Fatty Acids: Introduction

  • Eric R. Moellering
  • Victoria L. Prince
  • Roger C. PrinceEmail author
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Fatty acids have been part of the biosphere from its beginning, providing a high calorie foodstuff in metabolism, the structural basis of membranes, an important class of intra-and extracellular signaling molecules, and many other functions. They are a diverse group of molecules, although most are linear aliphatic molecules with a terminal carboxylic acid. Here, we provide an overview of their nomenclature, their synthesis, and their biodegradation and an outline of some of the major classes of fatty acids.


  1. Alonso L, Fraga MJ, Juárez M (2000) Determination of trans fatty acids and fatty acid profiles in margarines marketed in Spain. J Am Oil Chem Soc 77:131–136CrossRefGoogle Scholar
  2. Amirta R, Fujimori K, Shirai N, Honda Y, Watanabe T (2003) Ceriporic acid C, a hexadecenylitaconate produced by a lignin-degrading fungus, Ceriporiopsis subvermispora. Chem Phys Lipid 126:121–131CrossRefGoogle Scholar
  3. Aries E, Doumenq P, Artaud J, Acquaviva M, Bertrand JC (2001) Effects of petroleum hydrocarbons on the phospholipid fatty acid composition of a consortium composed of marine hydrocarbon-degrading bacteria. Org Geochem 32:891–903CrossRefGoogle Scholar
  4. Bagby MO, Smith CR Jr, Wolff IA (1965) Laballenic acid. A new allenic acid from Leonotis nepetaefolia seed oil 1. J Org Chem 30:4227–4229CrossRefGoogle Scholar
  5. Banni S, Angioni E, Murru E, Carta G, Paola Melis M, Bauman D, Dong Y, Ip C (2001) Vaccenic acid feeding increases tissue levels of conjugated linoleic acid and suppresses development of premalignant lesions in rat mammary gland. Nutr Cancer 41:91–97PubMedCrossRefPubMedCentralGoogle Scholar
  6. Barford RA, Herb SF, Luddy FE, Magidman P, Riemenschneider RW (1963) Alcoholysis of Vernonia anthelmintica seed oil and isolation of methyl epoxyoleate. J Am Oil Chem Soc 40:136–138CrossRefGoogle Scholar
  7. Barkan D, Liu Z, Sacchettini JC, Glickman MS (2009) Mycolic acid cyclopropanation is essential for viability, drug resistance, and cell wall integrity of Mycobacterium tuberculosis. Chem Biol 16:499–509PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bellou S, Triantaphyllidou IE, Aggeli D, Elazzazy AM, Baeshen MN, Aggelis G (2016) Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Curr Opin Biotechnol 37:24–35PubMedCrossRefPubMedCentralGoogle Scholar
  9. Benoit B, Plaisancie P, Geloen A, Estienne M, Debard C, Meugnier E, Loizon E, Daira P, Bodennec J, Cousin O, Vidal H, Laugerette F, Michalski MC (2014) Pasture v. standard dairy cream in high-fat diet-fed mice: improved metabolic outcomes and stronger intestinal barrier. Br J Nutr 112:520–535PubMedPubMedCentralGoogle Scholar
  10. Berge AFL (2008) How the ideology of low fat conquered America. J Hist Med Allied Sci 63:139–177PubMedCrossRefGoogle Scholar
  11. Blanchet C, Lucas M, Julien P, Morin R, Gingras S, Dewailly E (2005) Fatty acid composition of wild and farmed Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Lipids 40:529–531PubMedCrossRefPubMedCentralGoogle Scholar
  12. Blasbalg TL, Hibbeln JR, Ramsden CE, Majchrzak SF, Rawlings RR (2011) Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. Am J Clin Nutr 93:950–962PubMedPubMedCentralCrossRefGoogle Scholar
