Advertisement

Lipoteichoic Acid Synthesis and Function in Gram-Positive Bacteria

  • Olaf Schneewind
  • Dominique MissiakasEmail author
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Lipoteichoic acids (LTA), polymers of repeating phosphodiester-linked polyols, are found in the outer leaflet of the plasma membrane of Gram-positive bacteria. Research on LTA structure represents a large, mostly unexplored frontier. LTA biosynthesis has been studied in several model organisms, including Staphylococcus aureus, Streptococcus pneumoniae, Bacillus subtilis, and Bacillus anthracis. This work led to several hypotheses of LTA function to support bacterial growth, cell division and separation, ion hemostasis, as well as envelope assembly and integrity. Molecular genetic studies also revealed catalysts for LTA substituents with D-alanine, phosphocholine and glycolipid anchors that impact the invasive attributes of bacterial pathogens or the anti-inflammatory attributes of microbiota. Consequently, LTA is being explored as a target for the development of antibiotics, vaccines, and immune therapeutics in order to address important unmet clinical needs for the treatment of human ailments.

References

  1. Abachin E, Poyart C, Pellegrini E et al (2002) Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Mol Microbiol 43:1–14PubMedCrossRefGoogle Scholar
  2. Arakawa H, Shimada A, Ishimoto N et al (1981) Occurrence of ribitol-containing lipoteichoic acid in Staphylococcus aureus H and its glycosylation. J Biochem 89:1555–1563PubMedCrossRefGoogle Scholar
  3. Baddiley J, Neuhaus FC (1960) The enzymic activation of D-alanine. Biochem J 75:579–587PubMedPubMedCentralCrossRefGoogle Scholar
  4. Baek KT, Bowman L, Millership C et al (2016) The cell wall polymer lipoteichoic acid becomes nonessential in Staphylococcus aureus cells lacking the ClpX chaperone. MBio 7.  https://doi.org/10.1128/mBio.01228-16
  5. Berg S, Kaur D, Jackson M et al (2007) The glycosyltransferases of Mycobacterium tuberculosis – roles in the synthesis of arabinogalactan, lipoarabinomannan, and other glycoconjugates. Glycobiology 17:35–56RPubMedCrossRefGoogle Scholar
  6. Briles EB, Tomasz A (1973) Pneumococcal Forssman antigen. A choline-containing lipoteichoic acid. J Biol Chem 248:6394–6397PubMedGoogle Scholar
  7. Broecker F, Martin CE, Wegner E et al (2016) Synthetic lipoteichoic acid glycans are potential vaccine candidates to protect from Clostridium difficile infections. Cell Chem Biol 23:1014–1022PubMedCrossRefGoogle Scholar
  8. Campbell J, Singh AK, Santa Maria JP Jr (2011) Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus. ACS Chem Biol 6:106–116PubMedCrossRefGoogle Scholar
  9. Chan YG, Frankel MB, Dengler V et al (2013) Staphylococcus aureus mutants lacking the LytR-CpsA-Psr family of enzymes release cell wall teichoic acids into the extracellular medium. J Bacteriol 195:4650–4659PubMedPubMedCentralCrossRefGoogle Scholar
  10. Chan YG, Kim HK, Schneewind O et al (2014) The capsular polysaccharide of Staphylococcus aureus is attached to peptidoglycan by the LytR-CpsA-Psr (LCP) family of enzymes. J Biol Chem 289:15680–15690PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cleveland RF, Höltje JV, Wicken AJ et al (1975) Inhibition of bacterial wall lysins by lipoteichoic acids and related compounds. Biochem Biophys Res Commun 67:1128–1135PubMedCrossRefGoogle Scholar
  12. Corrigan RM, Abbott JC, Burhenne H (2011) c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLoS Pathog 7:e1002217PubMedPubMedCentralCrossRefGoogle Scholar
