, Karamouzis MV, Papavassiliou AG (2007) Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nat Rev Drug Discov 6:540–555CrossRefGoogle Scholar
  51. Kostiuk MA, Corvi MM, Keller BO, Plummer G, Prescher JA, Hangauer MJ, Bertozzi CR, Rajaiah G, Falck JR, Berthiaume LG (2008) Identification of palmitoylated mitochondrial proteins using a bio-orthogonal azido-palmitate analogue. FASEB J 22:721–732PubMedCrossRefPubMedCentralGoogle Scholar
  52. Kurokawa K, Kim MS, Ichikawa R, Ryu KH, Dohmae N, Nakayama H, Lee BL (2012) Environment-mediated accumulation of diacyl lipoproteins over their triacyl counterparts in Staphylococcus aureus. J Bacteriol 194:3299–3306PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kwok Y, Sung WC, Lin AL, Liu HH, Chou FA, Hsieh SS, Leng CH, Chong P (2011) Rapid isolation and characterization of bacterial lipopeptides using liquid chromatography and mass spectrometry analysis. Proteomics 11:2620–2627PubMedCrossRefPubMedCentralGoogle Scholar
  54. Lemmon MA (2007) Pleckstrin homology (PH) domains and phosphoinositides. Biochem Soc Symp 7:81–93CrossRefGoogle Scholar
  55. Levental I, Grzybek M, Simons K (2010) Greasing Tteir way: lipid modifications determine protein association with membrane rafts. Biochemistry 49:6305–6316PubMedCrossRefPubMedCentralGoogle Scholar
  56. Li YX, Shao YH, Deng NY (2011) Improved prediction of palmitoylation sites using PWMs and SVM. Protein Pept Lett 18:186–193PubMedCrossRefPubMedCentralGoogle Scholar
  57. Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR, Garvik BM, Yates JR 3rd (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17:676–682PubMedCrossRefPubMedCentralGoogle Scholar
  58. Liu HB, Sadygov RG, Yates JR (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76:4193–4201PubMedCrossRefPubMedCentralGoogle Scholar
  59. Lobo S, Greentree WK, Linder ME, Deschenes RJ (2002) Identification of a Ras palmitoyltransferase in Saccharomyces cerevisiae. J Biol Chem 277:41268–41273PubMedCrossRefPubMedCentralGoogle Scholar
  60. Martin BR, Cravatt BF (2009) Large-scale profiling of protein palmitoylation in mammalian cells. Nat Methods 6:135–138PubMedPubMedCentralCrossRefGoogle Scholar
  61. Martin DDO, Beauchamp E, Berthiaume LG (2011) Post-translational myristoylation: fat matters in cellular life and death. Biochimie 93:18–31PubMedCrossRefPubMedCentralGoogle Scholar
  62. Martin BR, Wang C, Adibekian A, Tully SE, Cravatt BF (2012) Global profiling of dynamic protein palmitoylation. Nat Methods 9:84–U205CrossRefGoogle Scholar
  63. Masuishi Y, Nomura A, Okayama A, Kimura Y, Arakawa N, Hirano H (2013) Mass spectrometric identification of glycosylphosphatidylinositol-anchored peptides. J Proteome Res 12:4617–4626PubMedCrossRefPubMedCentralGoogle Scholar
  64. Masuishi Y, Kimura Y, Arakawa N, Hirano H (2016) Identification of glycosylphosphatidylinositol-anchored proteins and omega-sites using TiO2-based affinity purification followed by hydrogen fluoride treatment. J Proteome 139:77–83CrossRefGoogle Scholar
  65. Maurer-Stroh S, Eisenhaber F (2004) Myristoylation of viral and bacterial proteins. Trends Microbiol 12:178–185PubMedCrossRefPubMedCentralGoogle Scholar
  66. Merrick BA, Dhungana S, Williams JG, Aloor JJ, Peddada S, Tomer KB, Fessler MB (2011) Proteomic profiling of S-acylated macrophage proteins identifies a role for palmitoylation in mitochondrial targeting of phospholipid scramblase 3. Mol Cell Proteomics 10:M110.006007PubMedPubMedCentralCrossRefGoogle Scholar
  67. Mitchell DA, Mitchell G, Ling Y, Budde C, Deschenes RJ (2010) Mutational analysis of Saccharomyces cerevisiae Erf2 reveals a two-step reaction mechanism for protein palmitoylation by DHHC enzymes. J Biol Chem 285:38104–38114PubMedPubMedCentralCrossRefGoogle Scholar