  13. Brune T, Haas K (2011) Equisetum species show uniform epicuticular wax structures but diverse composition patterns. AoB Plants 2011:plr009PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bucas G, Saliot A (2002) Sea transport of animal and vegetable oils and its environmental consequences. Mar Pollut Bull 44:1388–1396PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bu’Lock JD (1964) Polyacetylenes and related compounds in nature. Prog Org Chem 6:86–134Google Scholar
  16. Burr GO, Burr MM, Miller ES (1932) On the fatty acids essential in nutrition. 3. J Biol Chem 97:1–9Google Scholar
  17. Campbell JW, Morgan-Kiss RM, Cronan JE Jr (2003) A new Escherichia coli metabolic competency: growth on fatty acids by a novel anaerobic beta-oxidation pathway. Mol Microbiol 47:793–805PubMedCrossRefPubMedCentralGoogle Scholar
  18. Carballeira NM, Reyes M, Sostre A, Huang H, Verhagen MF, Adams MW (1997) Unusual fatty acid compositions of the hyperthermophilic archaeon Pyrococcus furiosus and the bacterium Thermotoga maritima. J Bacteriol 179:2766–2768PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cathey HM, Steffens GL, Stuart NW, Zimmerman RH (1966) Chemical pruning of plants. Science 153:1382–1383PubMedCrossRefPubMedCentralGoogle Scholar
  20. Celmer WD, Solomons IA (1953) Mycomycin. III. The structure of mycomycin, an antibiotic containing allene, diacetylene and cis, trans-diene groupings. J Am Oil Chem Soc 75:1372–1376CrossRefGoogle Scholar
  21. Chan M, Himes RH, Akagi JM (1971) Fatty acid composition of thermophilic, mesophilic, and psychrophilic Clostridia. J Bacteriol 106:876–881PubMedPubMedCentralGoogle Scholar
  22. Chrysan MM (2005) Margarines and spreads. Food emulsifiers and their applications. In: Shahidi F (ed) Bailey’s industrial oil and fat products, 6th edn. Wiley, New York, pp 307–326Google Scholar
  23. Conlon MA, Bird AR (2015) The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7(1):17–44CrossRefGoogle Scholar
  24. Corley TA (1988) A history of the Burmah Oil Company: 1924–66. Heinemann, LondonGoogle Scholar
  25. Curran KA, Leavitt JM, Karim AS, Alper HS (2013) Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metabol Eng 15:55–66CrossRefGoogle Scholar
  26. Da Silva MS, Julien P, Pérusse L, Vohl MC, Rudkowska I (2015) Natural rumen-derived trans fatty acids are associated with metabolic markers of cardiac health. Lipids 50:873–882PubMedCrossRefGoogle Scholar
  27. Daley CA, Abbott A, Doyle PS, Nader GA, Larson S (2010) A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutr J 10:1Google Scholar
  28. Das S, Castillo C, Stevens T (2001) Phospholipid remodeling/generation in Giardia: the role of the lands cycle. Trends Parasitol 17:316–319PubMedCrossRefGoogle Scholar
  29. Davis JB (1964) Microbial incorporation of fatty acids derived from n-alkanes into glycerides and waxes. Appl Microbiol 12:210–214PubMedPubMedCentralGoogle Scholar
  30. Dayan FE, Cantrell CL, Duke SO (2009) Natural products in crop protection. Bioorg Med Chem 17:4022–4034PubMedCrossRefPubMedCentralGoogle Scholar
  31. de Batlle J, Sauleda J, Balcells E, Gomez FP, Mendez M, Rodriguez E, Barreiro E, Ferrer JJ, Romieu I, Gea J, Anto JM, Garcia-Aymerich J (2012) Association between omega3 and omega6 fatty acid intakes and serum inflammatory markers in COPD. J Nutr Biochem 23:817–821PubMedCrossRefGoogle Scholar
