Advertisement

Fatty Acid Synthesis and Regulation

  • Isabel M. López-LaraEmail author
  • María J. Soto
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Fatty acids are the building blocks of diverse membrane lipids and therefore are essential for the viability of bacterial cells. Fatty acids are energetically expensive to produce, and their production is highly controlled at the transcriptional and posttranscriptional level. Biosynthesis of fatty acids is catalyzed in most bacteria by a group of highly conserved proteins known as the type II fatty acid synthase (FAS II) system. This system was characterized in Escherichia coli, and a similar set of enzymes is present in different bacteria. Knowledge of biochemical regulation of fatty acid biosynthesis is inferred from studies in E. coli. During biosynthesis, fatty acids are esterified to the phosphopantetheine prosthetic group of the small acyl carrier protein (ACP). Long-chain acyl-ACPs, the end product of the pathway, exert feedback regulation over different key enzymes. There is a diversity of systems used for transcriptional regulation of fatty acid biosynthesis. Transcriptional regulation of fatty acid biosynthesis has been studied mainly in three model organisms, the Gram-negative E. coli and the Gram-positive organisms Bacillus subtilis and Streptococcus pneumoniae. The effector molecules that modulate activity of transcription factors involved in lipid biosynthesis are either substrates (malonyl-CoA) or final products (long-chain acyl-ACPs) of fatty acid biosynthesis. Long-chain acyl-CoAs, which are usually formed from exogenous fatty acids, are effectors of transcription factors that coordinate de novo biosynthesis with availability of fatty acids in the environment.

Notes

Acknowledgments

Work on IML-L’s lab was funded by Dirección General de Asuntos del Personal Académico-Universidad Nacional Autónoma de México (DGAPA-UNAM; PAPIIT IN202616). Work on MJS’s lab was funded by ERDF-cofinanced grant BIO2013-42801-P from the Spanish Ministry for Economy and Competitiveness. We thank Angeles Moreno-Ocampo and José Espíritu Salazar for skillful technical assistance.

