Lipid A

  • Russell E. BishopEmail author
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Diverse lipid A structures have been observed in a multitude of Gram-negative bacteria, but the metabolic logic of lipid A biosynthesis is widely conserved. This chapter will start by describing the nine constitutive enzymes of the Raetz pathway, which catalyze conserved lipid A biosynthetic reactions that depend on cytoplasmic cofactors. Concomitant with lipid A export and assembly on the cell surface, a number of regulated covalent modifications of lipid A can occur in the extracytoplasmic compartments. The narrow phylogenetic distribution of the lipid A modification enzymes, combined with the diverse regulatory signals governing their expression, is responsible for most of the lipid A structural diversity that is observed in nature. By focusing on E. coli as a model system, the general principles of lipid A biosynthesis and assembly are revealed to inform related processes that occur in more divergent organisms.



Work in the author’s laboratory was supported by the Canadian Institutes of Health Research. We apologize to those authors whose work could not be cited due to space limitations.


  1. Ahn VE, Lo EI, Engel CK, Chen L, Hwang PM, Kay LE, Bishop RE, Privé GG (2004) A hydrocarbon ruler measures palmitate in the enzymatic acylation of endotoxin. EMBO J 23:2931–2941CrossRefGoogle Scholar
  2. Babinski KJ, Kanjilal SJ, Raetz CR (2002) Accumulation of the lipid A precursor UDP-2,3-diacylglucosamine in an Escherichia coli mutant lacking the lpxH gene. J Biol Chem 277:25947–25956CrossRefGoogle Scholar
  3. Bader MW, Sanowar S, Daley ME, Schneider AR, Cho U, Xu W, Klevit RE, Le Moual H, Miller SI (2005) Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122:461–472CrossRefGoogle Scholar
  4. Bartling CM, Raetz CR (2009) Crystal structure and acyl chain selectivity of Escherichia coli LpxD, the N-acyltransferase of lipid A biosynthesis. Biochemistry 48:8672–8683CrossRefGoogle Scholar
  5. Beutler B, Rietschel ET (2003) Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol 3:169–117CrossRefGoogle Scholar
  6. Bishop RE (2005) The lipid A palmitoyltransferase PagP: molecular mechanisms and role in bacterial pathogenesis. Mol Microbiol 57:900–912CrossRefGoogle Scholar
  7. Bishop RE (2008) Structural biology of membrane-intrinsic beta-barrel enzymes: sentinels of the bacterial outer membrane. Biochim Biophys Acta 1778:1881–1896CrossRefGoogle Scholar
  8. Bishop RE (2010) Lipid A. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer-Verlag, Berlin Heidelberg. Scholar
  9. Bishop RE (2014) Structural biology: lipopolysaccharide rolls out the barrel. Nature 511:37–38CrossRefGoogle Scholar
  10. Bishop RE, Gibbons HS, Guina T, Trent MS, Miller SI, Raetz CR (2000) Transfer of palmitate from phospholipids to lipid A in outer membranes of Gram-negative bacteria. EMBO J 19:5071–5080CrossRefGoogle Scholar
  11. Breazeale SD, Ribeiro AA, Raetz CR (2002) Oxidative decarboxylation of UDP-glucuronic acid in extracts of polymyxin-resistant Escherichia coli. Origin of lipid A species modified with 4-amino-4-deoxy-l-arabinose. J Biol Chem 277:2886–2896CrossRefGoogle Scholar
  12. Breazeale SD, Ribeiro AA, Raetz CR (2003) Origin of lipid A species modified with 4-amino-4-deoxy-l-arabinose in polymyxin resistant mutants of Escherichia coli: an aminotransferase (ArnB) that generates UDP-4-amino-4-deoxy-l-arabinose. J Biol Chem 278:24731–24739CrossRefGoogle Scholar
  13. Breazeale SD, Ribeiro AA, McClerren AL, Raetz CR (2005) A formyltransferase required for polymyxin resistance in Escherichia coli and the modification of lipid A with 4-amino-4-deoxy-l-arabinose: identification and function of UDP-4-deoxy-4-formamido-l-arabinose. J Biol Chem 280:14154–14167CrossRefGoogle Scholar