  32. de Souza RJ, Mente A, Maroleanu A, Cozma AI, Ha V, Kishibe T, Uleryk E, Budylowski P, Schünemann H, Beyene J, Anand SS (2015) Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. Brit Med J 351:h3978PubMedCrossRefGoogle Scholar
  33. Dear RE, Pattison FL (1963) Toxic fluorine compounds. XVIII. 1 the synthesis of the toxic principle of Dichapetalum toxicarium (18-Fluoro-cis-9-octadecenoic acid) and related ω-fluoro unsaturated acids. J Am Chem Soc 85:622–626CrossRefGoogle Scholar
  34. Dembitsky VM, Srebnik M (2002) Natural halogenated fatty acids: their analogues and derivatives. Prog Lipid Res 41:315–367PubMedCrossRefGoogle Scholar
  35. Dubertret G, Mirshahi A, Mirshahi M, Gerard-Hirne C, Tremolieres A (1994) Evidence from in vivo manipulations of lipid composition in mutants that the delta 3-trans-hexadecenoic acid-containing phosphatidylglycerol is involved in the biogenesis of the light-harvesting chlorophyll a/b-protein complex of Chlamydomonas reinhardtii. Eur J Biochem 226:473–482PubMedCrossRefGoogle Scholar
  36. Dyer JM, Chapital DC, Kuan JC, Mullen RT, Turner C, McKeon TA, Pepperman AB (2002) Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung. Implications for the evolution of plant fatty acid diversity. Plant Physiol 130:2027–2038PubMedPubMedCentralCrossRefGoogle Scholar
  37. English J, Bonner J, Haagen-Smit AJ (1939) Structure and synthesis of a plant wound hormone. Science 90:329PubMedCrossRefGoogle Scholar
  38. Freedman B, Bagby MO (1989) Heats of combustion of fatty esters and triglycerides. J Am Oil Chem Soc 66:1601–1605CrossRefGoogle Scholar
  39. Fujita Y, Matsuoka H, Hirooka K (2007) Regulation of fatty acid metabolism in bacteria. Mol Microbiol 66:829–839PubMedCrossRefPubMedCentralGoogle Scholar
  40. Gao J, Ajjawi I, Manoli A, Sawin A, Xu C, Froehlich JE, Last RL, Benning C (2009) FATTY ACID DESATURASE4 of Arabidopsis encodes a protein distinct from characterized fatty acid desaturases. Plant J 60:832–839PubMedCrossRefPubMedCentralGoogle Scholar
  41. Geiger O (2010) Lipids and Legionella virulence. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology, 1st edn. Springer, Berlin, pp 3195–3202CrossRefGoogle Scholar
  42. Ghosh S, Molcan E, DeCoffe D, Dai C, Gibson DL (2013) Diets rich in n-6 PUFA induce intestinal microbial dysbiosis in aged mice. Br J Nutr 110:515–523PubMedCrossRefPubMedCentralGoogle Scholar
  43. Gibellini F, Smith TK (2010) The Kennedy pathway – de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life 62:414–428PubMedCrossRefPubMedCentralGoogle Scholar
  44. Glass RL, Krick TP, Sand DM, Rahn CH, Schlenk H (1975) Furanoid fatty acids from fish lipids. Lipids 10:695–702PubMedCrossRefPubMedCentralGoogle Scholar
  45. Green AG (1986) A mutant genotype of flax (Linum usitatissimum L.) containing very low levels of linolenic acid in its seed oil. Can J Plant Sci 66:499–503CrossRefGoogle Scholar
  46. Grogan DW, Cronan JE (1997) Cyclopropane ring formation in membrane lipids of bacteria. Microbiol Mol Biol Rev 61:429–441PubMedPubMedCentralGoogle Scholar
  47. Hammond EG, Lundberg WO (1953) A methyl docosahexaenoate: its isolation and characterization. J Am Oil Chem Soc 30:438–441CrossRefGoogle Scholar
  48. Hashimoto M, Orikasa Y, Hayashi H, Watanabe K, Yoshida K, Okuyama H (2015) Occurrence of trans monounsaturated and polyunsaturated fatty acids in Colwellia psychrerythraea strain 34H. J Basic Microbiol 55:838–845PubMedCrossRefPubMedCentralGoogle Scholar
