Membrane Lipid Biogenesis

  • Howard GoldfineEmail author
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


In order to maintain a fluid lipid bilayer in the cell membrane, microorganisms must adjust to environmental conditions including the ambient temperature, pressure, and the presence of solutes that affect the physical state of the membrane. Although the types of amphipathic lipids present in the cell membrane can vary widely between species, the variety of adjustments made, including changes in the compositions of the hydrocarbon chains and the polar headgroups, appear to obey certain rules. The regulation of lipid biosynthesis to adapt to the cellular environment will be discussed in this chapter.


  1. Ailhaud GP, Vagelos PR (1966) Palmitoyl-acyl carrier protein as acyl donor for complex lipid biosynthesis in Escherichia coli. J Biol Chem 241:3866–3868PubMedGoogle Scholar
  2. Alley SH, Ces O, Templer RH, Barahona M (2008) Biophysical regulation of lipid biosynthesis in the plasma membrane. Biophys J 94:2938–2954CrossRefGoogle Scholar
  3. Baer SH, Blaschek HP, Smith TL (1987) Effect of butanol challenge and temperature on lipid composition and membrane fluidity of butanol-tolerant Clostridium acetobutylicum. Appl Environ Microbiol 53:2854–2861PubMedPubMedCentralGoogle Scholar
  4. Cronan JE Jr, Gelmann EP (1975) Physical properties of membrane lipids: biological relevance and regulation. Bacteriol Rev 39:232–256PubMedPubMedCentralGoogle Scholar
  5. Cronan JE, Thomas J (2009) Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. Methods Enzymol 459:395–433CrossRefGoogle Scholar
  6. Cullis PR, De Kruijff B (1979) Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta 559:399–420CrossRefGoogle Scholar
  7. Dowhan W (2013) A retrospective: use of Escherichia coli as a vehicle to study phospholipid synthesis and function. Biochim Biophys Acta 1831:471–494CrossRefGoogle Scholar
  8. Edman M, Berg S, Storm P, Wikstrom M, Vikstrom S, Ohman A et al (2003) Structural features of glycosyltransferases synthesizing major bilayer and nonbilayer-prone membrane lipids in Acholeplasma laidlawii and Streptococcus pneumoniae. J Biol Chem 278:8420–8428CrossRefGoogle Scholar
  9. Geiger O, Lopez-Lara IM, Sohlenkamp C (2013) Phosphatidylcholine biosynthesis and function in bacteria. Biochim Biophys Acta 1831:503–513CrossRefGoogle Scholar
  10. Goldfine H (1982) Lipids of procaryotes-structure and distribution. Curr Top Membr Transport 17:1–43CrossRefGoogle Scholar
  11. Goldfine H (1984) Bacterial membranes and lipid packing theory. J Lipid Res 25:1501–1507PubMedGoogle Scholar
  12. Goldfine H, Ailhaud GP (1971) Fatty acyl-acyl carrier protein and fatty acyl-CoA in the biosynthesis of phosphatidic acid in Clostridium butyricum. Biochem Biophys Res Commun 45:1127–1133CrossRefGoogle Scholar
  13. Goldfine H, Bloch K (1961) On the origin of unsaturated fatty acids in clostridia. J Biol Chem 236:2596–2601PubMedGoogle Scholar
  14. Goldfine H, Johnston NC (2005) Membrane lipids of clostridia. In: Dürre P (ed) Handbook on clostridia. Taylor & Francis, Boca Raton, pp 297–310CrossRefGoogle Scholar
  15. Goldfine H, Ailhaud GP, Vagelos PR (1967) Involvement of acyl carrier protein in acylation of glycerol 3-phosphate in Clostridium butyricum. II Evidence for the participation of acyl thioesters of acyl carrier protein. J Biol Chem 242:4466–4475PubMedGoogle Scholar
  16. Goldfine H, Johnston NC, Mattai J, Shipley GG (1987) The regulation of bilayer stability in Clostridium butyricum: studies on the polymorphic phase behavior of the ether lipids. Biochemistry 26:2814–2822CrossRefGoogle Scholar
  17. Green PR, Merrill AH Jr, Bell RM (1981) Membrane phospholipid synthesis in Escherichia coli. Purification, reconstitution, and characterization of sn-glycerol-3-phosphate acyltransferase. J Biol Chem 256:11151–11159PubMedGoogle Scholar