  13. Corrigan RM, Campeotto I, Jeganathan T et al (2013) Systematic identification of conserved bacterial c-di-AMP receptor proteins. Proc Natl Acad Sci U S A 110:9084–9089PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cox AD, St Michael F, Aubry A et al (2013) Investigating the candidacy of a lipoteichoic acid-based glycoconjugate as a vaccine to combat Clostridium difficile infection. Glycoconj J 30:843–855PubMedCrossRefGoogle Scholar
  15. D’Elia MA, Millar KE, Beveridge TJ et al (2006) Wall teichoic acid polymers are dispensable for cell viability in Bacillus subtilis. J Bacteriol 188:8313–8316PubMedPubMedCentralCrossRefGoogle Scholar
  16. Damjanovic M, Kharat AS, Eberhardt A et al (2007) The essential tacF gene is responsible for the choline-dependent growth phenotype of Streptococcus pneumoniae. J Bacteriol 189:7105–7111PubMedPubMedCentralCrossRefGoogle Scholar
  17. Dehus O, Pfitzenmaier M, Stuebs G et al (2011) Growth temperature-dependent expression of structural variants of Listeria monocytogenes lipoteichoic acid. Immunobiology 216:24–31PubMedCrossRefGoogle Scholar
  18. Denapaite D, Bruckner R, Hakenbeck R et al (2012) Biosynthesis of teichoic acids in Streptococcus pneumoniae and closely related species: lessons from genomes. Microb Drug Resist 18:344–358PubMedCrossRefGoogle Scholar
  19. Duckworth M, Archibald AR, Baddiley J (1975) Lipoteichoic acid and lipoteichoic acid carrier in Staphylococcus aureus H. FEBS Lett 53:176–179PubMedCrossRefGoogle Scholar
  20. Eberhardt A, Hoyland CN, Vollmer D et al (2012) Attachment of capsular polysaccharide to the cell wall in Streptococcus pneumoniae. Microb Drug Resist 18:240–255PubMedCrossRefGoogle Scholar
  21. Fabretti F, Theilacker C, Baldassarri L et al (2006) Alanine esters of enterococcal lipoteichoic acid play a role in biofilm formation and resistance to antimicrobial peptides. Infect Immun 74:4164–4171PubMedPubMedCentralCrossRefGoogle Scholar
  22. Fan X, Pericone CD, Lysenko E et al (2003) Multiple mechanisms for choline transport and utilization in Haemophilus influenzae. Mol Microbiol 50:537–548PubMedCrossRefGoogle Scholar
  23. Fedtke I, Mader D, Kohler T et al (2007) A Staphylococcus aureus ypfP mutant with strongly reduced lipoteichoic acid (LTA) content: LTA governs bacterial surface properties and autolysin activity. Mol Microbiol 65:1078–1091PubMedPubMedCentralCrossRefGoogle Scholar
  24. Fischer W (1994a) Lipoteichoic acid and lipids in the membrane of Staphylococcus aureus. Med Microbiol Immunol 183:61–76PubMedCrossRefGoogle Scholar
  25. Fischer W (1994b) Lipoteichoic acids and lipoglycans. In: Ghuysen JM, Hakenbeck R (eds) New comprehensive biochemistry. Elsevier Science, Amsterdam, pp 199–215Google Scholar
  26. Fischer W (1997) Pneumococcal lipoteichoic and teichoic acid. Microb Drug Resist 3:309–325PubMedCrossRefGoogle Scholar
  27. Fischer W, Koch HU, Haas R (1983) Improved preparation of lipoteichoic acids. Eur J Biochem 133:523–530PubMedCrossRefGoogle Scholar
  28. Forsberg CW, Wyrick PB, Ward JB et al (1973) Effect of phosphate limitation on the morphology and wall composition of Bacillus licheniformis and its phosphoglucomutase-deficient mutants. J Bacteriol 113:969–984PubMedPubMedCentralGoogle Scholar
  29. Garufi G, Hendrickx AP, Beeri K et al (2012) Synthesis of lipoteichoic acids in Bacillus anthracis. J Bacteriol 194:4312–4321PubMedPubMedCentralCrossRefGoogle Scholar