  49. Heipieper HJ, Meinhardt F, Segura A (2003) The cis–trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol Letts 229:1–7CrossRefGoogle Scholar
  50. Herrera LJ, Brand S, Santos A, Nohara LL, Harrison J, Norcross NR, Thompson S, Smith V, Lema C, Varela-Ramirez A, Gilbert IH (2016) Validation of N-myristoyltransferase as potential chemotherapeutic target in mammal-dwelling stages of Trypanosoma cruzi. PLoS Negl Trop Dis 10:e0004540PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hiltunen JK, Mursula AM, Rottensteiner H, Wierenga RK, Kastaniotis AJ, Gurvitz A (2003) The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 27:35–64PubMedCrossRefPubMedCentralGoogle Scholar
  52. Hofmann K, Lucas RA (1950) The chemical nature of a unique fatty acid. J Am Chem Soc 72:4328–4329CrossRefGoogle Scholar
  53. Ishige T, Tani A, Sakai Y, Kato N (2003) Wax ester production by bacteria. Curr Opin Microbiol 6:244–250PubMedCrossRefPubMedCentralGoogle Scholar
  54. Janssen HJ, Steinbuchel A (2014) Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnol Biofuels 7:7PubMedPubMedCentralCrossRefGoogle Scholar
  55. Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ (2012) The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 76:46–65PubMedCrossRefPubMedCentralGoogle Scholar
  56. Johnson EA, Burdon KL (1947) Mycomycin-a new antibiotic produced by a moldlike actinomycete active against the bacilli of human tuberculosis. J Bacteriol 54:281PubMedPubMedCentralGoogle Scholar
  57. Jump DB, Tripathy S, Depner CM (2013) Fatty acid–regulated transcription factors in the liver. Ann Rev Nutr 33:249–269CrossRefGoogle Scholar
  58. Junker F, Ramos JL (1999) Involvement of the cis/trans isomerase Cti in solvent resistance of Pseudomonas putida DOT-T1E. J Bacteriol 181:5693–5700PubMedPubMedCentralGoogle Scholar
  59. Jusoh M, Loh SH, Chuah TS, Aziz A, San Cha T (2015) Elucidating the role of jasmonic acid in oil accumulation, fatty acid composition and gene expression in Chlorella vulgaris (Trebouxiophyceae) during early stationary growth phase. Algal Res 9:14–20CrossRefGoogle Scholar
  60. Kaneda T (1991) Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 55:288–302PubMedPubMedCentralGoogle Scholar
  61. Kass LR, Bloch K (1967) On the enzymatic synthesis of unsaturated fatty acids in Escherichia coli. Proc Natl Acad Sci U S A 58:1168–1173PubMedPubMedCentralCrossRefGoogle Scholar
  62. Keweloh H, Heipieper HJ (1996) Trans unsaturated fatty acids in bacteria. Lipids 31:129–137PubMedCrossRefPubMedCentralGoogle Scholar
  63. Kim JJ, Miura R (2004) Acyl-CoA dehydrogenases and acyl-CoA oxidases. Structural basis for mechanistic similarities and differences. Eur J Biochem 271:483–493PubMedCrossRefPubMedCentralGoogle Scholar
  64. Kirpich IA, Petrosino J, Ajami N, Feng W, Wang Y, Liu Y, Beier JI, Barve SS, Yin X, Wei X, Zhang X, McClain CJ (2016) Saturated and unsaturated dietary fats differentially modulate ethanol-induced changes in gut microbiome and metabolome in a mouse model of alcoholic liver disease. Am J Pathol 186:765–776PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kleber ME, Delgado GE, Lorkowski S, März W, von Schacky C (2015) Trans fatty acids and mortality in patients referred for coronary angiography: the Ludwigshafen risk and cardiovascular health study. Eur Heart J 2015:ehv446Google Scholar
