Advertisement

Marinobacter as a Model Organism for Wax Ester Accumulation in Bacteria

  • Carolann M. Knutson
  • Eric M. Lenneman
  • Brett M. BarneyEmail author
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Wax esters are derived from the esterification of a long-chain fatty alcohol with a fatty acid. Wax esters are a diverse type of neutral lipid that is utilized by all domains of life to serve a wide variety of functions. The model bacterium Marinobacter aquaeolei VT8 has become an ideal model organism for studying wax ester biosynthesis, as it naturally accumulates wax esters in addition to having many other desirable features. While the pathway of wax ester biosynthesis has been mostly elucidated, there are still potential gaps in our understanding of how the two independent pathways of fatty acid biosynthesis and wax ester biosynthesis are linked. M. aquaeolei VT8 has also become a primary source of a number of key enzymes from the wax ester biosynthesis pathway that are either studied in the laboratory for purposes of characterization or have been transferred to other model species for use in developing alternative biosynthetic routes to novel products. Studies of global transcriptional regulation during wax ester biosynthesis are also providing us with a view of how organisms that evolved to accumulate wax esters naturally could be used as a template to inform decisions as we attempt to move these pathways into foreign hosts. Understanding the in vivo flow of substrates through the wax ester biosynthesis from de novo fatty acid biosynthesis to the final wax ester product is a key requirement to improving biosynthetic approaches for producing wax esters.

Notes

Acknowledgments

This work was supported by grants from the National Science Foundation to B.M.B. (Award Numbers 0968781 and CBET-1437758). Further support was provided through generous start-up funds through the University of Minnesota.