  30. Gehre F, Leib SL, Grandgirard D et al (2008) Essential role of choline for pneumococcal virulence in an experimental model of meningitis. J Intern Med 264:143–154PubMedCrossRefGoogle Scholar
  31. Ginsburg I (2002) Role of lipoteichoic acid in infection and inflammation. Lancet Infect Dis 2:171–179PubMedCrossRefGoogle Scholar
  32. Gisch N, Kohler T, Ulmer AJ et al (2013) Structural reevaluation of Streptococcus pneumoniae lipoteichoic acid and new insights into its immunostimulatory potency. J Biol Chem 288:15654–15667PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gisch N, Schwudke D, Thomsen S et al (2015) Lipoteichoic acid of Streptococcus oralis Uo5: a novel biochemical structure comprising an unusual phosphorylcholine substitution pattern compared to Streptococcus pneumoniae. Sci Rep 5:16718PubMedPubMedCentralCrossRefGoogle Scholar
  34. Goebel WF, Adams MH (1943) The immunological properties of the heterophile antigen and somatic polysaccharide of Pneumococcus. J Exp Med 77:435–449PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gotschlich EC, Liu TY (1967) Structural and immunological studies on the pneumococcal C polysaccharide. J Biol Chem 242:463–470PubMedGoogle Scholar
  36. Greenberg JW, Fischer W, Joiner KA (1996) Influence of lipoteichoic acid structure on recognition by the macrophage scavenger receptor. Infect Immun 64:3318–3325PubMedPubMedCentralGoogle Scholar
  37. Gründling A, Schneewind O (2007a) Genes required for glycolipid synthesis and lipoteichoic acid anchoring in Staphylococcus aureus. J Bacteriol 189:2521–2530PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gründling A, Schneewind O (2007b) Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus. Proc Natl Acad Sci USA 104:8478–8483PubMedCrossRefGoogle Scholar
  39. Haas R, Koch HU, Fischer W (1984) Alanyl turnover from lipoteichoic acid to teichoic acid in Staphylococcus aureus. FEMS Microbiol Lett 21:27–31CrossRefGoogle Scholar
  40. Heilmann C, Hussain M, Peters G et al (1997) Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24:1013–1024PubMedCrossRefGoogle Scholar
  41. Henneke P, Morath S, Uematsu S et al (2005) Role of lipoteichoic acid in the phagocyte response to group B streptococcus. J Immunol 174:6449–6455PubMedCrossRefGoogle Scholar
  42. Iwasaki H, Shimada A, Ito E (1986) Comparative studies of lipoteichoic acids from several Bacillus strains. J Bacteriol 167:508–516PubMedPubMedCentralCrossRefGoogle Scholar
  43. Jankute M, Cox JA, Harrison J et al (2015) Assembly of the mycobacterial cell wall. Annu Rev Microbiol 69:405–423PubMedCrossRefGoogle Scholar
  44. Jonquieres R, Bierne H, Fiedler F et al (1999) Interaction between the protein InlB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of gram-positive bacteria. Mol Microbiol 34:902–914PubMedCrossRefGoogle Scholar
  45. Jorasch P, Wolter FP, Zahringer U et al (1998) A UDP glucosyltransferase from Bacillus subtilis successively transfers up to four glucose residues to 1,2-diacylglycerol: expression of ypfP in Escherichia coli and structural analysis of its reaction products. Mol Microbiol 29:419–430PubMedCrossRefGoogle Scholar
  46. Jorasch P, Warnecke DC, Lindner B et al (2000) Novel processive and nonprocessive glycosyltransferases from Staphylococcus aureus and Arabidopsis thaliana synthesize glycolipids, glycophospholipids, glycosphingolipids, and glycosylsterols. Eur J Biochem 267:3770–3783PubMedCrossRefGoogle Scholar
