Bacterial Metabolism of C1 Sulfur Compounds

  • Rich BodenEmail author
  • Lee P. Hutt
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


The metabolism of C1 organosulfur compounds by the Bacteria is important in the biogeochemical cycling of sulfur and carbon and in climate regulation in terms of mediating release of, e.g., dimethylsulfide from the oceans. Herein we review the canon of work on the metabolism of dimethylsulfide, dimethylsulfoxide, dimethylsulfone, methanesulfonate, dimethyldisulfide, and methanethiol, in terms of dissimilation to formaldehyde or carbon dioxide when used as carbon and energy sources by methylotrophs or autotrophs, oxidation to sulfite prior to assimilation as sulfur sources, and use as respiratory terminal electron acceptors. We discuss the enzymology of the metabolism of these compounds and propose a revision to the Enzyme Commission classification to some of them where multiple enzymes are clearly grouped under one name at present. We also provide methodologies for enzyme assays, for the safe handling and quantification of these compounds, and for the synthesis of carbon-14, carbon-11, sulfur-34, and sulfur-34 compounds for use in physiological and ecological studies.



We thank the EThOS service at the British Library for the rapid digitization of the Padden thesis used in this work. We thank Dr. Ann P Wood (previously of King’s College London, UK) for discussions and being a sounding board and Dr. Miguel Franco (School of Biological and Marine Sciences, University of Plymouth) for discussions on evolutionary models.


  1. Ahlgren G (1925) Kapitel I: Methodik. Skand Arch Physiol 47(Suppl):6–17Google Scholar
  2. Anness B (1981) The determination of dimethyl sulphoxide in aqueous solution. J Sci Food Agric 32:353–358CrossRefGoogle Scholar
  3. Aronoff S (1956) Techniques of radiobiochemistry. Iola State College Press, AmesGoogle Scholar
  4. Asher E, Dacey JW, Ianson D, Peña A, Tortell PD (2017) Concentrations and cycling of DMS, DMSP, and DMSO in coastal and offshore waters of the Subarctic Pacific during summer, 2010–2011. J Geophys Res Oceans 122:3269–3286CrossRefGoogle Scholar
  5. Baxter NJ, Scanlan J, De Marco P, Wood AP, Murrell JC (2002) Duplicate copies of genes encoding methanesulfonate monooxygenase in Marinosulfonomonas methylotropha strain TR3 and detection of methanesulfonate utilizers in the environment. Appl Environ Microbiol 68:289–296PubMedPubMedCentralCrossRefGoogle Scholar
  6. Beerli R, Borschberg H-J (1991) Preparation of [13C2]-DMSO. J Label Compd Radiopharm 29:957–961CrossRefGoogle Scholar
  7. Bilous PT, Weiner JH (1985) Dimethyl sulfoxide reductase activity by anaerobically grown Escherichia coli HB101. J Bacteriol 162:1151–1155PubMedPubMedCentralGoogle Scholar
  8. Bilous PT, Cole ST, Anderson WF, Weiner JH (1988) Nucleotide sequence of the dmsABC operon encoding the anaerobic dimethylsulphoxide reductase of Escherichia coli. Mol Microbiol 2:785–795PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bock H, Rittmeyer R (1992) Radikalionen 891,2 einelektronen-oxidationen von diaryldisulfiden mit AlCl3/H2CCl2. Phosphorus Sulfur Silicon Relat Elem 68:261–291CrossRefGoogle Scholar
  10. Boden R, Hutt LP (2018a) Chemolithoheterotrophy: means to higher growth yields from this widespread metabolic trait. In: Rojo F (ed) Aerobic utilization of hydrocarbons, oils and lipids. Handbook of hydrocarbon and lipid microbiology. Springer, ChamGoogle Scholar