  68. Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y (1998) A protein conjugation system essential for autophagy. Nature 395:395–398PubMedCrossRefPubMedCentralGoogle Scholar
  69. Morrison E, Kuropka B, Kliche S, Brugger B, Krause E, Freund C (2015) Quantitative analysis of the human T cell palmitome. Sci Rep 5:11598PubMedPubMedCentralCrossRefGoogle Scholar
  70. Nagamune K, Nozaki T, Maeda Y, Ohishi K, Fukuma T, Hara T, Schwarz RT, Sutterlin C, Brun R, Riezman H et al (2000) Critical roles of glycosylphosphatidylinositol for Trypanosoma brucei. Proc Natl Acad Sci U S A 97:10336–10341PubMedPubMedCentralCrossRefGoogle Scholar
  71. Nakayama H, Kurokawa K, Lee BL (2012) Lipoproteins in bacteria: structures and biosynthetic pathways. FEBS J 279:4247–4268CrossRefGoogle Scholar
  72. Narita SI, Tokuda H (in press) Bacterial lipoproteins; biogenesis, sorting and quality control. Biochim Biophys ActaGoogle Scholar
  73. Nguyen UTT, Cramer J, Gomis J, Reents R, Gutierrez-Rodriguez M, Goody RS, Alexandrov K, Waldmann H (2007) Exploiting the substrate tolerance of farnesyltransferase for site-selective protein derivatization. ChemBioChem 8:408–423PubMedCrossRefPubMedCentralGoogle Scholar
  74. Nguyen UTT, Guo Z, Delon C, Wu YW, Deraeve C, Fraenzel B, Bon RS, Blankenfeldt W, Goody RS, Waldmann H et al (2009) Analysis of the eukaryotic prenylome by isoprenoid affinity tagging. Nat Chem Biol 5:227–235PubMedCrossRefPubMedCentralGoogle Scholar
  75. Nimchuk Z, Marois E, Kjemtrup S, Leister RT, Katagiri F, Dangl JL (2000) Eukaryotic fatty acylation drives plasma membrane targeting and enhances function of several type III effector proteins from Pseudomonas syringae. Cell 101:353–363PubMedCrossRefPubMedCentralGoogle Scholar
  76. Onono FO, Morgan MA, Spielmann HP, Andres DA, Subramanian T, Ganser A, Reuter CW (2010) A tagging-via-substrate approach to detect the farnesylated proteome using two-dimensional electrophoresis coupled with western blotting. Mol Cell Proteomics 9:742–751PubMedPubMedCentralCrossRefGoogle Scholar
  77. Paulick MG, Bertozzi CR (2008) The glycosylphosphatidylinositol anchor: a complex membrane-anchoring structure for proteins. Biochemistry 47:6991–7000PubMedPubMedCentralCrossRefGoogle Scholar
  78. Peng T, Hang HC (2015) Bifunctional fatty acid chemical reporter for analyzing S-palmitoylated membrane protein-protein interactions in mammalian cells. J Am Chem Soc 137:556–559PubMedPubMedCentralCrossRefGoogle Scholar
  79. Percher A, Ramakrishnan S, Thinon E, Yuan X, Yount JS, Hang HC (2016) Mass-tag labeling reveals site-specific and endogenous levels of protein S-fatty acylation. Proc Natl Acad Sci U S A 113:4302–4307PubMedPubMedCentralCrossRefGoogle Scholar
  80. Raju RVS, Moyana TN, Sharma RK (1996) Increased expression of N-myristoltransferase in human colonic tumors. FASEB J 10:1309–1309Google Scholar
  81. Rauniyar N, McClatchy DB, Yates JR 3rd (2013) Stable isotope labeling of mammals (SILAM) for in vivo quantitative proteomic analysis. Methods 61:260–268PubMedCrossRefPubMedCentralGoogle Scholar
  82. Reddy KD, Malipeddi J, DeForte S, Pejaver V, Radivojac P, Uversky VN, Deschenes RJ (2016) Physicochemical sequence characteristics that influence S-palmitoylation propensity. J Biomol Struct Dyn1–14Google Scholar
  83. Ren J, Wen L, Gao X, Jin C, Xue Y, Yao X (2008) CSS-Palm 2.0: an updated software for palmitoylation sites prediction. Protein Eng Des Sel 21:639–644PubMedPubMedCentralCrossRefGoogle Scholar
  84. Resh MD (2006a) Palmitoylation of ligands, receptors, and intracellular signaling molecules. Sci STKE 2006:re14PubMedCrossRefPubMedCentralGoogle Scholar
  85. Resh MD (2006b) Trafficking and signaling by fatty-acylated and prenylated proteins. Nat Chem Biol 2:584–590PubMedCrossRefPubMedCentralGoogle Scholar
  86. Roberts AJ, Fairlamb AH (2016) The N-myristoylome of Trypanosoma cruzi. Sci Rep 6:31078PubMedPubMedCentralCrossRefGoogle Scholar
