Advertisement

Ornithine Lipids and Other Amino Acid-Containing Acyloxyacyl Lipids

  • Christian Sohlenkamp
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Ornithine lipids (OLs) are phosphorus-free membrane lipids relatively common in eubacteria, but apparently absent from archaea and eukaryotes. It has been predicted that about 50% of the sequenced bacterial species have the capacity to synthesize OLs at least under certain growth conditions. Structurally, they are composed of a 3-hydroxy fatty acid amide bound to the α-amino group of ornithine and of a second fatty acyl group ester linked to the 3-hydroxy position of the first fatty acid forming an acyloxyacyl structure. This basic structure of OLs can be modified by hydroxylations in different positions, by N-methylation, or by taurine transfer. The presence of OL and/or modified OLs often seems to form part of a stress response to (changing) environmental conditions. OL modification allows the bacteria to adjust membrane properties by converting already existing membrane lipids into membrane lipids with distinct properties without de novo synthesis. In addition to ornithine, other amino acids (and dipeptides) such as glycine, serineglycine, glutamine, and lysine have been described as headgroups of these lipids in some bacterial species.

Notes

Acknowledgments

Work in the laboratory was supported by grants to C.S. from SEP-CONACyT (237713) and PAPIIT-UNAM (IN202413, IN208116).

References

  1. Anstadt EJ, Fujiwara M, Wasko N, Nichols F, Clark RB (2016) TLR tolerance as a treatment for central nervous system autoimmunity. J Immunol 197:2110–2118CrossRefGoogle Scholar
  2. Asselineau J (1991) Bacterial lipids containing amino acids or peptides linked by amide bonds. Fortschr Chem Org Naturst 56:1–85PubMedGoogle Scholar
  3. Aygun-Sunar S, Mandaci S, Koch HG, Murria IVJ, Goldfine H, Daldai F (2006) Ornithine lipid is required for optimal steady-state amounts of c-type cytochromes in Rhodobacter capsulatus. Mol Microbiol 61:418–435CrossRefGoogle Scholar
  4. Batrakov SG, Nikitin DI, Sheichenko VI, Ruzhitsky AO (1998) A novel sulfonic-acid analogue of ceramide is the major extractable lipid of the Gram-negative marine bacterium Cyclobacterium marinus WH. Biochim Biophys Acta 1391:79–91CrossRefGoogle Scholar
  5. Batrakov SG, Nikitin DI, Mosezhnyi AE, Ruzhitsky AO (1999) A glycine-containing phosphorus-free lipoaminoacid from the Gram-negative marine bacterium Cyclobacterium marinus WH. Chem Phys Lipids 99:139–143CrossRefGoogle Scholar
  6. Benning C, Huang ZH, Gage DA (1995) Accumulation of a novel glycolipid and a betaine lipid in cells of Rhodobacter sphaeroides grown under phosphate limitation. Arch Biochem Biophys 317:103–111CrossRefGoogle Scholar
  7. Clark RB, Cervantes JL, Maciejewski MW, Farrokhi V, Nemati R, Yao X, Anstadt E, Fujiwara M, Wright KT, Riddle C, La Vake CJ, Salazar JC, Finegold S, Nichols FC (2013) Serine lipids of Porphyromonas gingivalis are human and mouse toll-like receptor 2 ligands. Infect Immun 81:3479–3489CrossRefGoogle Scholar
  8. Dees C, Shively JM (1982) Localization and quantitation of the ornithine lipid of Thiobacillus thiooxidans. J Bacteriol 149:798–799PubMedPubMedCentralGoogle Scholar