  11. Boden R, Hutt LP (2018b) Determination of kinetic parameters and metabolic modes using the chemostat. In: Steffan R (ed) Consequences of microbial interaction with hydrocarbons, oils and lipids: biodegradation and bioremediation. Handbook of hydrocarbon and lipid microbiology. Springer, ChamGoogle Scholar
  12. Boden R, Kelly DP, Murrell JC, Schäfer H (2010) Oxidation of dimethylsulfide to tetrathionate by Methylophaga thiooxidans sp. nov.: a new link in the sulfur cycle. Environ Microbiol 12:2688–2699PubMedPubMedCentralGoogle Scholar
  13. Boden R, Murrell JC, Schäfer H (2011a) Dimethylsulfide is an energy source for the heterotrophic marine bacterium Sagittula stellata. FEMS Microbiol Lett 322:188–193PubMedCrossRefPubMedCentralGoogle Scholar
  14. Boden R, Borodina E, Wood AP, Kelly DP, Murrell JC, Schäfer H (2011b) Purification and characterization of dimethylsulfide monooxygenase from Hyphomicrobium sulfonivorans. J Bacteriol 193:1250–1258PubMedPubMedCentralCrossRefGoogle Scholar
  15. Boden R, Cleland D, Green PN, Katayama Y, Uchino Y, Murrell JC, Kelly DP (2012) Phylogenetic assessment of culture collection strains of Thiobacillus thioparus, and definitive 16S rRNA gene sequences for T. thioparus, T. denitrificans, and Halothiobacillus neapolitanus. Arch Microbiol 194:187–195PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bolton HC, Ray ID (1992) The admiral’s storm glass: coffee-table renaissance of an old weather instrument. Weather 47:89–97CrossRefGoogle Scholar
  17. Borodina E (2002) Bacterial metabolism of dimethylsulfone. PhD thesis, King’s College London, LondonGoogle Scholar
  18. Borodina E, Kelly DP, Rainey FA, Ward-Rainey NL, Wood AP (2000) Dimethylsulfone as a growth substrate for novel methylotrophic species of Hyphomicrobium and Arthrobacter. Arch Microbiol 173:425–437PubMedCrossRefPubMedCentralGoogle Scholar
  19. Borodina E, Kelly DP, Shumann P, Rainey FA, Ward-Rainey NL, Wood AP (2002) Enzymes of dimethylsulfone metabolism and the phylogenetic characterization of the facultative methylotrophs Arthrobacter sulfonivorans sp. nov., Arthrobacter methylotrophus sp. nov., and Hyphomicrobium sulfonivorans sp. nov. Arch Microbiol 177:173–183PubMedCrossRefPubMedCentralGoogle Scholar
  20. Brot N, Weissbach H (1965) Enzymatic synthesis of methionine. J Biol Chem 240:3064–3070PubMedPubMedCentralGoogle Scholar
  21. Canfield DE, Farquhar J (2009) Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proc Natl Acad Sci 106:8123–8127PubMedCrossRefPubMedCentralGoogle Scholar
  22. Carrión O, Curson ARJ, Kumaresan D, Fu Y, Lang AS, Mercadé E, Todd J (2015) A novel pathway producing dimethylsulfide in bacteria is widespread in soil environments. Nat Commun 6:6579PubMedCrossRefPubMedCentralGoogle Scholar
  23. Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326:655–661CrossRefGoogle Scholar
  24. Cinti DL, Thal SE (1977) Determination of formaldehyde by the Hantzsch reaction: interference by naturally occurring compounds. Anal Biochem 83:91–98PubMedCrossRefPubMedCentralGoogle Scholar
  25. Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458CrossRefGoogle Scholar
  26. Dahl JU, Urban A, Bolte A, Sriyabhaya P, Donahue JL, Nimtz M, Larson TJ, Leimkühler S (2011) The identification of a novel protein involved in molybdenum cofactor biosynthesis in Escherichia coli. J Biol Chem 286:35801–35812PubMedPubMedCentralCrossRefGoogle Scholar