  18. Gruner SM, Shyamsunder E (1991) Is the mechanism of general anesthesia related to lipid membrane spontaneous curvature? Ann N Y Acad Sci 625:685–697CrossRefGoogle Scholar
  19. Halverson LJ, Firestone MK (2000) Differential effects of permeating and nonpermeating solutes on the fatty acid composition of Pseudomonas putida. Appl Environ Microbiol 66:2414–2421CrossRefGoogle Scholar
  20. Holtwick R, Meinhardt F, Keweloh H (1997) cis-trans isomerization of unsaturated fatty acids: cloning and sequencing of the cti gene from Pseudomonas putida P8. Appl Environ Microbiol 63:4292–4297PubMedPubMedCentralGoogle Scholar
  21. Huang KC, Ramamurthi KS (2010) Macromolecules that prefer their membranes curvy. Mol Microbiol 76:822–832CrossRefGoogle Scholar
  22. Inoue A, Horikoshi K (1989) A Pseudomonas thrives in high-concentrations of toluene. Nature (London) 338:264–266CrossRefGoogle Scholar
  23. Israelachvili JN, Marcelja S, Horn RG (1980) Physical principles of membrane organization. Q Rev Biophys 13:121–200CrossRefGoogle Scholar
  24. Janes N (1996) Curvature stress and polymorphism in membranes. Chem Phys Lipids 81:133–150CrossRefGoogle Scholar
  25. Kawai F, Shoda M, Harashima R, Sadaie Y, Hara H, Matsumoto K (2004) Cardiolipin domains in Bacillus subtilis Marburg membranes. J Bacteriol 86:1475–1483CrossRefGoogle Scholar
  26. Kiran MD, Annapoorni S, Suzuki I, Murata N, Shivaji S (2005) Cis-trans isomerase gene in psychrophilic Pseudomonas syringae is constitutively expressed during growth and under conditions of temperature and solvent stress. Extremophiles 9:117–125CrossRefGoogle Scholar
  27. Lepage C, Fayolle F, Hermann M, Vandecasteele J-P (1987) Changes in membrane lipid composition of Clostridium acetobutylicum during acetone-butanol fermentation: effects of solvents, growth temperature and pH. J Gen Microbiol 133:103–110Google Scholar
  28. Lin TY, Weibel DB (2016) Organization and function of anionic phospholipids in bacteria. Appl Microbiol Biotechnol 100:4255–4267CrossRefGoogle Scholar
  29. Lindblom G, Rilfors L (1989) Cubic phases and isotropic structures formed by membrane lipids -possible biological relevance. Biochim Biophys Acta 988:221–256CrossRefGoogle Scholar
  30. Linde K, Grobner G, Rilfors L (2004) Lipid dependence and activity control of phosphatidylserine synthase from Escherichia coli. FEBS Lett 575:77–80CrossRefGoogle Scholar
  31. Lueking DR, Goldfine H (1975) sn-Glycerol-3-phosphate acyltransferase activity in particulate preparations from anaerobic, light-grown cell of Rhodopseudomonas sphaeroides. The involvement of acyl thioester derivatives of acyl carrier protein in complex lipid synthesis. J Biol Chem 250:530–8535Google Scholar
  32. MacDonald DL, Goldfine H (1991) Effects of solvents and alcohols on the polar lipid composition of Clostridium butyricum under conditions of controlled lipid chain composition. Appl Environ Microbiol 57:3517–3521PubMedPubMedCentralGoogle Scholar
  33. Mileykovskaya E, Dowhan W (2000) Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange. J Bacteriol 182:1172–1175CrossRefGoogle Scholar
  34. Nishibori A, Kusaka J, Hara H, Umeda M, Matsumoto K (2005) Phosphatidylethanolamine domains and localization of phospholipid synthases in Bacillus subtilis membranes. J Bacteriol 187:2163–2174CrossRefGoogle Scholar
  35. Oliver PM, Crooks JA, Leidl M, Yoon EJ, Saghatelian A, Weibel DB (2016) Localization of anionic phospholipids in Escherichia coli cells. J Bacteriol 196:3386–3398CrossRefGoogle Scholar
  36. Rietveld AG, Killian JA, Dowhan W, De Kruijff B (1993) Polymorphic regulation of membrane phospholipid composition in Escherichia coli. J Biol Chem 268:12427–12433PubMedGoogle Scholar
  37. Rilfors L, Lindblom G (2002) Regulation of lipid composition in biological membranes – biophysical studies of lipids and lipid synthesizing enzymes. Colloids Surf B Biointerfaces 26:112–124CrossRefGoogle Scholar