  47. Kawai Y, Marles-Wright J, Cleverley RM et al (2011) A widespread family of bacterial cell wall assembly proteins. EMBO J 30:4931–4941PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kiriukhin MY, Debabov DV, Shinabarger DL et al (2001) Biosynthesis of the glycolipid anchor in lipoteichoic acid of Staphylococcus aureus RN4220: role of YpfP, the diglucosyldiacylglycerol synthase. J Bacteriol 183:3506–3514PubMedPubMedCentralCrossRefGoogle Scholar
  49. Koch HU, Haas R, Fischer W (1984) The role of lipoteichoic acid biosynthesis in membrane lipid metabolism of growing Staphylococcus aureus. Eur J Biochem 138:357–363PubMedCrossRefGoogle Scholar
  50. Koch HU, Doker R, Fischer W (1985) Maintenance of D-alanine ester substitution of lipoteichoic acid by reesterification in Staphylococcus aureus. J Bacteriol 164:1211–1217PubMedPubMedCentralGoogle Scholar
  51. Kodali S, Vinogradov E, Lin F et al (2015) A Vaccine approach for the prevention of infections by multidrug-resistant Enterococcus faecium. J Biol Chem 290:19512–19526PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kovacs M, Halfmann A, Fedtke I et al (2006) A functional dlt operon, encoding proteins required for incorporation of d-alanine in teichoic acids in gram-positive bacteria, confers resistance to cationic antimicrobial peptides in Streptococcus pneumoniae. J Bacteriol 188:5797–5805PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kristian SA, Datta V, Weidenmaier C et al (2005) D-alanylation of teichoic acids promotes group a streptococcus antimicrobial peptide resistance, neutrophil survival, and epithelial cell invasion. J Bacteriol 187:6719–6725PubMedPubMedCentralCrossRefGoogle Scholar
  54. Lambert PA, Hancock IC, Baddiley J (1977) Occurrence and function of membrane teichoic acids. Biochim Biophys Acta 472:1–12PubMedCrossRefGoogle Scholar
  55. Lazarevic V, Soldo B, Medico N et al (2005) Bacillus subtilis alpha-phosphoglucomutase is required for normal cell morphology and biofilm formation. Appl Environ Microbiol 71:39–45PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lebeer S, Claes IJ, Vanderleyden J (2012) Anti-inflammatory potential of probiotics: lipoteichoic acid makes a difference. Trends Microbiol 20:5–10PubMedCrossRefGoogle Scholar
  57. Lemjabbar H, Basbaum C (2002) Platelet-activating factor receptor and ADAM10 mediate responses to Staphylococcus aureus in epithelial cells. Nat Med 8:41–46PubMedCrossRefGoogle Scholar
  58. Liszewski Zilla M, Chan YG, Lunderberg JM et al (2015) LytR-CpsA-Psr enzymes as determinants of Bacillus anthracis secondary cell wall polysaccharide assembly. J Bacteriol 197:343–353PubMedCrossRefGoogle Scholar
  59. Mancuso DJ, Chiu TH (1982) Biosynthesis of glucosyl monophosphoryl undecaprenol and its role in lipoteichoic acid biosynthesis. J Bacteriol 152:616–625PubMedPubMedCentralGoogle Scholar
  60. Matsuoka S, Hashimoto M, Kamiya Y et al (2011) The Bacillus subtilis essential gene dgkB is dispensable in mutants with defective lipoteichoic acid synthesis. Genes Genet Syst 86:365–376PubMedCrossRefGoogle Scholar
  61. Mishra AK, Driessen NN, Appelmelk BJ et al (2011) Lipoarabinomannan and related glycoconjugates: structure, biogenesis and role in Mycobacterium tuberculosis physiology and host-pathogen interaction. FEMS Microbiol Rev 35:1126–1157PubMedPubMedCentralCrossRefGoogle Scholar
  62. Mohamadzadeh M, Pfeiler EA, Brown JB et al (2011) Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc Natl Acad Sci U S A 108(Suppl 1):4623–4630PubMedPubMedCentralCrossRefGoogle Scholar