  27. De Bont JAM, van Dijken JP, Harder W (1981) Dimethyl sulphoxide and dimethyl sulphide as a carbon, sulphur and energy source for growth of Hyphomicrobium S. J Gen Microbiol 127:315–323Google Scholar
  28. De Marco P, Morades-Ferreira P, Higgins TP, McDonald I, Kenna EM, Murrell JC (1999) Molecular analysis of a novel methanesulfonic acid monooxygenase from the methylotroph Methylosulfonomonas methylovora. J Bacteriol 181:2244–2251PubMedPubMedCentralGoogle Scholar
  29. De Zwart JMM (1997) Ecophysiology and modelling of DMS metabolism by Methylophaga sulfidovorans. PhD thesis, Technical University of DelftGoogle Scholar
  30. De Zwart JMM, Nelisse P, Kuenen J (1996) Isolation and characterization of Methylophaga sulfidovorans sp. nov.: an obligately methylotrophic, aerobic dimethylsulfide oxidizing bacterium from a microbial mat. FEMS Microbiol Ecol 20:261–270CrossRefGoogle Scholar
  31. Denkmann K, Grein F, Zigann R, Sieman A, Bergmann J, van Helmont S, Nicolai A, Pereira IA, Dahl C (2012) Thiosulfate dehydrogenase: a widespread unusual acidophilic c-type cytochrome. Environ Microbiol 14:2673–2688PubMedCrossRefPubMedCentralGoogle Scholar
  32. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 19:1792–1797CrossRefGoogle Scholar
  33. Eisenberg G (1943) Colorimetric determination of hydrogen peroxide. Ind Eng Chem Anal Ed 15:327–328CrossRefGoogle Scholar
  34. Endoh T, Habe H, Yoshida T, Nojiri H, Omori T (2003a) A CysB-regulated and sigma53-dependent regulator, SfnR, is essential for dimethyl sulfone metabolism of Pseudomonas putida strain DS1. Microbiology 149:991–1000PubMedCrossRefPubMedCentralGoogle Scholar
  35. Endoh T, Kasuga K, Horinouchi M, Yoshida Y, Habe H, Nojiri H, Omori T (2003b) Characterization and identification of genes essential for dimethyl sulfide utilization in Pseudomonas putida strain DS1. Appl Microbiol Biotechnol 62:83–91PubMedCrossRefPubMedCentralGoogle Scholar
  36. Endoh T, Habe H, Nojiri H, Yamane H, Omori Y (2005) The sigma54-dependent transcriptional activator SnfR regulates the expression of the Pseudomonas putida sfnFG operon responsible for dimethyl sulphone utilization. Mol Microbiol 55:897–911PubMedCrossRefPubMedCentralGoogle Scholar
  37. Eyice Ö, Myronova N, Pol A, Carrión O, Todd JD, Smith TJ, Gurman SJ, Cuthbertson A, Mazard S, Mennink-Kersten MASH, Bugg TDH, Anderson KK, Johnston AWB, op den Camp HJM, Schäfer H (2018) Bacterial SBP56 identified as a Cu-dependent methanethiol oxidase widely distributed in the biosphere. ISME J 12:145–160PubMedCrossRefPubMedCentralGoogle Scholar
  38. Feil VJ, Huwe JK, Dulik DM, Fenselaum C (1988) Synthesis of 13C- and 14C-labelled methanesulfinic and methanesulfonic acids. J Label Compd Radiopharm 25:1021–1025CrossRefGoogle Scholar
  39. Field L (1977) Disulfides and polysulfides. In: Oae S (ed) Organic chemistry of sulfur. Plenum Press, New YorkGoogle Scholar
  40. Galus Z (1985) Carbon, silicon, germanium, tin, and lead. In: Bard AJ, Parsons R, Jordan J (eds) Standard potentials in aqueous solutions. Marcel Dekker, New York, pp 189–236Google Scholar
  41. Gould WD, Kanagawa TJ (1992) Purification and properties of methyl mercaptan oxidase from Thiobacillus thioparus Tk-m. J Gen Microbiol 138:217–221CrossRefGoogle Scholar