  14. Carty SM, Sreekumar KR, Raetz CR (1999) Effect of cold shock on lipid A biosynthesis in Escherichia coli. Induction at 12 degrees C of an acyltransferase specific for palmitoleoyl-acyl carrier protein. J Biol Chem 274:9677–9685CrossRefGoogle Scholar
  15. Cho J, Lee CJ, Zhao J, Young HE, Zhou P (2016) Structure of the essential Haemophilus influenzae UDP-diacylglucosamine pyrophosphohydrolase LpxH in lipid A biosynthesis. Nat Microbiol 1:16154CrossRefGoogle Scholar
  16. Christ WJ, Asano O, Robidoux AL, Perez M, Wang YA, Dubuc GR, Gavin WE, Hawkins LD, McGuinness PD, Mullarkey MA, Lewis MD, Kishi Y, Kawata T, Bristol JR, Rose JR, Rossignol DP, Kobayashi S, Hishinuma L, Kimura A, Asakawa N, Katayama K, Yamatsu I (1995) E5531, a pure endotoxin antagonist of high potency. Science 268:80–83CrossRefGoogle Scholar
  17. Coggins BE, Li X, McClerren AL, Hindsgaul O, Raetz CR, Zhou P (2003) Structure of the LpxC deacetylase with a bound substrate-analog inhibitor. Nat Struct Biol 10:645–651CrossRefGoogle Scholar
  18. Cox AD, Wright JC, Li J, Hood DW, Moxon ER, Richards JC (2003) Phosphorylation of the lipid A region of meningococcal lipopolysaccharide: identification of a family of transferases that add phosphoethanolamine to lipopolysaccharide. J Bacteriol 185:3270–3277CrossRefGoogle Scholar
  19. Cuesta-Seijo JA, Neale C, Khan MA, Moktar J, Tran CD, Bishop RE, Pomès R, Privé GG (2010) PagP crystallized from SDS/cosolvent reveals the route for phospholipid access to the hydrocarbon ruler. Structure 18:1210–1219CrossRefGoogle Scholar
  20. Dalebroux ZD, Matamouros S, Whittington D, Bishop RE, Miller SI (2014) PhoPQ regulates acidic glycerophospholipid content of the Salmonella Typhimurium outer membrane. Proc Natl Acad Sci U S A 111:1963–1968CrossRefGoogle Scholar
  21. Dovala D, Rath CM, Hu Q, Sawyer WS, Shia S, Elling RA, Knapp MS, Metzger LE 4th (2016) Structure-guided enzymology of the lipid A acyltransferase LpxM reveals a dual activity mechanism. Proc Natl Acad Sci U S A 113:E6064–E6071CrossRefGoogle Scholar
  22. Emptage RP, Daughtry KD, Pemble CW 4th, Raetz CR (2012) Crystal structure of LpxK, the 4′-kinase of lipid A biosynthesis and atypical P-loop kinase functioning at the membrane interface. Proc Natl Acad Sci U S A 109:12956–12961CrossRefGoogle Scholar
  23. Garrett TA, Kadrmas JL, Raetz CR (1997) Identification of the gene encoding the Escherichia coli lipid A 4′-kinase. Facile phosphorylation of endotoxin analogs with recombinant LpxK. J Biol Chem 272:21855–21864CrossRefGoogle Scholar
  24. Genthe NA, Thoden JB, Holden HM (2016) Structure of the Escherichia coli ArnA N-formyltransferase domain in complex with N(5)-formyltetrahydrofolate and UDP-Ara4N. Protein Sci 25:1555–1562CrossRefGoogle Scholar
  25. Groisman EA (2001) The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol 183:1835–1842CrossRefGoogle Scholar
  26. Gunn JS, Lim KB, Krueger J, Kim K, Guo L, Hackett M, Miller SI (1998) PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Mol Microbiol 27:1171–1182CrossRefGoogle Scholar
  27. Guo L, Lim K, Poduje C, Daniel M, Gunn J, Hackett J, Miller SI (1998) Lipid A acylation and bacterial resistance against vertebrate anti-microbial peptides. Cell 95:189–198CrossRefGoogle Scholar
  28. Hancock RE, Falla T, Brown M (1995) Cationic bactericidal peptides. Adv Microb Physiol 37:135–175CrossRefGoogle Scholar
  29. Hsu L, Jackowski S, Rock CO (1989) Uptake and acylation of 2-acyl-lysophospholipids by Escherichia coli. J Bacteriol 171:1203–1205CrossRefGoogle Scholar
  30. Hwang PM, Choy WY, Lo EI, Chen L, Forman-Kay JD, Raetz CR, Priv GG, Bishop RE, Kay LE (2002) Solution structure and dynamics of the outer membrane enzyme PagP by NMR. Proc Natl Acad Sci U S A 99:13560–13565CrossRefGoogle Scholar