  9. Diercks H, Semeniuk A, Gisch N, Moll H, Duda KA, Hölzl G (2015) Accumulation of novel glycolipids and ornithine lipids in Mesorhizobium loti under phosphate deprivation. J Bacteriol 197:497–509CrossRefGoogle Scholar
  10. Escobedo-Hinojosa WI, Vences-Guzmán MA, Schubotz F, Sandoval-Calderón M, Summons RE, López-Lara IM, Geiger O, Sohlenkamp C (2015) OlsG (Sinac_1600) is an ornithine lipid N-methyltransferase from the planctomycete Singulisphaera acidophila. J Biol Chem 290:15102–15111CrossRefGoogle Scholar
  11. Farrokhi V, Nemati R, Nichols FC, Yao X, Anstadt E, Fujiwara M, Grady J, Wakefield D, Castro W, Donaldson J, Clark RB (2013) Bacterial lipodipeptide, lipid 654, is a microbiome-associated biomarker for multiple sclerosis. Clin Transl Immunol 2:e8CrossRefGoogle Scholar
  12. Galbraith L, Jonsson MH, Rudhe LC, Wilkinson SG (1999) Lipids and fatty acids of Burkholderia and Ralstonia species. FEMS Microbiol Lett 173:359–364CrossRefGoogle Scholar
  13. Gao JL, Weissenmayer B, Taylor AM, Thomas-Oates J, López-Lara IM, Geiger O (2004) Identification of a gene required for the formation of lyso-ornithine lipid, an intermediate in the biosynthesis of ornithine-containing lipids. Mol Microbiol 53:1757–1770CrossRefGoogle Scholar
  14. Geiger O, Röhrs V, Weissenmayer B, Finan TM, Thomas-Oates JE (1999) The regulator gene phoB mediates phosphate stress-controlled synthesis of the membrane lipid diacylglycerol-N,N,N-trimethylhomoserine in Rhizobium (Sinorhizobium) meliloti. Mol Microbiol 32:63–73CrossRefGoogle Scholar
  15. Geiger O, Gónzalez-Silva N, López-Lara IM, Sohlenkamp C (2010) Amino acid-containing membrane lipids in bacteria. Prog Lipid Res 49:46–60CrossRefGoogle Scholar
  16. Gibbons HS, Lin S, Cotter RJ, Raetz CRH (2000) Oxygen requirement for the biosynthesis of the S-2-hydroxymyristate moiety in Salmonella typhimurium lipid A. Function of LpxO, a new Fe(II)/alpha-ketoglutarate-dependent dioxygenase homologue. J Biol Chem 275:32940–32949CrossRefGoogle Scholar
  17. Gomi K, Kawasaki K, Kawai Y, Shiozaki M, Nishijima M (2002) Toll-like receptor 4-MD-2 complex mediates the signal transduction induced by flavolipin, an amino acid-containing lipid unique to Flavobacterium meningosepticum. J Immunol 168:2939–2943CrossRefGoogle Scholar
  18. Gónzalez-Silva N, López-Lara IM, Reyes-Lamothe R, Taylor AM, Sumpton D, Thomas-Oates J, Geiger O (2011) The dioxygenase-encoding olsD gene from Burkholderia cenocepacia causes the hydroxylation of the amide-linked fatty acyl moiety of ornithine-containing membrane lipids. Biochemistry 50:6396–6408CrossRefGoogle Scholar
  19. Hölzl G, Dörmann P (2007) Structure and function of glycoglycerolipids in plants and bacteria. Prog Lipid Res 46:225–246CrossRefGoogle Scholar
  20. Kato H, Goto N (1997) Adjuvanticity of an ornithine-containing lipid of Flavobacterium meningosepticum as a candidate vaccine adjuvant. Microbiol Immunol 41:101–106CrossRefGoogle Scholar
  21. Kawai Y, Yano I, Kaneda K (1988) Various kinds of lipoamino acids including a novel serine-containing lipid in an opportunistic pathogen Flavobacterium. Their structures and biological activities on erythrocytes. Eur J Biochem 171:73–80CrossRefGoogle Scholar