  42. Grime JP (1979) Plant strategies and vegetation process. Wiley, New YorkGoogle Scholar
  43. Grossart H-P, Frindte K, Dziallas C, Eckert W, Tang KW (2011) Microbial methane production in oxygenated water column of an oligotrophic lake. Proc Natl Acad Sci 108:19657–19661PubMedCrossRefPubMedCentralGoogle Scholar
  44. Hanlon SP, Holt RA, Moore GR, McEwan AG (1994) Isolation and characterisation of a strain of Rhodobacter sulfidophilus: a bacterium which grows autotrophically on dimethylsulfide as electron donor. Microbiology 140:1953–1958CrossRefGoogle Scholar
  45. Hatton AD, Malin G, McEwan AG, Liss PG (1994) Determination of dimethyl sulfoxide in aqueous solution by an enzyme-linked method. Anal Chem 66:4093–4096CrossRefGoogle Scholar
  46. Henriques AC, De Marco P (2015) Methanesulfonate (MSA) catabolic genes from marine and estuarine bacteria. PLoS One 10:e0125735PubMedPubMedCentralCrossRefGoogle Scholar
  47. Higgins TP, Davey M, Trickett J, Kelly DP, Murrell JC (1996) Metabolism of methanesulfonic acid involves a multicomponent monooxygenase enzyme. Microbiology 142:251–260PubMedCrossRefPubMedCentralGoogle Scholar
  48. Hirsch P (1986) Microbial life at extremely low nutrient levels. Adv Space Res 6:287–298PubMedCrossRefPubMedCentralGoogle Scholar
  49. Hogenkamp HPC (1968) Enzymatic reactions involving corrinoids. Annu Rev Biochem 37:225–248PubMedCrossRefPubMedCentralGoogle Scholar
  50. Horinouchi M, Kasuga K, Nojiri H, Yamane H, Omori T (1997) Cloning and characterization of genes encoding an enzyme which oxidizes dimethyl sulfide in Acinetobacter sp. strain 20B. FEMS Microbiol Lett 155:99–105PubMedCrossRefPubMedCentralGoogle Scholar
  51. Horinouchi M, Yoshida T, Nojiri H, Yamane H, Omori T (1999) Polypeptide requirement of multicomponent monooxygenase DsoABCDEF for dimethyl sulfide oxidizing activity. Biosci Biotechnol Biochem 63:1765–1771PubMedCrossRefPubMedCentralGoogle Scholar
  52. Jagota NK, Nair JB, Kurtulik PT (1995) Ion chromatography of methanesulfonic acid in pharmaceuticals. J Pharm Biomed Anal 13:1291–1295PubMedCrossRefPubMedCentralGoogle Scholar
  53. Jamshad M, Murrell JC, Fülöp V (2007) Purification and crystallization of the hydroxylase component of the methanesulfonate monooxygenase from Methylosulfonomonas methylovora strain M2. Protein Expr Purif 52:472–477PubMedCrossRefPubMedCentralGoogle Scholar
  54. Kanagawa T, Kelly DP (1986) Breakdown of dimethyl sulfide by mixed cultures and by Thiobacillus thioparus. FEMS Microbiol Lett 34:13–19CrossRefGoogle Scholar
  55. Kanagawa T, Mikami E (1989) Removal of methanethiol, dimethyl sulphide, dimethyl disulphide, and hydrogen sulphide from contaminated air by Thiobacillus thioparus Tk-m. Appl Environ Microbiol 55:555–558PubMedPubMedCentralGoogle Scholar
  56. Kanagawa T, Dazai M, Fukuoka S (1982) Degradation of O,O-dimethyl phosphorodithioate by Thiobacillus thioparus TK-1 and Pseudomonas AK-2. Agric Biol Chem 46:2571–2578Google Scholar
  57. Karl DM, Beversdorf L, Björkman KM, Church MJ, Martinez A, Delong EF (2008) Aerobic production of methane in the sea. Nat Geosci 1:473–478CrossRefGoogle Scholar
  58. Kaufmann CRE (2015) Alternative routes to methyl mercaptan from C1-compounds. Dr. rer. nat. dissertation, Technischen Universität MünchenGoogle Scholar