References

  1. Alvarez HM, Luftmann H, Silva RA, Cesari AC, Viale A, Wältermann M, Steinbüchel A (2002) Identification of phenyldecanoic acid as a constituent of triacylglycerols and wax ester produced by Rhodococcus opacus PD630. Microbiology 148:1407–1412CrossRefGoogle Scholar
  2. Amin SA, Green DH, Hart MC, Küpper FC, Sunda WG, Carrano CJ (2009) Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism. Proc Natl Acad Sci U S A 106:17071–17076CrossRefGoogle Scholar
  3. Aslan S, Hofvander P, Dutta P, Sun CX, Sitbon F (2015) Increased production of wax esters in transgenic tobacco plants by expression of a fatty acid reductase: wax synthase gene fusion. Transgenic Res 24:945–953CrossRefGoogle Scholar
  4. Bakermans C, Ayala-del-Río HL, Ponder MA, Vishnivetskaya T, Gilichinsky D, Thomashow MF, Tiedje JM (2006) Psychrobacter cryohalolentis sp. nov. and Psychrobacter arcticus sp. nov., isolated from Siberian permafrost. Int J Syst Evol Microbiol 56:1285–1291CrossRefGoogle Scholar
  5. Barbe V, Vallenet D, Fonknechten N, Kreimeyer A, Oztas S, Labarre L, Cruveiller S, Robert C, Duprat S, Wincker P, Ornston LN, Weissenbach J, Marlière P, Cohen GN, Médigue C (2004) Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Res 32:5766–5779CrossRefGoogle Scholar
  6. Barney BM, LoBrutto R, Francisco WA (2004) Characterization of a small metal binding protein from Nitrosomonas europaea. Biochemistry 43:11206–11213CrossRefGoogle Scholar
  7. Barney BM, Wahlen BD, Garner E, Wei JS, Seefeldt LC (2012) Differences in substrate specificities of five bacterial wax ester synthases. Appl Environ Microbiol 78:5734–5745CrossRefGoogle Scholar
  8. Barney BM, Mann RL, Ohlert JM (2013) Identification of a residue affecting fatty alcohol selectivity in wax ester synthase. Appl Environ Microbiol 79:396–399CrossRefGoogle Scholar
  9. Barney BM, Ohlert JM, Timler JG, Lijewski AM (2015) Altering small and medium alcohol selectivity in the wax ester synthase. Appl Microbiol Biotechnol 99:9675–9684CrossRefGoogle Scholar
  10. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242CrossRefGoogle Scholar
  11. Bonis BM, Gralnick JA (2015) Marinobacter subterrani, a genetically tractable neutrophilic Fe(II)-oxidizing strain isolated from the Soudan iron mine. Front Microbiol 6:11CrossRefGoogle Scholar
  12. Broadwater JA, Fox BG (1999) Spinach holo-acyl carrier protein: overproduction and phosphopantetheinylation in Escherichia coli BL21(DE3), in vitro acylation, and enzymatic desaturation of histidine-tagged isoform I. Protein Expr Purif 15:314–326CrossRefGoogle Scholar
  13. Cho HS, Cronan JE (1995) Defective export of a periplasmic enzyme disrupts regulation of fatty-acid synthesis. J Biol Chem 270:4216–4219CrossRefGoogle Scholar
  14. Constantinides PP, Steim JM (1985) Physical properties of fatty acyl-CoA. Critical micelle concentrations and micellar size and shape. J Biol Chem 260:7573–7580PubMedGoogle Scholar
  15. Coursolle D, Lian JZ, Shanklin J, Zhao HM (2015) Production of long chain alcohols and alkanes upon coexpression of an acyl-ACP reductase and aldehyde-deformylating oxygenase with a bacterial type-I fatty acid synthase in E. coli. Mol BioSyst 11:2464–2472CrossRefGoogle Scholar
  16. Gardes A, Kaeppel E, Shehzad A, Seebah S, Teeling H, Yarza P, Glockner FO, Grossart HP, Ullrich MS (2010) Complete genome sequence of Marinobacter adhaerens type strain (HP15), a diatom-interacting marine microorganism. Stand Genomic Sci 3:97–107CrossRefGoogle Scholar
  17. Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P, Bertrand JC (1992) Marinobacter hydrocarbonoclasticus gen-Nov, sp-Nov, a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576CrossRefGoogle Scholar
  18. Han L, Lobo S, Reynolds KA (1998) Characterization of β-ketoacyl-acyl carrier protein synthase III from Streptomyces glaucescens and its role in initiation of fatty acid biosynthesis. J Bacteriol 180:4481–4486PubMedPubMedCentralGoogle Scholar
  19. Hoffmann N, Amara AA, Beermann BB, QS Q, Hinz HJ, BHA R (2002) Biochemical characterization of the Pseudomonas putida 3-hydroxyacyl ACP: CoA transacylase, which diverts intermediates of fatty acid de novo biosynthesis. J Biol Chem 277:42926–42936CrossRefGoogle Scholar
  20. Hofvander P, Doan TTP, Hamberg M (2011) A prokaryotic acyl-CoA reductase performing reduction of fatty acyl-CoA to fatty alcohol. FEBS Lett 585:3538–3543CrossRefGoogle Scholar
  21. Holtzapple E, Schmidt-Dannert C (2007) Biosynthesis of isoprenoid wax ester in Marinobacter hydrocarbonoclasticus DSM 8798: identification and characterization of isoprenoid coenzyme a synthetase and wax ester synthases. J Bacteriol 189:3804–3812CrossRefGoogle Scholar