  38. Rilfors L, Niemi A, Haraldsson S, Edwards K, Andersson AS, Dowhan W (1999) Reconstituted phosphatidylserine synthase from Escherichia coli is activated by anionic phospholipids and micelle-forming amphiphiles. Biochim Biophys Acta 1438:281–294CrossRefGoogle Scholar
  39. Scheuerbrandt G, Goldfine H, Baronowsky P, Bloch K (1961) A novel mechanism for the biosynthesis of unsaturated fatty acids. J Biol Chem 236:PC70–PC71PubMedGoogle Scholar
  40. Singh AK, Zhang YM, Zhu K, Subramanian C, Li Z, Jayaswal RK et al (2009) FabH selectivity for anteiso branched-chain fatty acid precursors in low-temperature adaptation in Listeria monocytogenes. FEMS Microbiol Lett 301:188–192CrossRefGoogle Scholar
  41. Tan BK, Bogdanov M, Zhao JS, Dowhan W, Raetz CRH, Guan Z (2012) Discovery of a cardiolipin synthase utilizing phosphatidylethanolamine and phosphatidylglycerol as substrates. Proc Natl Acad Sci U S A 109:16504–16509CrossRefGoogle Scholar
  42. Tian B, Guan Z, Goldfine H (2013) An ethanolamine-phosphate modified glycolipid in Clostridium acetobutylicum that responds to membrane stress. Biochim Biophys Acta 1831:1185–1190CrossRefGoogle Scholar
  43. Vikstrom S, Li L, Karlsson OP, Wieslander A (1999) Key role of the diglucosyldiacylglycerol synthase for the nonbilayer-bilayer lipid balance of Acholeplasma laidlawii membranes. Biochemistry 38:5511–5520CrossRefGoogle Scholar
  44. Vollherbst-Schneck K, Sands JA, Montenecourt BS (1984) Effect of butanol on lipid composition and fluidity of Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 47:193–194PubMedPubMedCentralGoogle Scholar
  45. Walton PA, Goldfine H (1987) Transphosphatidylation activity in Clostridium butyricum Evidence for a secondary pathway by which membrane phospholipids may be synthesized and modified. J Biol Chem 262:10355–10361PubMedGoogle Scholar
  46. Weber FJ, De Bont JAM (1996) Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta 1286:225–245CrossRefGoogle Scholar
  47. Weber FJ, Isken S, deBont JAM (1994) Cis/trans isomerization of fatty-acids as a defense-mechanism of Pseudomonas-Putida strains to toxic concentrations of toluene. Microbiology-UK 140:2013–2017CrossRefGoogle Scholar
  48. Wieslander Å, Christiansson A, Rilfors L, Lindblom G (1980) Lipid bilayer stability in membranes. Regulation of lipid composition in Acholeplasma laidlawii as governed by molecular shape. Biochemistry 19:3650–3655CrossRefGoogle Scholar
  49. Wieslander Å, Christiansson A, Rilfors L, Khan A, Johansson LBÅ, Lindblom G (1981a) Lipid phase structure governs the regulation of lipid composition in membranes of Acholeplasma laidlawii. FEBS Lett 124:273–278CrossRefGoogle Scholar
  50. Wieslander Å, Rilfors L, Johansson LBÅ, Lindblom G (1981b) Reversed cubic phase with membrane glucolipids from Acholeplasma laidlawii. 1H, 2H, and diffusion nuclear magnetic resonance measurements. Biochemistry 20:730–735CrossRefGoogle Scholar
  51. Wieslander Å, Rilfors L, Lindblom G (1986) Metabolic changes of membrane lipid composition in Acholeplasma laidlawii by hydrocarbons, alcohols, and detergents: arguments for effects on lipid packing. Biochemistry 25:7511–7517CrossRefGoogle Scholar
  52. Yao J, Rock CO (2013) Phosphatidic acid synthesis in bacteria. Biochim Biophys Acta 1831:495–502CrossRefGoogle Scholar
  53. Zhang Y-M, Rock CO (2008) Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6:222–233CrossRefGoogle Scholar
  54. Zhu K, Bayles DO, Xiong AM, Jayaswal RK, Wilkinson BJ (2005) Precursor and temperature modulation of fatty acid composition and growth of Listeria monocytogenes cold-sensitive mutants with transposon-interrupted branched-chain alpha-keto acid dehydrogenase. Microbiology-SGM 151:615–623CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MicrobiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaUSA

Personalised recommendations