References

  1. Albanesi D, Reh G, Guerin ME, Schaeffer F, Debarbouille M, Buschiazzo A, Schujman GE, de Mendoza D, Alzari PM (2013) Structural basis for feed-forward transcriptional regulation of membrane lipid homeostasis in Staphylococcus aureus. PLoS Pathog 9(1):e1003108CrossRefGoogle Scholar
  2. Battesti A, Bouveret E (2006) Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism. Mol Microbiol 62(4):1048–1063CrossRefGoogle Scholar
  3. Bergler H, Fuchsbichler S, Högenauer G, Turnowsky F (1996) The enoyl-[acyl-carrier-protein] reductase (FabI) of Escherichia coli, which catalyzes a key regulatory step in fatty acid biosynthesis, accepts NADH and NADPH as cofactors and is inhibited by palmitoyl-CoA. Eur J Biochem 242(3):689–694CrossRefGoogle Scholar
  4. Bi H, Zhu L, Jia J, Zeng L, Cronan JE (2016) Unsaturated fatty acid synthesis in the gastric pathogen Helicobacter pylori proceeds via a backtracking mechanism. Cell Chem Biol 23:1480–1489CrossRefGoogle Scholar
  5. Campbell JW, Cronan JE (2001) Escherichia coli FadR positively regulates transcription of the fabB fatty acid biosynthetic gene. J Bacteriol 183(20):5982–5990CrossRefGoogle Scholar
  6. Cronan JE, Subrahmanyam S (1998) FadR, transcriptional co-ordination of metabolic expediency. Mol Microbiol 29:937–943CrossRefGoogle Scholar
  7. Davis MS, Cronan JE (2001) Inhibition of Escherichia coli acetyl coenzyme A carboxylase by acyl-acyl carrier protein. J Bacteriol 183(4):1499–1503CrossRefGoogle Scholar
  8. de Mendoza D, Klages Ulrich A, Cronan JE (1983) Thermal regulation of membrane fluidity in Escherichia coli. Effects of overproduction of beta-ketoacyl-acyl carrier protein synthase I. J Biol Chem 258(4):2098–2101PubMedGoogle Scholar
  9. Deochand DK, Grove A (2017) MarR family transcription factors: dynamic variations on a common scaffold. Crit Rev Biochem Mol Biol 52(6):595–613CrossRefGoogle Scholar
  10. Evans A, Ribble W, Schexnaydre E, Waldrop GL (2017) Acetyl-CoA carboxylase from Escherichia coli exhibits a pronounced hysteresis when inhibited by palmitoyl-acyl carrier protein. Arch Biochem Biophys 636:100–109CrossRefGoogle Scholar
  11. Fujita Y, Matsuoka H, Hirooka K (2007) Regulation of fatty acid metabolism in bacteria. Mol Microbiol 66(4):829–839CrossRefGoogle Scholar
  12. Heath RJ, Rock CO (1996a) Regulation of fatty acid elongation and initiation by acyl-acyl carrier protein in Escherichia coli. J Biol Chem 271(4):1833–1836CrossRefGoogle Scholar
  13. Heath RJ, Rock CO (1996b) Inhibition of β-ketoacyl-acyl carrier protein synthase III (FabH) by acyl-acyl carrier protein in Escherichia coli. J Biol Chem 271(18):10996–11000CrossRefGoogle Scholar
  14. Heath RJ, Jackowski S, Rock CO (1994) Guanosine tetraphosphate inhibition of fatty acid and phospholipid synthesis in Escherichia coli is relieved by overexpression of glycerol-3-phosphate acyltransferase (plsB). J Biol Chem 269(42):26584–26590PubMedGoogle Scholar
  15. Iram SH, Cronan JE (2005) Unexpected functional diversity among FadR fatty acid transcriptional regulatory proteins. J Biol Chem 280(37):32148–33256CrossRefGoogle Scholar
  16. Janßen HJ, Steinbüchel A (2014) Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnol Biofuels 7(1):7CrossRefGoogle Scholar
  17. Jerga A, Rock CO (2009) Acyl-acyl carrier protein regulates transcription of fatty acid biosynthetic genes via the FabT repressor in Streptococcus pneumoniae. J Biol Chem 284(23):15364–15388CrossRefGoogle Scholar
  18. Jiang P, Cronan JE (1994) Inhibition of fatty acid synthesis in Escherichia coli in the absence of phospholipid synthesis and release of inhibition by thioesterase action. J Bacteriol 176(10):2814–2821CrossRefGoogle Scholar
  19. Kaczmarzyk D, Fulda M (2010) Fatty acid activation in cyanobacteria mediated by acyl-acyl carrier protein synthetase enables fatty acid recycling. Plant Physiol 152:1598–1610CrossRefGoogle Scholar
  20. López-Lara IM, Geiger O (2017) Bacterial lipid diversity. Biochim Biophys Acta 1862:1287–1299CrossRefGoogle Scholar
  21. Lu YJ, Rock CO (2006) Transcriptional regulation of fatty acid biosynthesis in Streptococcus pneumoniae. Mol Microbiol 59:551–566CrossRefGoogle Scholar
  22. Martinez MA, Zaballa ME, Schaeffer F, Bellinzoni M, Albanesi D, Schujman GE, Vila AJ, Alzari PM, de Mendoza D (2010) A novel role of malonyl-ACP in lipid homeostasis. Biochemistry 49(14):3161–3167CrossRefGoogle Scholar
