Bacterial Lipid Domains and Their Role in Cell Processes

  • Adrián F. Alvarez
  • Dimitris GeorgellisEmail author
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Bacterial plasma membranes, mainly composed of phospholipids and proteins, separate the interior of a cell from their environment and maintain cell homeostasis. Early notions of membrane organization gave rise to a model in which a homogeneous lipid bilayer permits free protein diffusion within the membrane. However, proteins and phospholipids are distributed unevenly in bacterial membranes, and specific membrane localization is often crucial for protein activity or function. Bacterial membrane domains with different lipid compositions and with differential physical properties in comparison with the surrounding membrane have now been described. These membrane domains appear to influence localization, diffusion, and function of membrane proteins, and thereby seem to be involved in many cellular processes. Here, we describe the different types of bacterial membrane domains and discuss their involvement in various bacterial cellular processes.



Research in our laboratory is funded by grants from the Consejo Nacional de Ciencia y Tecnología (CONACyT, 178033), and from Dirección General de Asuntos del Personal Académico-Universidad Nacional Autónoma de México (DGAPA-UNAM; PAPIIT IN209215 and IA203216). We thank Claudia Rodriguez for her technical assistance.


  1. Adams DW, LJ W, Errington J (2015) Nucleoid occlusion protein Noc recruits DNA to the bacterial cell membrane. EMBO J 34:491–501CrossRefGoogle Scholar
  2. Aj De Boer P (2010) Advances in understanding E. coli cell fission. Curr Opin Microbiol 13:730–737CrossRefGoogle Scholar
  3. Allen JA, Halverson-Tamboli RA, Rasenick MM (2007) Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci 8:128–140CrossRefGoogle Scholar
  4. An D, Na C, Bielawski J, Hannun YA, Kasper DL (2011) Membrane sphingolipids as essential molecular signals for Bacteroides survival in the intestine. Proc Natl Acad Sci U S A 108:4666–4671CrossRefGoogle Scholar
  5. Andrade DM, Clausen MP, Keller J, Mueller V, Wu C, Bear JE, Hell SW, Christoffer Lagerholm B, Eggeling C (2015) Cortical actin networks induce spatio-temporal confinement of phospholipids in the plasma membrane – a minimally invasive investigation by STED-FCS. Sci Rep 5:11454CrossRefGoogle Scholar
  6. Arias-Cartin R, Grimaldi S, Arnoux P, Guigliarelli B, Magalon A (2012) Cardiolipin binding in bacterial respiratory complexes: structural and functional implications. Biochim Biophys Acta 1817:1937–1949CrossRefGoogle Scholar
  7. Bach JN, Bramkamp M (2013) Flotillins functionally organize the bacterial membrane. Mol Microbiol 88:1205–1217CrossRefGoogle Scholar
  8. Barák I, Muchová K (2013) The role of lipid domains in bacterial cell processes. Int J Mol Sci 14:4050–4065CrossRefGoogle Scholar
  9. Barák I, Muchová K, Wilkinson AJ, O’Toole PJ, Pavlendová N (2008) Lipid spirals in Bacillus subtilis and their role in cell division. Mol Microbiol 68:1315–1327CrossRefGoogle Scholar
  10. Bernal P, Muñoz-Rojas J, Hurtado A, Ramos JL, Segura A (2007) A Pseudomonas putida cardiolipin synthesis mutant exhibits increased sensitivity to drugs related to transport functionality. Environ Microbiol 9:1135–1145CrossRefGoogle Scholar
  11. Browman DT, Hoegg MB, Robbins SM (2007) The SPFH domain-containing proteins: more than lipid raft markers. Trends Cell Biol 17:394–402CrossRefGoogle Scholar
  12. Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544CrossRefGoogle Scholar
  13. Campo N, Tjalsma H, Buist G, Stepniak D, Meijer M, Veenhuis M, Westermann M, Müller JP, Bron S, Kok J, Kuipers OP, Jongbloed JDH (2004) Subcellular sites for bacterial protein export. Mol Microbiol 53:1583–1599CrossRefGoogle Scholar