  66. Klein RA, Hazlewood GP, Kemp P, Dawson RM (1979) A new series of long-chain dicarboxylic acids with vicinal dimethyl branching found as major components of the lipids of Butyrivibrio spp. Biochem J 183:691–700PubMedPubMedCentralCrossRefGoogle Scholar
  67. Knothe G, Dunn RO (2009) A comprehensive evaluation of the melting points of fatty acids and esters determined by differential scanning calorimetry. J Am Oil Chem Soc 86:843–856CrossRefGoogle Scholar
  68. Kuo J, Khosla C (2014) The initiation ketosynthase (FabH) is the sole rate-limiting enzyme of the fatty acid synthase of Synechococcus sp. PCC 7002. Metab Eng 22:53–59PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lands WEM (1960) Metabolism of glycerolipids. II. The enzymatic acylation of lysolecithin. J Biol Chem 235:2233–2237PubMedPubMedCentralGoogle Scholar
  70. Lang I, Hodac L, Friedl T, Feussner I (2011) Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol 11:124PubMedPubMedCentralCrossRefGoogle Scholar
  71. Lazzari M, Chiantore O (1999) Drying and oxidative degradation of linseed oil. Polymer Deg Stabil 65:303–313CrossRefGoogle Scholar
  72. Linder ME, Deschenes RJ (2007) Palmitoylation: policing protein stability and traffic. Nat Rev Mol Cell Biol 8:74–84PubMedCrossRefPubMedCentralGoogle Scholar
  73. Longo N, Frigeni M, Pasquali M (2016) Carnitine transport and fatty acid oxidation. Biochim Biophys Acta 1863:2422–2435PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lynen F (1964) The pathway from “activated acetic acid” to the terpenes and fatty acids. Proc Roy Karol Inst 1964:103–138Google Scholar
  75. Lynen F (1969) Yeast fatty acid synthase. Meth Enzymol 14:17–33CrossRefGoogle Scholar
  76. Maggio-Hall LA, Keller NP (2004) Mitochondrial beta-oxidation in Aspergillus nidulans. Mol Microbiol 54:1173–1185PubMedCrossRefPubMedCentralGoogle Scholar
  77. Makula R, Finnerty WR (1968) Microbial assimilation of hydrocarbons I. Fatty acids derived from normal alkanes. J Bacteriol 95:2102–2107PubMedPubMedCentralGoogle Scholar
  78. McDaniel J, Askew W, Bennett D, Mihalopoulos J, Anantharaman S, Fjeldstad AS, Rule DC, Nanjee NM, Harris RA, Richardson RS (2013) Bison meat has a lower atherogenic risk than beef in healthy men. Nutr Res 33:293–302PubMedPubMedCentralCrossRefGoogle Scholar
  79. McMurrough I, Rose AH (1973) Effects of temperature variation on the fatty acid composition of a psychrophilic Candida species. J Bacteriol 114:451–452PubMedPubMedCentralGoogle Scholar
  80. Meesapyodsuk D, Qiu X (2008) An oleate hydroxylase from the fungus Claviceps purpurea: cloning, functional analysis, and expression in Arabidopsis. Plant Physiol 147:1325–1333PubMedPubMedCentralCrossRefGoogle Scholar
  81. Metz JG, Roessler P, Facciotti D, Levering C, Dittrich F, Lassner M, Valentine R, Lardizabal K, Domergue F, Yamada A, Yazawa K, Knauf V, Browse J (2001) Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293:290–293PubMedCrossRefPubMedCentralGoogle Scholar
  82. Metzger JO (2009) Fats and oils as renewable feedstock for chemistry. Eur J Lipid Sci Technol 111:865–876CrossRefGoogle Scholar
  83. Montgomery MK, Osborne B, Brown SH, Small L, Mitchell TW, Cooney GJ, Turner N (2013) Contrasting metabolic effects of medium- versus long-chain fatty acids in skeletal muscle. J Lipid Res 54:3322–3333PubMedPubMedCentralCrossRefGoogle Scholar