  22. Kawai Y, Kaneda K, Morisawa Y, Akagawa K (1991a) Protection of mice from lethal endotoxemia by use of an ornithine-containing lipid or a serine-containing lipid. Infect Immun 59:2560–2566. (Erratum: Infect Immunol 1992, 60:320)PubMedPubMedCentralGoogle Scholar
  23. Kawai Y, Kamoshita K, Akagawa K (1991b) B-lymphocyte mitogenicity and adjuvanticity of an ornithine-containing lipid or a serine-containing lipid. FEMS Microbiol Lett 67:127–129CrossRefGoogle Scholar
  24. Kawai Y, Nakagawa Y, Matuyama T, Akagawa K, Itagawa K, Eukase K, Kusumoto S, Nishijima M, Yano I (1999) A typical bacterial ornithine-containing lipid Nα-(D)-[3-(hexadecanoyloxy)hexadecanoyl]-ornithine is a strong stimulant for macrophages and a useful adjuvant. FEMS Immunol Med Microbiol 23:67–73PubMedGoogle Scholar
  25. Kawai Y, Takasuka N, Inoue K, Akagawa K, Nishijima M (2000a) Ornithine-containing lipids stimulate CD14-dependent TNF-α production from murine macrophage-like J7774.1 and RAW 264.7 cells. FEMS Immunol Med Microbiol 28:197–203PubMedGoogle Scholar
  26. Kawai Y, Okawarab AI, Okuyama H, Kura F, Suzuki K (2000b) Modulation of chemotaxis, O2 production and myeloperoxidase release from human polymorphonuclear leukocytes by the ornithine-containing lipid and the serineglycine-containing lipid of Flavobacterium. FEMS Immunol Med Microbiol 28:205–209PubMedGoogle Scholar
  27. Kawai Y, Watanabe M, Matsuura M, Nishijima M, Kawahara K (2002) The partially degraded lipopolysaccharide of Burkholderia cepacia and ornithine-containing lipids derived from some Gram-negative bacteria are useful complex lipid adjuvants. FEMS Immunol Med Microbiol 34:173–179CrossRefGoogle Scholar
  28. Kawazoe R, Okuyama H, Reichardt W, Sasaki S (1991) Phospholipids and a novel glycine-containing lipoamino acid in Cytophaga johnsonae Stanier strain C21. J Bacteriol 173:5470–5475CrossRefGoogle Scholar
  29. Knoche HW, Shively JM (1972) The structure of an ornithine-containing lipid from Thiobacillus thiooxidans. J Biol Chem 247:170–178PubMedGoogle Scholar
  30. Lewenza S, Falsafi R, Bains M, Rohs P, Stupak J, Sprott GD, Hancock RE (2011) The olsA gene mediates the synthesis of an ornithine lipid in Pseudomonas aeruginosa during growth under phosphate-limiting conditions, but is not involved in antimicrobial peptide susceptibility. FEMS Microbiol Lett 320:95–102CrossRefGoogle Scholar
  31. López-Lara IM, Gao JL, Soto MJ, Solares-Pérez A, Weissenmayer B, Sohlenkamp C, Verroios GP, Thomas-Oates JE, Geiger O (2005) Phosphorus-free membrane lipids of Sinorhizobium meliloti are not required for the symbiosis with alfalfa but contribute to increased cell yields under phosphorus-limiting conditions of growth. Mol Plant Microbe Interact 18:973–982CrossRefGoogle Scholar
  32. Minnikin DE, Abdolrahimzadeh H (1974) The replacement of phosphatidylethanolamine and acidic phospholipids by an ornithine-amide lipid and a minor phosphorus-free lipid in Pseudomonas fluorescence NCMB 129. FEBS Lett 43:257–260CrossRefGoogle Scholar
  33. Minnikin DE, Abdolrahimzadeh H, Baddiley J (1972) Variation of polar lipid composition of Bacillus subtilis Marburg with different growth conditions. FEBS Lett 27:16–18CrossRefGoogle Scholar