  31. Jia W, El Zoeiby A, Petruzziello TN, Jayabalasingham B, Seyedirashti S, Bishop RE (2004) Lipid trafficking controls endotoxin acylation in outer membranes of Escherichia coli. J Biol Chem 279:44966–44975CrossRefGoogle Scholar
  32. Kelly TM, Stachula SA, Raetz CR, Anderson MS (1993) The firA gene of Escherichia coli encodes UDP-3-O-(R-3-hydroxymyristoyl)-glucosamine N-acyltransferase. The third step of endotoxin biosynthesis. J Biol Chem 268:19866–19874PubMedGoogle Scholar
  33. Khan MA, Bishop RE (2009) Molecular mechanism for lateral lipid diffusion between the outer membrane external leaflet and a beta-barrel hydrocarbon ruler. Biochemistry 48:9745–9756CrossRefGoogle Scholar
  34. Khan MA, Neale C, Michaux C, Pom AR, GG PP, Woody RW, Bishop RE (2007) Gauging a hydrocarbon ruler by an intrinsic exciton probe. Biochemistry 46:4565–4579CrossRefGoogle Scholar
  35. Khan MA, Moktar J, Mott PJ, Bishop RE (2010b) A thiolate anion buried within the hydrocarbon ruler perturbs PagP lipid acyl chain selection. Biochemistry 49:2368–2379CrossRefGoogle Scholar
  36. Khan MA, Moktar J, Mott PJ, Vu M, McKie AH, Pinter T, Hof F, Bishop RE (2010a) Inscribing the perimeter of the PagP hydrocarbon ruler by site-specific chemical alkylation. Biochemistry 49:9046–9057CrossRefGoogle Scholar
  37. Lee H, Hsu FF, Turk J, Groisman EA (2004) The PmrA-regulated pmrC gene mediates phosphoethanolamine modification of lipid A and polymyxin resistance in Salmonella enterica. J Bacteriol 186:4124–4133CrossRefGoogle Scholar
  38. Lee CJ, Liang X, Wu Q, Najeeb J, Zhao J, Gopalaswamy R, Titecat M, Sebbane F, Lemaitre N, Toone EJ, Zhou P (2016) Drug design from the cryptic inhibitor envelope. Nat Commun 25(7):10638CrossRefGoogle Scholar
  39. Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656CrossRefGoogle Scholar
  40. Noland BW, Newman JM, Hendle J, Badger J, Christopher JA, Tresser J, Buchanan MD, Wright TA, Rutter ME, Sanderson WE, Muller-Dieckmann HJ, Gajiwala KS, Buchanan SG (2002) Structural studies of Salmonella typhimurium ArnB (PmrH) aminotransferase: a 4-amino-4-deoxy-l-arabinose lipopolysaccharide-modifying enzyme. Structure 10:1569–1580CrossRefGoogle Scholar
  41. Okuda S, Sherman DJ, Silhavy TJ, Ruiz N, Kahne D (2016) Lipopolysaccharide transport and assembly at the outer membrane: the PEZ model. Nat Rev Microbiol 14:337–345CrossRefGoogle Scholar
  42. Onishi HR, Pelak BA, Gerckens LS, Silver LL, Kahan FM, Chen MH, Patchett AA, Galloway SM, Hyland SA, Anderson MS, Raetz CR (1996) Antibacterial agents that inhibit lipid A biosynthesis. Science 274:980–982CrossRefGoogle Scholar
  43. Petrou VI, Herrera CM, Schultz KM, Clarke OB, Vendome J, Tomasek D, Banerjee S, Rajashankar KR, Belcher Dufrisne M, Kloss B, Kloppmann E, Rost B, Klug CS, Trent MS, Shapiro L, Mancia F (2016) Structures of aminoarabinose transferase ArnT suggest a molecular basis for lipid A glycosylation. Science 351:608–612CrossRefGoogle Scholar
  44. Preston A, Maxim E, Toland E, Pishko EJ, Harvill ET, Caroff M, Maskell DJ (2003) Bordetella bronchiseptica PagP is a Bvg-regulated lipid A palmitoyl transferase that is required for persistent colonization of the mouse respiratory tract. Mol Microbiol 48:725–736CrossRefGoogle Scholar
  45. Raetz CR, Reynolds CM, Trent MS, Bishop RE (2007) Lipid A modification systems in gram-negative bacteria. Annu Rev Biochem 76:295–329CrossRefGoogle Scholar
  46. Raetz CR, Roderick SL (1995) A left-handed parallel beta helix in the structure of UDP-N-acetylglucosamine acyltransferase. Science 270:997–1000CrossRefGoogle Scholar
  47. Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700CrossRefGoogle Scholar