  84. Morita N, Shibahara A, Yamamoto K, Shinkai K, Kajimoto G, Okuyama H (1993) Evidence for cis-trans isomerization of a double bond in the fatty acids of the psychrophilic bacterium Vibrio sp. strain ABE-1. J Bacteriol 175:916–918PubMedPubMedCentralCrossRefGoogle Scholar
  85. Mudge S (1997) Can vegetable oils outlast mineral oils in the marine environment? Mar Pollut Bull 34:213CrossRefGoogle Scholar
  86. Mustonen AM, Käkelä R, Nieminen P (2007) Different fatty acid composition in central and peripheral adipose tissues of the American mink (Mustela vison). Comp Biochem Physiol A 147:903–910CrossRefGoogle Scholar
  87. Nada MA, Abdel-Aleem S, Schulz H (1995) On the rate-limiting step in the beta-oxidation of polyunsaturated fatty acids in the heart. Biochim Biophys Acta 1255:244–250PubMedCrossRefPubMedCentralGoogle Scholar
  88. Nagy B, Bitz SM (1963) Long-chain fatty acids from the Orgueil meteorite. Arch of Biochem Biophys 101:240–248CrossRefGoogle Scholar
  89. Nakamura MT, Yudell BE, Loor JJ (2014) Regulation of energy metabolism by long-chain fatty acids. Prog Lipid Res 53:124–144PubMedCrossRefPubMedCentralGoogle Scholar
  90. Nudda A, McGuire MA, Battacone G, Pulina G (2005) Seasonal variation in conjugated linoleic acid and vaccenic acid in milk fat of sheep and its transfer to cheese and ricotta. J Dairy Sci 88:1311–1319PubMedCrossRefGoogle Scholar
  91. Ohnishi M, Thompson GA Jr (1991) Biosynthesis of the unique trans-delta 3-hexadecenoic acid component of chloroplast phosphatidylglycerol: evidence concerning its site and mechanism of formation. Arch Biochem Biophys 288:591–599PubMedCrossRefGoogle Scholar
  92. Oshima MI, Ariga T (1975) Omega-cyclohexyl fatty acids in acidophilic thermophilic bacteria. Studies on their presence, structure, and biosynthesis using precursors labeled with stable isotopes and radioisotopes. J Biol Chem 250:6963–6968PubMedGoogle Scholar
  93. Pérez AC, Goossens A (2013) Jasmonate signaling: a copycat of auxin signaling? Plant Cell Environ 36:2071–2084PubMedCrossRefGoogle Scholar
  94. Poirier Y, Antonenkov VD, Glumoff T, Hiltunen JK (2006) Peroxisomal beta-oxidation-a metabolic pathway with multiple functions. Biochim Biophys Acta 1763:1413–1426PubMedCrossRefGoogle Scholar
  95. Pond CM, Mattacks CA, Colby RH, Ramsay MA (1992) The anatomy, chemical composition, and metabolism of adipose tissue in wild polar bears (Ursus maritimus). Can J Zoo 70:326–341CrossRefGoogle Scholar
  96. Qureshi N, Takayama K, Jordi HC, Schnoes HK (1978) Characterization of the purified components of a new homologous series of alpha-mycolic acids from Mycobacterium tuberculosis H37Ra. J Biol Chem 253:5411–5417PubMedGoogle Scholar
  97. Riekhof WR, Sears BB, Benning C (2005) Annotation of genes involved in glycerolipid biosynthesis in Chlamydomonas reinhardtii: discovery of the betaine lipid synthase BTA1Cr. Eukaryot Cell 4:242–252PubMedPubMedCentralCrossRefGoogle Scholar
  98. Rontani JF, Christodoulou S, Koblizek M (2005) GC-MS structural characterization of fatty acids from marine aerobic anoxygenic phototrophic bacteria. Lipids 40:97–108PubMedCrossRefGoogle Scholar
  99. Rossi M, Buzzini P, Cordisco L, Amaretti A, Sala M, Raimondi S, Ponzoni C, Pagnoni UM, Matteuzzi D (2009) Growth, lipid accumulation, and fatty acid composition in obligate psychrophilic, facultative psychrophilic, and mesophilic yeasts. FEMS Microbiol Ecol 69:363–372PubMedCrossRefGoogle Scholar