  34. Minnikin DE, Abdolrahimzadeh H, Baddiley J (1974) Replacement of acidic phospholipids by acidic glycolipids in Pseudomonas diminuta. Nature 249:268–269CrossRefGoogle Scholar
  35. Mirucki CS, Abedi M, Jiang J, Zhu Q, Wang Y-H, Safavi KE, Clark RB, Nichols FC (2014) Basic activity of Porphyromonas endodontalis complex lipids. J Endod 40:1342–1348CrossRefGoogle Scholar
  36. Molinaro A, Holst O, Di Lorenzo F, Callaghan M, Nurisso A, D’Errico G, Zamyatina A, Peri F, Berisio R, Jerala R, Jiménez-Barbero J, Silipo A, Martín-Santamaría S (2015) Chemistry of Lipid A: at the heart of innate immunity. Chem Eur J 21:500–519CrossRefGoogle Scholar
  37. Moore EK, Hopmans EC, Rijpstra IC, Villanueva L, Dedysh SN, Kulichevskaya IS, Wienk H, Schoutsen F, Sinninghe Damsté JS (2013) Novel mono-, di-, and trimethylornithine membrane lipids in northern wetland planctomycetes. Environ Microbiol 79:6874–6884CrossRefGoogle Scholar
  38. Moore EK, Hopmans EC, Rijpstra IC, Sánchez-Andrea I, Villanueva L, Wienk H, Schoutsen F, Stams AJM, Sinninghe Damsté JS (2015a) Lysine and novel hydroxylysine lipids in soil bacteria: amino acid membrane lipid response to temperature and pH in Pseudopedobacter saltans. Front Microbiol 6:637CrossRefGoogle Scholar
  39. Moore EK, Villanueva L, Hopmans EC, Rijpstra IC, Mets A, Dedysh SN, Sinninghe Damsté JS (2015b) Abundant trimethylornithine lipids and specific gene sequences are indicative of planctomycete importance at the oxic/anoxic interface in Sphagnum-dominated northern wetlands. Appl Environ Microbiol 81:6333–6344CrossRefGoogle Scholar
  40. Moore EK, Hopmans EC, Rijpstra IC, Villanueva L, Sinninghe Damsté JS (2016) Elucidation and identification of amino acid containing membrane lipids using liquid chromatography/high-resolution mass spectrometry. Rapid Commun Mass Spectrom 30:739–750CrossRefGoogle Scholar
  41. Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656CrossRefGoogle Scholar
  42. Palacios-Chaves L, Conde-Álvarez R, Gil-Ramírez Y, Zuñiga-Ripa A, Barquero-Calvo E, Chacón-Díaz C, Chaves-Olarte E, Arce-Gorvel V, Gorvel JP, Moreno E, de Miguel MJ, Grilló MJ, Moriyón I, Iriarte M (2011) Brucella abortus ornithine lipids are dispensable outer membrane components devoid of a marked pathogen-associated molecular pattern. PLoS ONE 6:e16030CrossRefGoogle Scholar
  43. Rojas-Jiménez K, Sohlenkamp C, Geiger O, Martínez-Romero E, Werner D, Vinuesa P (2005) A ClC chloride channel homolog and ornithine-containing membrane lipids of Rhizobium tropici CIAT899 are involved in symbiotic efficiency and acid tolerance. Mol Plant-Microbe Interact 18:1175–1185CrossRefGoogle Scholar
  44. de Rudder KE, López-Lara IM, Geiger O (2000) Inactivation of the gene for phospholipid N-methyltransferase in Sinorhizobium meliloti: phosphatidylcholine is required for normal growth. Mol Microbiol 37:763–772CrossRefGoogle Scholar
  45. Sainz F, Mas A, Torija MJ (2016) Draft genome sequences of Gluconobacter cerinus CECT 9110 and Gluconobacter japonicus CECT 8443, acetic acid bacteria isolated from grape must. Genome Announc 4(3):e00621–e00616.  https://doi.org/10.1128/genomeA.00621-16CrossRefPubMedPubMedCentralGoogle Scholar