  14. Cheng H-T, Megha LE (2009) Preparation and properties of asymmetric vesicles that mimic cell membranes: effect upon lipid raft formation and transmembrane helix orientation. J Biol Chem 284:6079–6092CrossRefGoogle Scholar
  15. Dajkovic A, Lan G, Sun SX, Wirtz D, Lutkenhaus J (2008) MinC spatially controls bacterial cytokinesis by antagonizing the scaffolding function of FtsZ. Curr Biol 18:235–244CrossRefGoogle Scholar
  16. Donovan C, Bramkamp M (2009) Characterization and subcellular localization of a bacterial flotillin homologue. Microbiology 155:1786–1799CrossRefGoogle Scholar
  17. Errington J (2015) Bacterial morphogenesis and the enigmatic MreB helix. Nat Rev Microbiol 13:241–248CrossRefGoogle Scholar
  18. Feng X, Hu Y, Zheng Y, Zhu W, Li K, Huang C-H, Ko T-P, Ren F, Chan H-C, Nega M, Bogue S, López D, Kolter R, Götz F, Guo R-T, Oldfield E (2014) Structural and functional analysis of Bacillus subtilis YisP reveals a role of its product in biofilm production. Chem Biol 21:1557–1563CrossRefGoogle Scholar
  19. Fishov I, Woldringh CL (1999) Visualization of membrane domains in Escherichia coli. Mol Microbiol 32:1166–1172CrossRefGoogle Scholar
  20. Garner EC, Bernard R, Wang W, Zhuang X, Rudner DZ, Mitchison T (2011) Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333:222–225CrossRefGoogle Scholar
  21. Geiger O, González-Silva N, López-Lara IM, Sohlenkamp C (2010) Amino acid-containing membrane lipids in bacteria. Prog Lipid Res 49:46–60CrossRefGoogle Scholar
  22. Gold VAM, Robson A, Bao H, Romantsov T, Duong F, Collinson I (2010) The action of cardiolipin on the bacterial translocon. Proc Natl Acad Sci U S A 107:10044–10049CrossRefGoogle Scholar
  23. Guzmán-Flores JE, Alvarez AF, Poggio S, Gavilanes-Ruiz M, Georgellis D (2017) Isolation of detergent-resistant membranes (DRMs) from Escherichia coli. Anal Biochem 518:1–8CrossRefGoogle Scholar
  24. Hinderhofer M, Walker CA, Friemel A, Stuermer CA, Möller HM, Reuter A (2009) Evolution of prokaryotic SPFH proteins. BMC Evol Biol 9:10CrossRefGoogle Scholar
  25. Huang KC, Ramamurthi KS (2010) Macromolecules that prefer their membranes curvy. Mol Microbiol 76:822–832CrossRefGoogle Scholar
  26. Hutton ML, D’Costa K, Rossiter AE, Wang L, Turner L, Steer DL, Masters SL, Croker BA, Kaparakis-Liaskos M, Ferrero RL (2017) A Helicobacter pylori homolog of eukaryotic flotillin is involved in cholesterol accumulation, epithelial cell responses and host colonization. Front Cell Infect Microbiol 7:219CrossRefGoogle Scholar
  27. Jones LJF, Carballido-Ló Pez R, Errington J (2001) Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104:913–922CrossRefGoogle Scholar
  28. Kawai F, Shoda M, Harashima R, Sadaie Y, Hara H, Matsumoto K (2004) Cardiolipin domains in Bacillus subtilis marburg membranes. J Bacteriol 186:1475–1483CrossRefGoogle Scholar
  29. Koppelman CM, Den Blaauwen T, Duursma MC, Heeren RM, Nanninga N (2001) Escherichia coli minicell membranes are enriched in cardiolipin. J Bacteriol 183:6144–6147CrossRefGoogle Scholar
  30. Kusaka J, Shuto S, Imai Y, Ishikawa K, Saito T, Natori K, Matsuoka S, Hara H, Matsumoto K (2016) Septal localization by membrane targeting sequences and a conserved sequence essential for activity at the COOH-terminus of Bacillus subtilis cardiolipin synthase. Res Microbiol 167:202–214CrossRefGoogle Scholar
  31. Kusumi A, Nakada C, Ritchie K, Murase K, Suzuki K, Murakoshi H, Kasai RS, Kondo J, Fujiwara T (2005) Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu Rev Biophys Biomol Struct 34:351–378CrossRefGoogle Scholar
  32. Langhorst MF, Reuter A, Stuermer CAO (2005) Scaffolding microdomains and beyond: the function of reggie/flotillin proteins. Cell Mol Life Sci 62:2228–2240CrossRefGoogle Scholar