  100. Royce LA, Liu P, Stebbins MJ, Hanson BC, Jarboe LR (2013) The damaging effects of short chain fatty acids on Escherichia coli membranes. Appl Microbiol Biotechnol 97:8317–8327PubMedPubMedCentralCrossRefGoogle Scholar
  101. Ruxton CH, Reed SC, Simpson MJ, Millington KJ (2004) The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence. J Hum Nutr Diet 17:449–459PubMedCrossRefGoogle Scholar
  102. Ryan VH, Primiani CT, Rao JS, Ahn K, Rapoport SI (2014) Coordination of gene expression of arachidonic and docosahexaenoic acid cascade. PLOS One 9:e100858PubMedPubMedCentralCrossRefGoogle Scholar
  103. Schonfeld P, Wojtczak L (2016) Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. J Lipid Res 57:943–954PubMedPubMedCentralCrossRefGoogle Scholar
  104. Schröder M, Vetter W (2013) Detection of 430 fatty acid methyl esters from a transesterified butter sample. J Am Oil Chem Soc 90:771–790CrossRefGoogle Scholar
  105. Schweizer E, Hofmann J (2004) Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems. Microbiol Mol Biol Rev 68:501–517PubMedPubMedCentralCrossRefGoogle Scholar
  106. Segré D, Ben-Eli D, Deamer DW, Lancet D (2001) The lipid world. Orig Life Evol B 31:119–145CrossRefGoogle Scholar
  107. Shah J (2009) Plants under attack: systemic signals in defence. Curr Opin Plant Biol 12:459–464PubMedCrossRefGoogle Scholar
  108. Shirasaka N, Nishi K, Shimizu S (1995) Occurrence of a furan fatty acid in marine bacteria. Biochim Biophys Acta 1258:225–227PubMedCrossRefGoogle Scholar
  109. Silva SA, Salvador AF, Cavaleiro AJ, Pereira MA, Stams AJ, Alves MM, Sousa DZ (2016) Toxicity of long chain fatty acids towards acetate conversion by Methanosaeta concilii and Methanosarcina mazei. Microb Biotechnol 9:514–518PubMedPubMedCentralCrossRefGoogle Scholar
  110. Simopoulos AP (2008) The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med 233:674–688CrossRefGoogle Scholar
  111. Smith RJ, Grula EA (1982) Toxic components on the larval surface of the corn earworm (Heliothis zea) and their effects on germination and growth of Beauveria bassiana. J Invert Pathol 39:15–22CrossRefGoogle Scholar
  112. Song TJ, Cho HJ, Chang Y, Choi K, Jung AR, Youn M, Shin MJ, Kim YJ (2015) Low plasma proportion of omega 3-polyunsaturated fatty acids predicts poor outcome in acute non-cardiogenic ischemic stroke patients. J Stroke 17:168–176PubMedPubMedCentralCrossRefGoogle Scholar
  113. Sztajer H, Wagner G, Schmnid RD (1993) Bacterial short-chain acyl-CoA oxidase: production, purification and characterization. Appl Microbiol Biotechnol 39:708–713CrossRefGoogle Scholar
  114. Takayama K, Wang C, Besra GS (2005) Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev 18:81–101PubMedPubMedCentralCrossRefGoogle Scholar
  115. Taleshi MS, Edmonds JS, Goessler W, Ruiz-Chancho MJ, Raber G, Jensen KB, Francesconi KA (2010) Arsenic-containing lipids are natural constituents of sashimi tuna. Environ Sci Technol 44:1478–1483PubMedCrossRefPubMedCentralGoogle Scholar
  116. Tehlivets O, Scheuringer K, Kohlwein SD (2007) Fatty acid synthesis and elongation in yeast. Biochim Biophys Acta 1771:255–270PubMedCrossRefPubMedCentralGoogle Scholar
  117. Teoh ML, Chu WL, Marchant H, Phang SM (2004) Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. J Appl Phycol 16:421–430CrossRefGoogle Scholar