  46. Sandoval-Calderón M, Nguyen DD, Kapono CA, Herron P, Dorrestein PC, Sohlenkamp C (2015) Plasticity of Streptomyces coelicolor membrane composition under different growth conditions and during development. Front Microbiol 6:1465CrossRefGoogle Scholar
  47. Sohlenkamp C, Geiger O (2016) Bacterial membrane lipids: Diversity in structures and pathways. FEMS Microbiol Rev 40:133–159CrossRefGoogle Scholar
  48. Tahara Y, Yamada Y, Kondo K (1976a) New lysine-containing lipid isolated from Agrobacterium tumefaciens. Agric Biol Chem 40:1449–1450Google Scholar
  49. Tahara Y, Kameda M, Yamada Y, Kondo K (1976b) New lipid – Ornithine and taurine-containing cerilipin. Agric Biol Chem 40:243–244Google Scholar
  50. Tahara Y, Shinmoto K, Yamada Y, Kondo K (1978) Enzymatic synthesis of tauro-ornithine lipid in Gluconobacter cerinus. Agric Biol Chem 42:205–206Google Scholar
  51. Taylor CJ, Anderson AJ, Wilkinson SG (1998) Phenotypic variation of lipid composition in Burkholderia cepacia: a response to increased growth temperature is a greater content of 2-hydroxy acids in phosphatidylethanolamine and ornithine amide lipid. Microbiology 144:1737–1745CrossRefGoogle Scholar
  52. Vences-Guzmán MA, Guan Z, Ormeño-Orrillo E, González-Silva N, López-Lara IM, Martínez-Romero E, Geiger O, Sohlenkamp C (2011) Hydroxylated ornithine lipids increase stress tolerance in Rhizobium tropici CIAT899. Mol Microbiol 79:1496–1514CrossRefGoogle Scholar
  53. Vences-Guzmán MA, Geiger O, Sohlenkamp C (2012) Ornithine lipids and their structural modifications: from A to E and beyond. FEMS Microbiol Lett 335:1–10CrossRefGoogle Scholar
  54. Vences-Guzmán MA, Guan Z, Bermúdez-Barrientos JR, Geiger O, Sohlenkamp C (2013) Agrobacteria lacking ornithine lipids induce more rapid tumor formation. Environ Microbiol 15:895–906CrossRefGoogle Scholar
  55. Vences-Guzmán MA, Guan Z, Escobedo-Hinojosa WI, Bermúdez-Barrientes JR, Geiger O, Sohlenkamp C (2015) Discovery of a bifunctional acyltransferase responsible for ornithine lipid synthesis in Serratia proteamaculans. Environ Microbiol 17:1487–1496CrossRefGoogle Scholar
  56. Wang Y-H, Nemati R, Anstadt E, Liu Y, Son Y, Zhu Q, Yao X, Clark RB, Rowe DW, Nichols FC (2015) Serine dipeptide lipids of Porphyromonas gingivalis inhibit osteoblast differentiation: relationship to Toll-like receptor 2. Bone 81:654–661CrossRefGoogle Scholar
  57. Weissenmayer B, Gao JL, López-Lara IM, Geiger O (2002) Identification of a gene required for the biosynthesis of ornithine-derived lipids. Mol Microbiol 45:721–733CrossRefGoogle Scholar
  58. Zavaleta-Pastor M, Sohlenkamp C, Gao JL, Guan Z, Zaheer R, Finan TM, Raetz CRH, López-Lara IM, Geiger O (2010) Sinorhizobium meliloti phospholipase C required for lipid remodeling during phosphorus limitation. Proc Natl Acad Sci USA 107:302–307CrossRefGoogle Scholar
  59. Zhang X, Ferguson-Miller SM, Reid GE (2009) Characterization of ornithine and glutamine lipids extracted from cell membranes of Rhodobacter sphaeroides. J Am Soc Mass Spectrom 20:198–212CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centro de Ciencias GenómicasUniversidad Nacional Autónoma de MéxicoCuernavacaMexico

Personalised recommendations