  22. Homann VV, Edwards KJ, Webb EA, Butler A (2009) Siderophores of Marinobacter aquaeolei: petrobactin and its sulfonated derivatives. Biometals 22:565–571CrossRefGoogle Scholar
  23. Huu NB, Denner EBM, Ha DTC, Wanner G, Stan-Lotter H (1999) Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol 49:367–375CrossRefGoogle Scholar
  24. Kalscheuer R, Steinbüchel A (2003) A novel bifunctional wax ester synthase/acyl-CoA: diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J Biol Chem 278:8075–8082CrossRefGoogle Scholar
  25. Kalscheuer R, Stölting T, Steinbüchel A (2006a) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152:2529–2536CrossRefGoogle Scholar
  26. Kalscheuer R, Stöveken T, Luftmann H, Malkus U, Reichelt R, Steinbüchel A (2006b) Neutral lipid biosynthesis in engineered Escherichia coli: jojoba oil-like wax esters and fatty acid butyl esters. Appl Environ Microbiol 72:1373–1379CrossRefGoogle Scholar
  27. Kapust RB, Waugh DS (1999) Escherichia coli Maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 8:1668–1674CrossRefGoogle Scholar
  28. Kervabon A, Albert B, Etemadi AH (1977) Subunit composition and some properties of palmitoyl-CoA-ACP-transacylase of Mycobacterium smegmatis. Biochimie 59:363–374CrossRefGoogle Scholar
  29. Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC, Huettel M (2011) Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the Deepwater horizon oil spill. Appl Environ Microbiol 77:7962–7974CrossRefGoogle Scholar
  30. Kuo TM, Ohlrogge JB (1984) A novel, general radioimmunoassay for acyl carrier proteins. Anal Biochem 136:497–502CrossRefGoogle Scholar
  31. Lenneman EM (2013) The utilization of algicidal bacteria for improved lipid extractions and insights into neutral lipid production in a wax ester accumulating bacterium, Univeristy of MinnesotaGoogle Scholar
  32. Lenneman EM, Ohlert JM, Palani NP, Barney BM (2013) Fatty alcohols for wax esters in Marinobacter aquaeolei VT8: two optional routes in the wax biosynthesis pathway. Appl Environ Microbiol 79:7055–7062CrossRefGoogle Scholar
  33. Liu A, Tan X, Yao L, Lu X (2013) Fatty alcohol production in engineered E. coli expressing Marinobacter fatty acyl-CoA reductases. Appl Microbiol Biotechnol 97:7061–7071CrossRefGoogle Scholar
  34. Lupette J, Lami R, Krasovec M, Grimsley N, Moreau H, Piganeau G, Sanchez-Ferandin S (2016) Marinobacter dominates the bacterial community of the Ostreococcus tauri phycosphere in culture. Front Microbiol 7:14CrossRefGoogle Scholar
  35. Manilla-Pérez E, Lange AB, Hetzler S, Steinbüchel A (2010) Occurrence, production, and export of lipophilic compounds by hydrocarbonoclastic marine bacteria and their potential use to produce bulk chemicals from hydrocarbons. Appl Microbiol Biotechnol 86:1693–1706CrossRefGoogle Scholar
  36. McLeod MP, Warren RL, Hsiao WW, Araki N, Myhre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D, Dosanjh M, Hara H, Petrescu A, Morin RD, Yang G, Stott JM, Schein JE, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones SJ, Holt R, Brinkman FS, Miyauchi K, Fukuda M, Davies JE, Mohn WW, Eltis LD (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci U S A 103:15582–15587CrossRefGoogle Scholar
  37. Nakano M, Iehata S, Tanaka R, Maeda H (2012) Extracellular neutral lipids produced by the marine bacteria Marinobacter sp. Biocontrol Sci 17:69–75CrossRefGoogle Scholar
  38. Pérez D, Martín S, Fernández-Lorente G, Filice M, Guisán JM, Ventosa A, García MT, Mellado E (2011) A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA). PLoS One 6:11Google Scholar
  39. Reiser S, Somerville C (1997) Isolation of mutants of Acinetobacter calcoaceticus deficient in wax ester synthesis and complementation of one mutation with a gene encoding a fatty acyl coenzyme a reductase. J Bacteriol 179:2969–2975CrossRefGoogle Scholar
  40. Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–562CrossRefGoogle Scholar
  41. Shanklin J (2000) Overexpression and purification of the Escherichia coli inner membrane enzyme acyl-acyl carrier protein synthase in an active form. Protein Expr Purif 18:355–360CrossRefGoogle Scholar
  42. Shanmughapriya S, Kiran GS, Selvin J, Thomas TA, Rani C (2010) Optimization, purification, and characterization of extracellular mesophilic alkaline cellulase from sponge-associated Marinobacter sp. MSI032. Appl Biochem Biotechnol 162:625–640CrossRefGoogle Scholar
  43. Shi SB, Valle-Rodríguez JO, Khoomrung S, Siewers V, Nielsen J (2012) Functional expression and characterization of five wax ester synthases in Saccharomyces cerevisiae and their utility for biodiesel production. Biotechnol Biofuels 5CrossRefGoogle Scholar