  48. Reynolds CM, Kalb SR, Cotter RJ, Raetz CR (2005) A phosphoethanolamine transferase specific for the outer 3-deoxy-d-manno-octulosonic acid residue of Escherichia coli lipopolysaccharide. Identification of the eptB gene and Ca2+ hypersensitivity of an eptB deletion mutant. J Biol Chem 280:21202–21211CrossRefGoogle Scholar
  49. Robey M, O’Connell W, Cianciotto NP (2001) Identification of Legionella pneumophila rcp, a pagP-like gene that confers resistance to cationic antimicrobial peptides and promotes intracellular infection. Infect Immun 69:4276–4286CrossRefGoogle Scholar
  50. Schmidt H, Hansen G, Singh S, Hanuszkiewicz A, Lindner B, Fukase K, Woodard RW, Holst O, Hilgenfeld R, Mamat U, Mesters JR (2012) Structural and mechanistic analysis of the membrane-embedded glycosyltransferase WaaA required for lipopolysaccharide synthesis. Proc Natl Acad Sci U S A 109:6253–6258CrossRefGoogle Scholar
  51. Six DA, Carty SM, Guan Z, Raetz CR (2008) Purification and mutagenesis of LpxL, the lauroyltransferase of Escherichia coli lipid A biosynthesis. Biochemistry 47:8623–8637CrossRefGoogle Scholar
  52. Smith AE, Kim SH, Liu F, Jia W, Vinogradov E, Gyles CL, Bishop RE (2008) PagP activation in the outer membrane triggers R3 core oligosaccharide truncation in the cytoplasm of Escherichia coli O157:H7. J Biol Chem 283:4332–4343CrossRefGoogle Scholar
  53. Trent MS, Ribeiro AA, Doerrler WT, Lin S, Cotter RJ, Raetz CR (2001) Accumulation of a polyisoprene-linked amino sugar in polymyxin-resistant Salmonella typhimurium and Escherichia coli: structural characterization and transfer to lipid A in the periplasm. J Biol Chem 276:43132–43144CrossRefGoogle Scholar
  54. Trent MS, Ribeiro AA, Lin S, Cotter RJ, Raetz CR (2001) An inner membrane enzyme in Salmonella and Escherichia coli that transfers 4-amino-4-deoxy-l-arabinose to lipid A: induction on polymyxin-resistant mutants and role of a novel lipid-linked donor. J Biol Chem 276:43122–43131CrossRefGoogle Scholar
  55. Touzé T, Tran AX, Hankins JV, Mengin-Lecreulx D, Trent MS (2008) Periplasmic phosphorylation of lipid A is linked to the synthesis of undecaprenyl phosphate. Mol Microbiol 67:264–277CrossRefGoogle Scholar
  56. Thaipisuttikul I, Hittle LE, Chandra R, Zangari D, Dixon CL, Garrett TA, Rasko DA, Dasgupta N, Moskowitz SM, Malmström L, Goodlett DR, Miller SI, Bishop RE, Ernst RK (2014) A divergent Pseudomonas aeruginosa palmitoyltransferase essential for cystic fibrosis-specific lipid A. Mol Microbiol 91:158–174CrossRefGoogle Scholar
  57. Ulrich JT, Myers KR (1995) Monophosphoryl lipid A as an adjuvant. In: Powell MF, Newman MJ (eds) Vaccine design: the subunit and adjuvant approach. Plenum Press, New York, pp 495–524CrossRefGoogle Scholar
  58. Vorachek-Warren MK, Ramirez S, Cotter RJ, Raetz CR (2002) A triple mutant of Escherichia coli lacking secondary acyl chains on lipid A. J Biol Chem 277:14194–14205CrossRefGoogle Scholar
  59. Wanty C, Anandan A, Piek S, Walshe J, Ganguly J, Carlson RW, Stubbs KA, Kahler CM, Vrielink A (2013) The structure of the neisserial lipooligosaccharide phosphoethanolamine transferase A (LptA) required for resistance to polymyxin. J Mol Biol 425:3389–3402CrossRefGoogle Scholar
  60. Whittington DA, Rusche KM, Shin H, Fierke CA, Christianson DW (2003) Crystal structure of LpxC, a zinc-dependent deacetylase essential for endotoxin biosynthesis. Proc Natl Acad Sci U S A 100:8146–8150CrossRefGoogle Scholar
  61. Wyckoff TJ, Lin S, Cotter RJ, Dotson GD, Raetz CR (1998) Hydrocarbon rulers in UDP-N-acetylglucosamine acyltransferases. J Biol Chem 273:32369–32372CrossRefGoogle Scholar
  62. Yan A, Guan Z, Raetz CR (2007) An undecaprenyl phosphate-aminoarabinose flippase required for polymyxin resistance in Escherichia coli. J Biol Chem 282:36077–36089CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonCanada

Personalised recommendations