  63. Morath S, Geyer A, Hartung T (2001) Structure-function relationship of cytokine induction by lipoteichoic acid from Staphylococcus aureus. J Exp Med 193:393–397PubMedPubMedCentralCrossRefGoogle Scholar
  64. Mosser JL, Tomasz A (1970) Choline-containing teichoic acid as a structural component of pneumococcal cell wall and its role in sensitivity to lysis by an autolytic enzyme. J Biol Chem 245:287–298PubMedGoogle Scholar
  65. Neuhaus FC, Baddiley J (2003) A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiol Mol Biol Rev 67:686–723PubMedPubMedCentralCrossRefGoogle Scholar
  66. Nilsen NJ, Deininger S, Nonstad U et al (2008) Cellular trafficking of lipoteichoic acid and toll-like receptor 2 in relation to signaling: role of CD14 and CD36. J Leukoc Biol 84:280–291PubMedPubMedCentralCrossRefGoogle Scholar
  67. Oberli MA, Hecht ML, Bindschadler P et al (2011) A possible oligosaccharide-conjugate vaccine candidate for Clostridium difficile is antigenic and immunogenic. Chem Biol 18:580–588PubMedCrossRefGoogle Scholar
  68. Oku Y, Kurokawa K, Matsuo M et al (2009) Pleiotropic roles of polyglycerolphosphate synthase of lipoteichoic acid in growth of Staphylococcus aureus cells. J Bacteriol 191:141–151PubMedCrossRefGoogle Scholar
  69. Percy MG, Grundling A (2014) Lipoteichoic acid synthesis and function in gram-positive bacteria. Annu Rev Microbiol 68:81–100CrossRefGoogle Scholar
  70. Percy MG, Karinou E, Webb AJ et al (2016) Identification of a lipoteichoic acid glycosyltransferase enzyme reveals that GW-domain-containing proteins can be retained in the cell wall of Listeria monocytogenes in the absence of lipoteichoic acid or its modifications. J Bacteriol 198:2029–2042PubMedPubMedCentralCrossRefGoogle Scholar
  71. Perego M, Glaser P, Minutello A et al (1995) Incorporation of D-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis. Identification of genes and regulation. J Biol Chem 270:15598–15606PubMedCrossRefGoogle Scholar
  72. Peschel A, Otto M, Jack RW et al (1999) Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274:8405–8410PubMedCrossRefGoogle Scholar
  73. Peschel A, Vuong C, Otto M et al (2000) The D-alanine residues of Staphylococcus aureus teichoic acids alter the susceptibility to vancomycin and the activity of autolytic enzymes. Antimicrob Agents Chemother 44:2845–2847PubMedPubMedCentralCrossRefGoogle Scholar
  74. Pooley HM, Paschoud D, Karamata D (1987) The gtaB marker in Bacillus subtilis 168 is associated with a deficiency in UDPglucose pyrophosphorylase. J Gen Microbiol 133:3481–3493PubMedGoogle Scholar
  75. Poxton IR, Tarelli E, Baddiley J (1978) The structure of C-polysaccharide from the walls of Streptococcus pneumoniae. Biochem J 175:1033–1042PubMedPubMedCentralCrossRefGoogle Scholar
  76. Rahman O, Dover LG, Sutcliffe IC (2009a) Lipoteichoic acid biosynthesis: two steps forwards, one step sideways? Trends Microbiol 17:219–225PubMedCrossRefGoogle Scholar
  77. Rahman O, Pfitzenmaier M, Pester O et al (2009b) Macroamphiphilic components of thermophilic actinomycetes: identification of lipoteichoic acid in Thermobifida fusca. J Bacteriol 191:152–160PubMedCrossRefGoogle Scholar
  78. Rane L, Subbarow Y (1940) Nutritional requirements of the pneumococcus: I. Growth factors for types I, II, V, VII, VIII. J Bacteriol 40:695–704PubMedPubMedCentralGoogle Scholar
  79. Reichmann NT, Gründling A (2011) Location, synthesis and function of glycolipids and polyglycerolphosphate lipoteichoic acid in gram-positive bacteria of the phylum Firmicutes. FEMS Microbiol Lett 319:97–105PubMedPubMedCentralCrossRefGoogle Scholar