  33. Langhorst MF, Solis GP, Hannbeck S, Plattner H, Stuermer CAO (2007) Linking membrane microdomains to the cytoskeleton: regulation of the lateral mobility of reggie-1/flotillin-2 by interaction with actin. FEBS Lett 581:4697–4703CrossRefGoogle Scholar
  34. LaRocca TJ, Pathak P, Chiantia S, Toledo A, Silvius JR, Benach JL, London E (2013) Proving lipid rafts exist: membrane domains in the prokaryote Borrelia burgdorferi have the same properties as eukaryotic lipid rafts. PLoS Pathog 9:e1003353CrossRefGoogle Scholar
  35. Lenarcic R, Halbedel S, Visser L, Shaw M, LJ W, Errington J, Marenduzzo D, Hamoen LW (2009) Localisation of DivIVA by targeting to negatively curved membranes. EMBO J 28:2272–2282CrossRefGoogle Scholar
  36. López D, Kolter R (2010) Functional microdomains in bacterial membranes. Genes Dev 24:1893–1902CrossRefGoogle Scholar
  37. Lu F, Taghbalout A (2013) Membrane association via an amino-terminal amphipathic helix is required for the cellular organization and function of RNase II. J Biol Chem 288:7241–7251CrossRefGoogle Scholar
  38. Lutkenhaus J (2007) Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring cytoskeletal: protein filaments that provide for intracellular organization. Annu Rev Biochem 76:539–562CrossRefGoogle Scholar
  39. Maloney E, Lun S, Stankowska D, Guo H, Rajagoapalan M, Bishai WR, Madiraju MV (2011) Alterations in phospholipid catabolism in Mycobacterium tuberculosis lysX mutant. Front Microbiol 2:19CrossRefGoogle Scholar
  40. McAuley KE, Fyfe PK, Ridge JP, Isaacs NW, Cogdell RJ, Jones MR (1999) Structural details of an interaction between cardiolipin and an integral membrane protein. Proc Natl Acad Sci U S A 96:14706–14711CrossRefGoogle Scholar
  41. Meinhardt H, de Boer PA (2001) Pattern formation in Escherichia coli: a model for the pole-to-pole oscillations of Min proteins and the localization of the division site. Proc Natl Acad Sci U S A 98:14202–14207CrossRefGoogle Scholar
  42. Mileykovskaya E, Dowhan W (2000) Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange. J Bacteriol 182:1172–1175CrossRefGoogle Scholar
  43. Mileykovskaya E, Dowhan W (2009) Cardiolipin membrane domains in prokaryotes and eukaryotes. Biochim Biophys Acta 1788:2084–2091CrossRefGoogle Scholar
  44. Mileykovskaya E, Ryan AC, Mo X, Lin C-C, Khalaf KI, Dowhan W, Garrett TA (2009) Phosphatidic acid and N-acylphosphatidylethanolamine form membrane domains in Escherichia coli mutant lacking cardiolipin and phosphatidylglycerol. J Biol Chem 284:2990–3000CrossRefGoogle Scholar
  45. Oliver PM, Crooks JA, Leidl M, Yoon EJ, Saghatelian A, Weibel DB (2014) Localization of anionic phospholipids in Escherichia coli cells. J Bacteriol 196:3386–3398CrossRefGoogle Scholar
  46. Orgel JP (2006) Surface-active helices in transmembrane proteins. Curr Protein Pept Sci 7:553–560CrossRefGoogle Scholar
  47. Oswald F, Varadarajan A, Lill H, Peterman EJG, Bollen YJM (2016) MreB-dependent organization of the E. coli cytoplasmic membrane controls membrane protein diffusion. Biophys J 110:1139–1149CrossRefGoogle Scholar
  48. Pichoff S, Lutkenhaus J (2005) Tethering the Z ring to the membrane through a conserved membrane targeting sequence in FtsA. Mol Microbiol 55:1722–1734CrossRefGoogle Scholar
  49. Pike LJ (2003) Lipid rafts: bringing order to chaos. J Lipid Res 44:655–667CrossRefGoogle Scholar
  50. Raetz CR, Dowhan W (1990) Biosynthesis and function of phospholipids in Escherichia coli. J Biol Chem 265:1235–1238PubMedGoogle Scholar
  51. Renner LD, Weibel DB (2011) Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes. Proc Natl Acad Sci U S A 108:6264–6269CrossRefGoogle Scholar
  52. Romantsov T, Helbig S, Culham DE, Gill C, Stalker L, Wood JM (2007) Cardiolipin promotes polar localization of osmosensory transporter ProP in Escherichia coli. Mol Microbiol 64:1455–1465CrossRefGoogle Scholar