  44. Singer E, Webb EA, Nelson WC, Heidelberg JF, Ivanova N, Pati A, Edwards KJ (2011) Genomic potential of Marinobacter aquaeolei, a biogeochemical “opportunitroph”. Appl Environ Microbiol 77:2763–2771CrossRefGoogle Scholar
  45. Stöveken T, Steinbüchel A (2008) Bacterial acyltransferases as an alternative for lipase-catalyzed acylation for the production of oleochemicals and fuels. Angew Chem Int Ed Eng 47:3688–3694CrossRefGoogle Scholar
  46. Stöveken T, Kalscheuer R, Steinbüchel A (2009) Both histidine residues of the conserved HHXXXDG motif are essential for wax ester synthase/acyl-CoA: diacylglycerol acyltransferase catalysis. Eur J Lipid Sci Technol 111:112–119CrossRefGoogle Scholar
  47. Strycharz-Glaven SM, Glaven RH, Wang Z, Zhou J, Vora GJ, Tender LM (2013) Electrochemical investigation of a microbial solar cell reveals a nonphotosynthetic biocathode catalyst. Appl Environ Microbiol 79:3933–3942CrossRefGoogle Scholar
  48. Takle GW, Toth IK, Brurberg MB (2007) Evaluation of reference genes for real-time RT-PCR expression studies in the plant pathogen Pectobacterium atrosepticum. BMC Plant Biol 7CrossRefGoogle Scholar
  49. Teo WS, Ling H, Yu AQ, Chang MW (2015) Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid short- and branched-chain alkyl esters biodiesel. Biotechnol Biofuels 8:9CrossRefGoogle Scholar
  50. Vetting MW, Al-Obaidi N, Zhao SW, San Francisco B, Kim J, Wichelecki DJ, Bouvier JT, Solbiati JO, Vu H, Zhang XS, Rodionov DA, Love JD, Hillerich BS, Seidel RD, Quinn RJ, Osterman AL, Cronan JE, Jacobson MP, Gerlt JA, Almo SC (2015) Experimental strategies for functional annotation and metabolism discovery: targeted screening of solute binding proteins and unbiased panning of metabolomes. Biochemistry 54:909–931CrossRefGoogle Scholar
  51. Villa JA, Ray EE, Barney BM (2014) Azotobacter vinelandii Siderophore can provide nitrogen to support the culture of the green algae Neochloris oleoabundans and Scenedesmus sp. BA032. FEMS Microbiol Lett 351:70–77CrossRefGoogle Scholar
  52. Vorobiev SM, Neely H, Yu B, Seetharaman J, Xiao R, Acton TB, Montelione GT, Hunt JF (2012) Crystal structure of a catalytically active GG(D/E)EF diguanylate cyclase domain from Marinobacter aquaeolei with bound c-di-GMP product. J Struct Funct Genom 13:177–183CrossRefGoogle Scholar
  53. Wahlen BD, Oswald WS, Seefeldt LC, Barney BM (2009) Purification, characterization, and potential bacterial wax production role of an NADPH-dependent fatty aldehyde reductase from Marinobacter aquaeolei VT8. Appl Environ Microbiol 75:2758–2764CrossRefGoogle Scholar
  54. Wältermann M, Hinz A, Robenek H, Troyer D, Reichelt R, Malkus U, Galla HJ, Kalscheuer R, Stöveken T, von Landenberg P, Steinbüchel A (2005) Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up. Mol Microbiol 55:750–763CrossRefGoogle Scholar
  55. Wältermann M, Stöveken T, Steinbüchel A (2007) Key enzymes for biosynthesis of neutral lipid storage compounds in prokaryotes: properties, function and occurrence of wax ester synthases/acyl-CoA: diacylglycerol acyltransferases. Biochimie 89:230–342CrossRefGoogle Scholar
  56. Wang W, Wei H, Knoshaug E, Van Wychen S, Xu Q, Himmel ME, Zhang M (2016) Fatty alcohol production in Lipomyces starkeyi and Yarrowia lipolytica. Biotechnol Biofuels 9:12CrossRefGoogle Scholar
  57. Wei J, Timler JG, Knutson CM, Barney BM (2013) Branched-chain 2-keto acid decarboxylases derived from Psychrobacter. FEMS Microbiol Lett 346:105–112CrossRefGoogle Scholar
  58. Williamson IP, Wakil SJ (1966) Studies on the mechanism of fatty acid synthesis. XVII. Preparation and general properties of acetyl coenzyme a and malonyl coenzyme A-acyl carrier protein transacylases. J Biol Chem 241:2326–2332PubMedGoogle Scholar
  59. Willis RM, Wahlen BD, Seefeldt LC, Barney BM (2011) Characterization of a fatty acyl-CoA reductase from Marinobacter aquaeolei VT8: a bacterial enzyme catalyzing the reduction of fatty acyl-CoA to fatty alcohol. Biochemistry 50:10550–10558CrossRefGoogle Scholar
  60. Yao L, Qi FX, Tan XM, Lu XF (2014) Improved production of fatty alcohols in cyanobacteria by metabolic engineering. Biotechnol Biofuels 7:9CrossRefGoogle Scholar
  61. Youngquist JT, Schumacher MH, Rose JP, Raines TC, Politz MC, Copeland MF, Pfleger BF (2013) Production of medium chain length fatty alcohols from glucose in Escherichia coli. Metab Eng 20:177–186CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Carolann M. Knutson
    • 1
  • Eric M. Lenneman
    • 1
  • Brett M. Barney
    • 1
    Email author
  1. 1.Department of Bioproducts and Biosystems EngineeringUniversity of MinnesotaSt. PaulUSA

Personalised recommendations