  80. Reichmann NT, Cassona CP, Grundling A (2013) Revised mechanism of D-alanine incorporation into cell wall polymers in gram-positive bacteria. Microbiology 159:1868–1877PubMedPubMedCentralCrossRefGoogle Scholar
  81. Reid CW, Vinogradov E, Li J et al (2012) Structural characterization of surface glycans from Clostridium difficile. Carbohydr Res 354:65–73PubMedCrossRefGoogle Scholar
  82. Richter GS, Elli D, Kim HK et al (2013) Small molecule inhibitor of lipoteichoic acid synthesis is an antibiotic for gram-positive bacteria. Proc Natl Acad Sci U S A 110:3531–3536PubMedPubMedCentralCrossRefGoogle Scholar
  83. Rockel C, Hartung T (2012) Systematic review of membrane components of gram-positive bacteria responsible as pyrogens for inducing human monocyte/macrophage cytokine release. Front Pharmacol 3:56PubMedPubMedCentralCrossRefGoogle Scholar
  84. Schirner K, Marles-Wright J, Lewis RJ et al (2009) Distinct and essential morphogenetic functions for wall- and lipo-teichoic acids in Bacillus subtilis. EMBO J 28:830–842PubMedPubMedCentralCrossRefGoogle Scholar
  85. Schlag M, Biswas R, Krismer B et al (2010) Role of staphylococcal wall teichoic acid in targeting the major autolysin Atl. Mol Microbiol 75:864–873PubMedCrossRefGoogle Scholar
  86. Schmidt RR, Pedersen CM, Qiao Y et al (2011) Chemical synthesis of bacterial lipoteichoic acids: an insight on its biological significance. Org Biomol Chem 9:2040–2052PubMedCrossRefGoogle Scholar
  87. Schneewind O, Missiakas D (2014) Lipoteichoic acids, phosphate containing polymers in the envelope of gram-positive bacteria. J Bacteriol 196:1133–1142PubMedPubMedCentralCrossRefGoogle Scholar
  88. Seo HS, Cartee RT, Pritchard DG et al (2008) A new model of pneumococcal lipoteichoic acid structure resolves biochemical, biosynthetic, and serologic inconsistencies of the current model. J Bacteriol 190:2379–2387PubMedPubMedCentralCrossRefGoogle Scholar
  89. Sheen TR, Ebrahimi CM, Hiemstra IH et al (2010) Penetration of the blood-brain barrier by Staphylococcus aureus: contribution of membrane-anchored lipoteichoic acid. J Mol Med (Berl) 88:633–639CrossRefGoogle Scholar
  90. Shiraishi T, Yokota S, Morita N et al (2013) Characterization of a Lactobacillus gasseri JCM 1131T lipoteichoic acid with a novel glycolipid anchor structure. Appl Environ Microbiol 79:3315–3318PubMedPubMedCentralCrossRefGoogle Scholar
  91. Soldo B, Lazarevic V, Margot P et al (1993) Sequencing and analysis of the divergon comprising gtaB, the structural gene of UDP-glucose pyrophosphorylase of Bacillus subtilis 168. J Gen Microbiol 139:3185–3195PubMedCrossRefGoogle Scholar
  92. Song JH, Ko KS, Lee JY et al (2005) Identification of essential genes in Streptococcus pneumoniae by allelic replacement mutagenesis. Mol Cells 19:365–374PubMedGoogle Scholar
  93. Sorensen UB, Henrichsen J (1987) Cross-reactions between pneumococci and other streptococci due to C polysaccharide and F antigen. J Clin Microbiol 25:1854–1859PubMedPubMedCentralGoogle Scholar
  94. Stortz CA, Cherniak R, Jones RG et al (1990) Polysaccharides from Peptostreptococcus anaerobius and structure of the species-specific antigen. Carbohydr Res 207:101–120PubMedCrossRefGoogle Scholar
  95. Taron DJ, Childs WC 3rd, Neuhaus FC (1983) Biosynthesis of D-alanyl-lipoteichoic acid: role of diglyceride kinase in the synthesis of phosphatidylglycerol for chain elongation. J Bacteriol 154:1110–1116PubMedPubMedCentralGoogle Scholar