  118. Toomey RE, Wakil SJ (1966) Studies on the mechanism of fatty acid synthesis. XVI. Preparation and general properties of acyl-malonyl acyl carrier protein-condensing enzyme from Escherichia coli. J Biol Chem 241:1159–1165PubMedPubMedCentralGoogle Scholar
  119. Vagelos PR, Alberts AW, Majerus PW (1969) Mechanism of saturated fatty acid biosynthesis in Escherichia coli. Meth Enzymol 14:39–43CrossRefGoogle Scholar
  120. Vieler A, Wu G, Tsai CH, Bullard B, Cornish AJ, Harvey C, Reca IB, Thornburg C, Achawanantakun R, Buehl CJ, Campbell MS, Cavalier D, Childs KL, Clark TJ, Deshpande R, Erickson E, Armenia Ferguson A, Handee W, Kong Q, Li X, Liu B, Lundback S, Peng C, Roston RL, Sanjaya SJP, Terbush A, Warakanont J, Zauner S, Farre EM, Hegg EL, Jiang N, Kuo MH, Lu Y, Niyogi KK, Ohlrogge J, Osteryoung KW, Shachar-Hill Y, Sears BB, Sun Y, Takahashi H, Yandell M, Shiu SH, Benning C (2012) Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet 8:e1003064PubMedPubMedCentralCrossRefGoogle Scholar
  121. von Berlepsch S, Kunz HH, Brodesser S, Fink P, Marin K, Flugge UI, Gierth M (2012) The acyl-acyl carrier protein synthetase from Synechocystis sp. PCC 6803 mediates fatty acid import. Plant Physiol 159:606–617CrossRefGoogle Scholar
  122. Vrkoslav V, Míková R, Cvačka J (2009) Characterization of natural wax esters by MALDI-TOF mass spectrometry. J Mass Spectrom 44:101–110PubMedCrossRefPubMedCentralGoogle Scholar
  123. Wakimoto T, Kondo H, Nii H, Kimura K, Egami Y, Oka Y, Yoshida M, Kida E, Ye Y, Akahoshi S, Asakawa T (2011) Furan fatty acid as an anti-inflammatory component from the green-lipped mussel Perna canaliculus. Proc Natl Acad Sci U S A 108:17533–17537PubMedPubMedCentralCrossRefGoogle Scholar
  124. Wallingford SC, Hughes MC, Green AC, van der Pols JC (2013) Plasma omega-3 and omega-6 concentrations and risk of cutaneous basal and squamous cell carcinomas in Australian adults. Cancer Epidemiol Biomark Prev 22:1900–1905CrossRefGoogle Scholar
  125. Weaver KL, Ivester P, Seeds M, Case LD, Arm JP, Chilton FH (2009) Effect of dietary fatty acids on inflammatory gene expression in healthy humans. J Biol Chem 284:15400–15407PubMedPubMedCentralCrossRefGoogle Scholar
  126. Wisotzkey JD, Jurtshuk P Jr, Fox GE, Deinhard G, Poralla K (1992) Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int J Syst Bacteriol 42:263–269PubMedCrossRefPubMedCentralGoogle Scholar
  127. Ye C, Qiao W, Yu X, Ji X, Huang H, Collier JL, Liu L (2015) Reconstruction and analysis of the genome-scale metabolic model of Schizochytrium limacinum SR21 for docosahexaenoic acid production. BMC Genomics 16:799PubMedPubMedCentralCrossRefGoogle Scholar
  128. Yoshida K, Hashimoto M, Hori R, Adachi T, Okuyama H, Orikasa Y, Nagamine T, Shimizu S, Ueno A, Morita N (2016) Bacterial long-chain polyunsaturated fatty acids: their biosynthetic genes, functions, and practical use. Mar Drugs 14:94PubMedCentralCrossRefGoogle Scholar
  129. Yu X, Liu T, Zhu F, Khosla C (2011) In vitro reconstitution and steady-state analysis of the fatty acid synthase from Escherichia coli. Proc Natl Acad Sci U S A 108:18643–18648PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Eric R. Moellering
    • 1
  • Victoria L. Prince
    • 2
  • Roger C. Prince
    • 3
    Email author
  1. 1.Synthetic Genomics, Inc.La JollaUSA
  2. 2.Department of Family and Preventive MedicineUniversity of Utah School of MedicineSalt Lake CityUSA
  3. 3.Stonybrook ApiaryPittstownUSA

Personalised recommendations