Formation of Fatty Acids

  • Isabel M. López-LaraEmail author
  • Otto Geiger
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Fatty acids are the building blocks of diverse membrane lipids and therefore are essential for the viability of all cells, except the Archaea where side chains of membrane lipids are isoprenoids. Fatty acid biosynthesis is catalyzed in most bacteria by a group of highly conserved proteins known as the type II fatty acid synthase (FAS II) system. A key protein in this system is the acyl carrier protein (ACP) which acts as carrier of growing acyl chains during biosynthesis and as donor of acyl chains during transfer to target molecules. The Escherichia coli FAS II system is the model pathway of fatty acid biosynthesis in bacteria, and mainly the same set of enzymes is present in different bacteria. Variations of the basic set give rise to the diversity of fatty acid composition of each organism. The intrinsic specificity of the acyltransferases is largely responsible for the fatty acid composition of complex lipids and signal molecules. Biosynthesis of fatty acids is a target for development of new antibiotics, especially against drug resistance microbes. Metabolic engineering of the fatty acid biosynthetic pathway is a promising tool to enhance production of biofuels.



Research in our lab was supported by grants from Dirección General de Asuntos del Personal Académico-Universidad Nacional Autónoma de México (DGAPA-UNAM; PAPIIT IN202616) and from Consejo Nacional de Ciencia y Tecnología-México (CONACyT-Mexico) (178359 and 253549 in Investigación Científica Básica as well as 118 in Investigación en Fronteras de la Ciencia). We thank José Espíritu Salazar, Ángeles Moreno-Ocampo, and Lourdes Martínez-Aguilar for their skillful technical assistance.