  87. Rocks O, Peyker A, Kahms M, Verveer PJ, Koerner C, Lumbierres M, Kuhlmann J, Waldmann H, Wittinghofer A, Bastiaens PIH (2005) An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307:1746–1752PubMedCrossRefPubMedCentralGoogle Scholar
  88. Rocks O, Gerauer M, Vartak N, Koch S, Huang ZP, Pechlivanis M, Kuhlmann J, Brunsveld L, Chandra A, Ellinger B et al (2010) The palmitoylation machinery is a spatially organizing system for peripheral membrane proteins. Cell 141:458–471PubMedCrossRefPubMedCentralGoogle Scholar
  89. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169PubMedCrossRefPubMedCentralGoogle Scholar
  90. Roth AF, Wan JM, Bailey AO, Sun BM, Kuchar JA, Green WN, Phinney BS, Yates JR, Davis NG (2006) Global analysis of protein palmitoylation in yeast. Cell 125:1003–1013PubMedPubMedCentralCrossRefGoogle Scholar
  91. Sanders SS, Martin DD, Butland SL, Lavallee-Adam M, Calzolari D, Kay C, Yates JR 3rd, Hayden MR (2015) Curation of the mammalian palmitoylome indicates a pivotal role for palmitoylation in diseases and disorders of the nervous system and cancers. PLoS Comput Biol 11:e1004405PubMedPubMedCentralCrossRefGoogle Scholar
  92. Santiago-Tirado FH, Peng T, Yang M, Hang HC, Doering TL (2015) A single protein S-acyl transferase acts through diverse substrates to determine cryptococcal morphology, stress tolerance, and pathogenic outcome. PLoS Pathog 11:e1004908PubMedPubMedCentralCrossRefGoogle Scholar
  93. Seeberger PH, Kamena F, Tamborrini M, Liu XY, Kwon YU, Thompson F, Pluschke G (2008) Synthetic GPI array to study antitoxic malaria response. Nat Chem Biol 4:238–240PubMedCrossRefPubMedCentralGoogle Scholar
  94. Serwa RA, Abaitua F, Krause E, Tate EW, O’Hare P (2015) Systems analysis of protein fatty acylation in herpes simplex virus-infected cells using chemical proteomics. Chem Biol 22:1008–1017PubMedPubMedCentralCrossRefGoogle Scholar
  95. Shipston MJ (2011) Ion channel regulation by protein palmitoylation. J Biol Chem 286:8709–8716PubMedPubMedCentralCrossRefGoogle Scholar
  96. Sidransky D, Nagpal JK, Dasgupta S, Jadallah S, Chae YK, Ratovitski EA, Toubaji A, Netto GJ, Eagle T, Nissan A et al (2008) Profiling the expression pattern of GPI transamidase complex subunits in human cancer. Mod Pathol 21:979–991PubMedPubMedCentralCrossRefGoogle Scholar
  97. Silvius JR, Lheureux F (1994) Fluorometric evaluation of the affinities of isoprenylated peptides for lipid bilayers. Biochemistry 33:3014–3022PubMedCrossRefPubMedCentralGoogle Scholar
  98. Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed Engl 48:6974–6998PubMedPubMedCentralCrossRefGoogle Scholar
  99. Smeland TE, Seabra MC, Goldstein JL, Brown MS (1994) Geranylgeranylated Rab proteins terminating in Cys–Ala–Cys, but not Cys–Cys, are carboxyl-methylated by bovine brain membranes in-vitro. Proc Natl Acad Sci U S A 91:10712–10716PubMedPubMedCentralCrossRefGoogle Scholar
  100. Snook CF, Jones JA, Hannun YA (2006) Sphingolipid-binding proteins. Biochim Biophys Acta 1761:927–946PubMedCrossRefPubMedCentralGoogle Scholar
  101. Stevenson FT, Bursten SL, Locksley RM, Lovett DH (1992) Myristyl acylation of the tumor necrosis factor alpha precursor on specific lysine residues. J Exp Med 176:1053–1062PubMedCrossRefPubMedCentralGoogle Scholar
  102. Stevenson FT, Bursten SL, Fanton C, Locksley RM, Lovett DH (1993) The 31-kDa precursor of interleukin 1 alpha is myristoylated on specific lysines within the 16-kDa N-terminal propiece. Proc Natl Acad Sci U S A 90:7245–7249PubMedPubMedCentralCrossRefGoogle Scholar
  103. Suazo KF, Schaber C, Palsuledesai CC, Odom John AR, Distefano MD (2016) Global proteomic analysis of prenylated proteins in Plasmodium falciparum using an alkyne-modified isoprenoid analogue. Sci Rep 6:38615PubMedPubMedCentralCrossRefGoogle Scholar