  23. McCue L, Thompson W, Carmack C, Ryan MP, Liu JS, Derbyshire V, Lawrence CE (2001) Phylogenetic footprinting of transcription factor binding sites in proteobacterial genomes. Nucleic Acids Res 29(3):774–782CrossRefGoogle Scholar
  24. Miller DJ, Zhang YM, Subramanian C, Rock CO, White SW (2010) Structural basis for the transcriptional regulation of membrane lipid homeostasis. Nat Struct Mol Biol 17(8):971–975CrossRefGoogle Scholar
  25. Mondino S, Gago G, Gramajo H (2013) Transcriptional regulation of fatty acid biosynthesis in mycobacteria. Mol Microbiol 89(2):372–387CrossRefGoogle Scholar
  26. My L, Rekoske B, Lemke JJ, Viala JP, Gourse RL, Bouveret E (2013) Transcription of the Escherichia coli fatty acid synthesis operon fabHDG is directly activated by FadR and inhibited by ppGpp. J Bacteriol 195:3784–3795CrossRefGoogle Scholar
  27. My L, Ghandour Achkar N, Viala JP, Bouveret E (2015) Reassessment of the genetic regulation of fatty acid synthesis in Escherichia coli: global positive control by the dual functional regulator FadR. J Bacteriol 197:1862–1872CrossRefGoogle Scholar
  28. Parsons JB, Rock CO (2013) Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res 52:249–276CrossRefGoogle Scholar
  29. Parsons JB, Frank MW, Subramanian C, Saenkham P, Rock CO (2011) Metabolic basis for the differential susceptibility of Gram-positive pathogens to fatty acid synthesis inhibitors. Proc Natl Acad Sci U S A 108(37):15378–15383CrossRefGoogle Scholar
  30. Pech-Canul A, Nogales J, Miranda-Molina A, Álvarez L, Geiger O, Soto MJ, López-Lara IM (2011) FadD is required for utilization of endogenous fatty acids released from membrane lipids. J Bacteriol 193:6295–6304CrossRefGoogle Scholar
  31. Schujman GE, Paoletti L, Grossman AD, de Mendoza D (2003) FapR, a bacterial transcription factor involved in global regulation of membrane lipid biosynthesis. Dev Cell 4(5):663–672CrossRefGoogle Scholar
  32. Schujman GE, Guerin M, Buschiazzo A, Schaeffer F, Llarrull LI, Reh G, Vila AJ, Alzari PM, de Mendoza D (2006) Structural basis of lipid biosynthesis regulation in Gram-positive bacteria. EMBO J 25(17):4074–4083CrossRefGoogle Scholar
  33. Singh AK, Zhang YM, Zhu K, Subramanian C, Li Z, Jayaswal RK, Gatto C, Rock CO, Wilkinson BJ (2009) FabH selectivity for anteiso branched-chain fatty acid precursors in low-temperature adaptation in Listeria monocytogenes. FEMS Microbiol Lett 301(2):188–192CrossRefGoogle Scholar
  34. Tsai YT, Salzman V, Cabruja M, Gago G, Gramajo H (2017) Role of long-chain acyl-CoAs in the regulation of mycolic acid biosynthesis in mycobacteria. Open Biol 7(7):170087CrossRefGoogle Scholar
  35. Vadia S, Tse JL, Lucena R, Yang Z, Kellogg DR, Wang JD, Levin PA (2017) Fatty acid availability sets cell envelope capacity and dictates microbial cell size. Curr Biol 27(12):1757–1767CrossRefGoogle Scholar
  36. van Aalten DM, DiRusso CC, Knudsen J, Wierenga RK (2000) Crystal structure of FadR, a fatty acid-responsive transcription factor with a novel acyl coenzyme A-binding fold. EMBO J 19(19):5167–5177CrossRefGoogle Scholar
  37. Yao J, Rock CO (2017) Exogenous fatty acid metabolism in bacteria. Biochimie 141:30–39CrossRefGoogle Scholar
  38. Zhang YM, Rock CO (2008) Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6(3):222–333CrossRefGoogle Scholar
  39. Zhang YM, Marrakchi H, Rock CO (2002) The FabR (YijC) transcription factor regulates unsaturated fatty acid biosynthesis in Escherichia coli. J Biol Chem 277(18):15558–15565CrossRefGoogle Scholar
  40. Zhang YM, Zhu K, Frank MW, Rock CO (2007) A Pseudomonas aeruginosa transcription factor that senses fatty acid structure. Mol Microbiol 66(3):622–632CrossRefGoogle Scholar
  41. Zhang F, Ouellet M, Batth TS, Adams PD, Petzold CJ, Mukhopadhyay A, Keasling JD (2012) Enhancing fatty acid production by the expression of the regulatory transcription factor FadR. Metab Eng 14(6):653–660CrossRefGoogle Scholar
  42. Zhu K, Choi KH, Schweizer HP, Rock CO, Zhang YM (2006) Two aerobic pathways for the formation of unsaturated fatty acids in Pseudomonas aeruginosa. Mol Microbiol 60:260–273CrossRefGoogle Scholar
  43. Zhu K, Zhang YM, Rock CO (2009) Transcriptional regulation of membrane lipid homeostasis in Escherichia coli. J Biol Chem 284(50):34880–34888CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centro de Ciencias GenómicasUniversidad Nacional Autónoma de México (UNAM)CuernavacaMexico
  2. 2.Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC)GranadaSpain

Personalised recommendations