  1. Aguilar PS, de Mendoza D (2006) Control of fatty acid desaturation: a mechanism conserved from bacteria to humans. Mol Microbiol 62:1507–1514CrossRefGoogle Scholar
  2. Alvarez H, Steinbüchel MA (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376CrossRefGoogle Scholar
  3. Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, Collins D, de Lisle G, Jacobs WR Jr (1994) inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263:227–230CrossRefGoogle Scholar
  4. Basu SS, Karbarz MJ, Raetz CR (2002) Expression cloning and characterization of the C28 acyltransferase of lipid A biosynthesis in Rhizobium leguminosarum. J Biol Chem 277:28959–28971CrossRefGoogle Scholar
  5. Beld J, Lee DJ, Burkart MD (2015) Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering. Mol BioSyst 11:38–59CrossRefGoogle Scholar
  6. Bi H, Zhu L, Jia J, Zeng L, Cronan JE (2016) Unsaturated fatty acid synthesis in the gastric pathogen Helicobacter pylori proceeds via a backtracking mechanism. Cell Chem Biol 23:1480–1489CrossRefGoogle Scholar
  7. Butland G, Peregrín-Alvarez JM, Li J, Yang W, Yang X, Canadien V, Starostine A, Richards D, Beattie B, Krogan N, Davey M, Parkinson J, Greenblatt J, Emili A (2005) Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433:531–537CrossRefGoogle Scholar
  8. Cabruja M, Mondino S, Tsai YT, Lara J, Gramajo H, Gago G (2017) A conditional mutant of the fatty acid synthase unveils unexpected cross talks in mycobacterial lipid metabolism. Open Biol 7:160277CrossRefGoogle Scholar
  9. Finzel K, Lee DJ, Burkart MD (2015) Using modern tools to probe the structure-function relationship of fatty acid synthases. Chembiochem 16:528–547CrossRefGoogle Scholar
  10. Geiger O, López-Lara IM (2002) Rhizobial acyl carrier proteins and their roles in the formation of bacterial cell-surface components that are required for the development of nitrogen-fixing root nodules on legume hosts. FEMS Microbiol Lett 208:153–162CrossRefGoogle Scholar
  11. Gibbons HS, Reynolds CM, Guan Z, Raetz CR (2008) An inner membrane dioxygenase that generates the 2-hydroxymyristate moiety of Salmonella lipid A. Biochemistry 47:2814–2825CrossRefGoogle Scholar
  12. Gould TA, Schweizer HP, Churchill ME (2004) Structure of the Pseudomonas aeruginosa acyl-homoserinelactone synthase LasI. Mol Microbiol 53:1135–1146CrossRefGoogle Scholar
  13. Gunstone FD, Herslöf BG (1992) A lipid glossary. The Oily Press, DundeeGoogle Scholar
  14. Hafkin B, Kaplan N, Murphy B (2016) Efficacy and safety of AFN-1252, the first Staphylococcus-specific antibacterial agent, in the treatment of acute bacterial skin and skin structure infections, including those in patients with significant comorbidities. Antimicrob Agents Chemother 60:1695–1701CrossRefGoogle Scholar
  15. Holtwick R, Meinhardt F, Keweloh H (1997) Cis-trans isomerization of unsaturated fatty acids: cloning and sequencing of the cti gene from Pseudomonas putida P8. Appl Environ Microbiol 63:4292–4297PubMedPubMedCentralGoogle Scholar
  16. Howard TP, Middelhaufe S, Moore K, Edner C, Kolak DM, Taylor GN, Parker DA, Lee R, Smirnoff N, Aves SJ, Love J (2013) Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli. Proc Natl Acad Sci U S A 110:7636–7641CrossRefGoogle Scholar
  17. Isabella VM, Clark VL (2011) Identification of a conserved protein involved in anaerobic unsaturated fatty acid synthesis in Neisseria gonorrhoeae: implications for facultative and obligate anaerobes that lack FabA. Mol Microbiol 82:489–501CrossRefGoogle Scholar
  18. Janßen HJ, Steinbüchel A (2014) Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnol Biofuels 7:7CrossRefGoogle Scholar
  19. Kaneda T (1991) Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 55:288–302PubMedPubMedCentralGoogle Scholar
  20. Khan R, Kong HG, Jung YH, Choi J, Baek KY, Hwang EC, Lee SW (2016) Triclosan resistome from metagenome reveals diverse enoyl acyl carrier protein reductases and selective enrichment of triclosan resistance genes. Sci Rep 6:32322CrossRefGoogle Scholar
  21. López-Lara IM, Geiger O (2017) Bacterial lipid diversity. Biochim Biophys Acta 1862:1287–1299CrossRefGoogle Scholar
  22. Marrakchi H, Choi KH, Rock CO (2002) A new mechanism for anaerobic unsaturated fatty acid formation in Streptococcus pneumoniae. J Biol Chem 277:44809–44816CrossRefGoogle Scholar
  23. McMurry LM, Oethinger M, Levy SB (1998) Triclosan targets lipid synthesis. Nature 394:531–532CrossRefGoogle Scholar
  24. Nakayama H, Kurokawa K, Lee BL (2012) Lipoproteins in bacteria: structures and biosynthetic pathways. FEBS J 279:4247–4268CrossRefGoogle Scholar
  25. Osterhout GJ, Shull VH, Dick JD (1991) Identification of clinical isolates of gram-negative nonfermentative bacteria by an automated cellular fatty acid identification system. J Clin Microbiol 29:1822–1830PubMedPubMedCentralGoogle Scholar
  26. Paoletti L, Lu YJ, Schujman GE, de Mendoza D, Rock CO (2007) Coupling of fatty acid and phospholipid synthesis in Bacillus subtilis. J Bacteriol 189:5816–5824CrossRefGoogle Scholar
  27. Parsons JB, Rock CO (2013) Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res 52:249–276CrossRefGoogle Scholar
  28. Pech-Canul A, Nogales J, Miranda-Molina A, Álvarez L, Geiger O, Soto MJ, López-Lara IM (2011) FadD is required for utilization of endogenous fatty acids released from membrane lipids. J Bacteriol 193:6295–6304CrossRefGoogle Scholar
  29. Percy MG, Gründling A (2014) Lipoteichoic acid synthesis and function in gram-positive bacteria. Annu Rev Microbiol 68:81–100CrossRefGoogle Scholar
  30. Pugh EL, Kates M (1994) Acylation of proteins of the archaebacteria Halobacterium cutirubrum and Methanobacterium thermoautotrophicum. Biochim Biophys Acta 1196:38–44CrossRefGoogle Scholar
  31. Rock CO (2008) Fatty acids and phospholipids metabolism in prokaryotes. In: Vance DE, Vance JE (eds) Biochemistry of lipids, lipoproteins and membranes, 5th edn. Elsevier, Amsterdam, pp 59–96CrossRefGoogle Scholar
  32. Schweizer E, Hofmann J (2004) Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems. Microbiol Mol Biol Rev 68:501–517CrossRefGoogle Scholar
  33. Shang R, Liang J, Yi Y, Liu Y, Wang J (2015) Review of platensimycin and platencin: inhibitors of β-ketoacyl-acyl carrier protein (ACP) synthase III (FabH). Molecules 20:16127–16141CrossRefGoogle Scholar
  34. Steinbüchel A (2001) Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 1:1–24CrossRefGoogle Scholar
  35. Wang H, Cronan JE (2004) Functional replacement of the FabA and FabB proteins of Escherichia coli fatty acid synthesis by Enterococcus faecalis FabZ and FabF homologues. J Biol Chem 279:34489–34495CrossRefGoogle Scholar
  36. Watson WT, Minogue TD, Val DL, Beck von Bodman S, Churchill MEA (2002) Structural basis and specificity of acyl-homoserine lactone signal production in bacterial quorum sensing. Mol Cell 9:685–694CrossRefGoogle Scholar
  37. White SW, Zheng J, Zhang YM, Rock CO (2005) The structural biology of type II fatty acid biosynthesis. Annu Rev Biochem 74:791–831CrossRefGoogle Scholar
  38. Whitfield C, Trent MS (2014) Biosynthesis and export of bacterial lipopolysaccharides. Annu Rev Biochem 83:99–128CrossRefGoogle Scholar
  39. Williams AH, Raetz CR (2007) Structural basis for the acyl chain selectivity and mechanism of UDP-N-acetylglucosamine acyltransferase. Proc Natl Acad Sci U S A 104:13543–13550CrossRefGoogle Scholar
  40. Yao J, Rock CO (2015) How bacterial pathogens eat host lipids: implications for the development of fatty acid synthesis therapeutics. J Biol Chem 290:5940–5946CrossRefGoogle Scholar
  41. Yuan Y, Sachdeva M, Leeds JA, Meredith TC (2012) Fatty acid biosynthesis in Pseudomonas aeruginosa is initiated by the FabY class of β-ketoacyl acyl carrier protein synthases. J Bacteriol 194:5171–5184CrossRefGoogle Scholar
  42. Zhang YM, Wu B, Zheng J, Rock CO (2003) Key residues responsible for acyl carrier protein and beta-ketoacyl-acyl carrier protein reductase (FabG) interaction. J Biol Chem 278:52935–52943CrossRefGoogle Scholar
  43. Zhang YM, White SW, Rock CO (2006) Inhibiting bacterial fatty acid synthesis. J Biol Chem 281:17541–17544CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centro de Ciencias GenómicasUniversidad Nacional Autónoma de México (UNAM)CuernavacaMexico
  2. 2.Centro de Ciencias GenómicasUniversidad Nacional Autónoma de MéxicoCuernavacaMexico

Personalised recommendations