  104. Thinon E, Serwa RA, Broncel M, Brannigan JA, Brassat U, Wright MH, Heal WP, Wilkinson AJ, Mann DJ, Tate EW (2014) Global profiling of co- and post-translationally N-myristoylated proteomes in human cells. Nat Commun 5:4919PubMedPubMedCentralCrossRefGoogle Scholar
  105. Towler DA, Eubanks SR, Towery DS, Adams SP, Glaser L (1987) Amino-terminal processing of proteins by N-myristoylation – substrate-specificity of N-myristoyl transferase. J Biol Chem 262:1030–1036PubMedPubMedCentralGoogle Scholar
  106. Triola G (2011) The protein lipidation and its analysis. J Glycom Lipidom.  https://doi.org/10.4172/2153-0637.S4172-4001
  107. Triola G (2015) Chemical tools for modulating autophagy. Tetrahedron 71:387–406CrossRefGoogle Scholar
  108. Triola G, Waldmann H, Hedberg C (2012) Chemical biology of lipidated proteins. ACS Chem Biol 7:87–99PubMedCrossRefPubMedCentralGoogle Scholar
  109. Varma Y, Hendrickson T (2010) Methods to study GPI anchoring of proteins. ChemBioChem 11:623–636PubMedCrossRefPubMedCentralGoogle Scholar
  110. Wan J, Savas JN, Roth AF, Sanders SS, Singaraja RR, Hayden MR, Yates JR 3rd, Davis NG (2013) Tracking brain palmitoylation change: predominance of glial change in a mouse model of Huntington’s disease. Chem Biol 20:1421–1434PubMedCrossRefPubMedCentralGoogle Scholar
  111. Washburn MP, Wolters D, Yates JR (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247PubMedCrossRefPubMedCentralGoogle Scholar
  112. Witze ES, Old WM, Resing KA, Ahn NG (2007) Mapping protein post-translational modifications with mass spectrometry. Nat Methods 4:798–806PubMedCrossRefPubMedCentralGoogle Scholar
  113. Wright MH, Clough B, Rackham MD, Rangachari K, Brannigan JA, Grainger M, Moss DK, Bottrill AR, Heal WP, Broncel M et al (2014) Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach. Nat Chem 6:112–121PubMedCrossRefPubMedCentralGoogle Scholar
  114. Wright MH, Paape D, Storck EM, Serwa RA, Smith DF, Tate EW (2015) Global analysis of protein N-myristoylation and exploration of N-myristoyltransferase as a drug target in the neglected human pathogen Leishmania donovani. Chem Biol 22:342–354PubMedPubMedCentralCrossRefGoogle Scholar
  115. Xue Y, Chen H, Jin CJ, Sun ZR, Yao XB (2006) NBA-Palm: prediction of palmitoylation site implemented in Naive Bayes algorithm. BMC Bioinformatics 7:458PubMedPubMedCentralCrossRefGoogle Scholar
  116. Yang W, Di Vizio D, Kirchner M, Steen H, Freeman MR (2010) Proteome scale characterization of human S-acylated proteins in lipid raft-enriched and non-raft membranes. Mol Cell Proteomics 9:54–70PubMedCrossRefPubMedCentralGoogle Scholar
  117. Yildirim MA, Goh KI, Cusick ME, Barabasi AL, Vidal M (2007) Drug–target network. Nat Biotechnol 25:1119–1126PubMedCrossRefPubMedCentralGoogle Scholar
  118. Yokoi N, Fukata Y, Sekiya A, Murakami T, Kobayashi K, Fukata M (2016) Identification of PSD-95 depalmitoylating enzymes. J Neurosci 36:6431–6444PubMedPubMedCentralCrossRefGoogle Scholar
  119. Zhang J, Planey SL, Ceballos C, Stevens SM Jr, Keay SK, Zacharias DA (2008) Identification of CKAP4/p63 as a major substrate of the palmitoyl acyltransferase DHHC2, a putative tumor suppressor, using a novel proteomics method. Mol Cell Proteomics 7:1378–1388PubMedPubMedCentralCrossRefGoogle Scholar
  120. Zhang MM, Tsou LK, Charron G, Raghavan AS, Hang HC (2010) Tandem fluorescence imaging of dynamic S-acylation and protein turnover. Proc Natl Acad Sci U S A 107:8627–8632PubMedPubMedCentralCrossRefGoogle Scholar
  121. Zhao C, Ma S (2014) Recent advances in the discovery of N-myristoyltransferase inhibitors. ChemMedChem 9:2425–2437PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biological Chemistry and Molecular ModellingInstitute of Advanced Chemistry of Catalonia (IQAC-CSIC)BarcelonaSpain

Personalised recommendations