  53. Romantsov T, Guan Z, Wood JM (2009) Cardiolipin and the osmotic stress responses of bacteria. Biochim Biophys Acta 1788:2092–2100CrossRefGoogle Scholar
  54. Rothman JE, Kennedy EP (1977) Asymmetrical distribution of phospholipids in the membrane of Bacillus megaterium. J Mol Biol 110:603–618CrossRefGoogle Scholar
  55. Salje J, Van Den Ent F, De Boer P, Lö We J (2011) Direct membrane binding by bacterial actin MreB. Mol Cell 43:478–487CrossRefGoogle Scholar
  56. Scheffers D-J, Tol MB (2015) LipidII: just another brick in the wall? PLoS Pathog 11:e1005213CrossRefGoogle Scholar
  57. Schneider J, Mielich-Süss B, Böhme R, Lopez D (2015) In vivo characterization of the scaffold activity of flotillin on the membrane kinase KinC of Bacillus subtilis. Microbiology 161:1871–1887CrossRefGoogle Scholar
  58. Shen B, Lutkenhaus J (2009) The conserved C-terminal tail of FtsZ is required for the septal localization and division inhibitory activity of MinC/MinD. Mol Microbiol 72:410–424CrossRefGoogle Scholar
  59. Shih Y-L, Le T, Rothfield L (2003) Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles. Proc Natl Acad Sci U S A 100:7865–7870CrossRefGoogle Scholar
  60. Shih Y-L, Kawagishi I, Rothfield L (2005) The MreB and Min cytoskeletal-like systems play independent roles in prokaryotic polar differentiation. Mol Microbiol 58:917–928CrossRefGoogle Scholar
  61. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572CrossRefGoogle Scholar
  62. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39CrossRefGoogle Scholar
  63. Simons K, Van Meer G (1988) Lipid sorting in epithelial cells. Biochemistry 27:6197–6202CrossRefGoogle Scholar
  64. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731CrossRefGoogle Scholar
  65. Sohlenkamp C, Geiger O (2016) Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 40:133–159CrossRefGoogle Scholar
  66. Somani VK, Aggarwal S, Singh D, Prasad T, Bhatnagar R (2016) Identification of novel raft marker protein, FlotP in Bacillus anthracis. Front Microbiol 7:169CrossRefGoogle Scholar
  67. Strahl H, Errington J (2017) Bacterial membranes: structure, domains, and function. Annu Rev Microbiol 71:519–538CrossRefGoogle Scholar
  68. Strahl H, Bürmann F, Hamoen LW (2014) The actin homologue MreB organizes the bacterial cell membrane. Nat Commun 5:3442CrossRefGoogle Scholar
  69. Subramani S, Perdreau-Dahl H, Morth JP (2016) The magnesium transporter A is activated by cardiolipin and is highly sensitive to free magnesium in vitro. elife 5:e11407CrossRefGoogle Scholar
  70. Szeto TH, Rowland SL, Rothfield LI, King GF (2002) Membrane localization of MinD is mediated by a C-terminal motif that is conserved across eubacteria, archaea, and chloroplasts. Proc Natl Acad Sci U S A 99:15693–15698CrossRefGoogle Scholar
  71. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124CrossRefGoogle Scholar
  72. van Teeffelen S, Wang S, Furchtgott L, Huang KC, Wingreen NS, Shaevitz JW, Gitai Z (2011) The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc Natl Acad Sci U S A 108:15822–15827CrossRefGoogle Scholar
  73. Vanounou S, Pines D, Pines E, Parola AH, Fishov I (2002) Coexistence of domains with distinct order and polarity in fluid bacterial membranes. Photochem Photobiol 76:1–11CrossRefGoogle Scholar
  74. Vats P, Yu J, Rothfield L (2009) The dynamic nature of the bacterial cytoskeleton. Cell Mol Life Sci 66:3353–3362CrossRefGoogle Scholar
  75. Viola A, Gupta N (2007) Tether and trap: regulation of membrane-raft dynamics by actin-binding proteins. Nat Rev Immunol 7:889–896CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Genética Molecular, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoCiudad de MexicoMexico

Personalised recommendations