  96. Theilacker C, Kaczynski Z, Kropec A et al (2006) Opsonic antibodies to Enterococcus faecalis strain 12030 are directed against lipoteichoic acid. Infect Immun 74:5703–5712PubMedPubMedCentralCrossRefGoogle Scholar
  97. Theilacker C, Kropec A, Hammer F et al (2012) Protection against Staphylococcus aureus by antibody to the polyglycerolphosphate backbone of heterologous lipoteichoic acid. J Infect Dis 205:1076–1085PubMedCrossRefGoogle Scholar
  98. Tillett WS, Francis T (1930) Serological reactions in pneumonia with a non-protein somatic fraction of Pneumococcus. J Exp Med 52:561–571PubMedPubMedCentralCrossRefGoogle Scholar
  99. Tomasz A (1967) Choline in the cell wall of a bacterium: novel type of polymer-linked choline in Pneumococcus. Science 157:694–697PubMedCrossRefGoogle Scholar
  100. Uchikawa K, Sekikawa I, Azuma I (1986) Structural studies on lipoteichoic acids from four Listeria strains. J Bacteriol 168:115–122PubMedPubMedCentralCrossRefGoogle Scholar
  101. Webb AJ, Karatsa-Dodgson M, Gründling A (2009) Two-enzyme systems for glycolipid and polyglycerolphosphate lipoteichoic acid synthesis in Listeria monocytogenes. Mol Microbiol 74:299–314PubMedPubMedCentralCrossRefGoogle Scholar
  102. Weidenmaier C, Peschel A (2008) Teichoic acids and related cell-wall glycopolymers in gram-positive physiology and host interactions. Nat Rev Microbiol 6:276–287PubMedCrossRefGoogle Scholar
  103. Weidenmaier C, Kokai-Kun JF, Kristian SA et al (2004) Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat Med 10:243–245PubMedCrossRefGoogle Scholar
  104. Weisman LE, Thackray HM, Steinhorn RH et al (2011) A randomized study of a monoclonal antibody (pagibaximab) to prevent staphylococcal sepsis. Pediatrics 128:271–279PubMedCrossRefGoogle Scholar
  105. Wicken AJ, Evans JD, Knox KW (1986) Critical micelle concentrations of lipoteichoic acids. J Bacteriol 166:72–77PubMedPubMedCentralCrossRefGoogle Scholar
  106. Wörmann ME, Corrigan RM, Simpson PJ et al (2011) Enzymatic activities and functional interdependencies of Bacillus subtilis lipoteichoic acid synthesis enzymes. Mol Microbiol 79:566–583PubMedPubMedCentralCrossRefGoogle Scholar
  107. Wu C, Huang IH, Chang C et al (2014) Lethality of sortase depletion in Actinomyces oris caused by excessive membrane accumulation of a surface glycoprotein. Mol Microbiol 94:1227–1241PubMedPubMedCentralCrossRefGoogle Scholar
  108. Xia G, Kohler T, Peschel A (2010) The wall teichoic acid and lipoteichoic acid polymers of Staphylococcus aureus. Int J Med Microbiol 300:148–154PubMedCrossRefGoogle Scholar
  109. Yokoyama K, Araki Y, Ito E (1988) The function of galactosyl phosphorylpolyprenol in biosynthesis of lipoteichoic acid in Bacillus coagulans. Eur J Biochem 173:453–458PubMedCrossRefGoogle Scholar
  110. Young NM, Foote SJ, Wakarchuk WW (2013) Review of phosphocholine substituents on bacterial pathogen glycans: synthesis, structures and interactions with host proteins. Mol Immunol 56:563–573PubMedCrossRefGoogle Scholar
  111. Zhang JR, Idanpaan-Heikkila I, Fischer W et al (1999) Pneumococcal licD2 gene is involved in phosphorylcholine metabolism. Mol Microbiol 31:1477–1488PubMedCrossRefGoogle Scholar
  112. Zoll S, Schlag M, Shkumatov AV et al (2012) Ligand-binding properties and conformational dynamics of autolysin repeat domains in staphylococcal cell wall recognition. J Bacteriol 194:3789–3802PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MicrobiologyUniversity of ChicagoChicagoUSA

Personalised recommendations