  59. Keine RP (1993) Microbial sources and sinks for methylated sulfur compounds in the marine environment. In: Murrell JC, Kelly DP (eds) Microbial growth on C1 compounds. Intercept Ltd, Andover, pp 15–34Google Scholar
  60. Keine RP (1996) Microbiological controls on dimethylsulfide emissions from wetlands and the ocean. In: Murrell JC, Kelly DP (eds) Microbiology of atmospheric trace gases. NATO ASI series, vol 39. Springer, Berlin, pp 205–225CrossRefGoogle Scholar
  61. Kelly DP (1978) Bioenergetics of chemolithotrophic bacteria. In: Bull AT, Meadow PM (eds) Companion to microbiology, selected topics for further study. Longman, London, pp 363–386Google Scholar
  62. Kelly DP (1996) A global perspective on sources and sinks of biogenic trace gases: an atmospheric system driven by microbiology. In: Murrell JC, Kelly DP (eds) Microbiology of atmospheric trace gases. NATO ASI series, vol 39. Springer, Berlin, pp 1–16Google Scholar
  63. Kelly DP, Malin G, Wood AP (1993) Microbial transformations and biogeochemical cycling of one-carbon substrates containing sulphur, nitrogen or halogens. In: Murrell JC, Kelly DP (eds) Microbial growth on C1 compounds. Intercept Ltd, Andover, pp 47–63Google Scholar
  64. Kelly DP, Baker SC, Trickett J, Davey M, Murrell JC (1994) Methanesulphonate utilization by a novel methylotrophic bacterium involves an unusual monooxygenase. Microbiology 140:1419–1426CrossRefGoogle Scholar
  65. Kertesz MA (1996) Desulfonation of aliphatic sulfonates by Pseudomonas aeruginosa PAO. FEMS Microbiol Lett 137:221–225PubMedCrossRefPubMedCentralGoogle Scholar
  66. Kim SJ, Shin HJ, Kim YC, Yang JW (2000) Isolation and purification of methyl mercaptan oxidase from Rhodococcus rhodochrous for mercaptan detection. Biotechnol Bioprocess Eng 5:465–468CrossRefGoogle Scholar
  67. Kino K, Murakami-Nitta T, Oishi M, Ishiguro S, Kirimura K (2004) Isolation of dimethyl sulfone-degrading microorganisms and application to odourless degradation of dimethyl sulfoxide. J Biosci Bioeng 97:82–84PubMedCrossRefPubMedCentralGoogle Scholar
  68. Kloster S, Feichter J, Maier-Reimer E, Six KD, Stier P, Wetzel P (2006) DMS cycle in the marine ocean-atmosphere system – a global model study. Biogeosciences 3:29–51CrossRefGoogle Scholar
  69. Koch T, Dahl C (2018) A novel bacterial sulfur oxidation pathway provides a new link between the cycles of organic and inorganic sulfur compounds. ISME J. Scholar
  70. Kolatis LN, Bruynseels FJ, van Grieken RE, Andreae M (1989) Determination of methanesulfonic acid and non-sea-salt sulfate in single marine aerosol particles. Environ Sci Technol 23:236–240CrossRefGoogle Scholar
  71. Koval’ IV (1993) Thiols as synthons. Russ Chem Rev 62:769–786CrossRefGoogle Scholar
  72. Koval’ IV (1994) The chemistry of disulfides. Russ Chem Rev 63:735–750CrossRefGoogle Scholar
  73. Kumar S, Stecher G, Li M, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549PubMedCrossRefPubMedCentralGoogle Scholar
  74. Lang RF, Brown CJ (1991) Determination of dimethyl sulfoxide and dimethyl sulfone in air. Anal Chem 64:186–189CrossRefGoogle Scholar
  75. Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320PubMedCrossRefPubMedCentralGoogle Scholar
  76. Le Faou A, Rajogopal BS, Daniels L, Fauque G (1990) Thiosulfate, polythionates and elemental sulfur assimilation and reduction in the bacterial world. FEMS Microbiol Rev 6:351–381PubMedCrossRefPubMedCentralGoogle Scholar
  77. Lodge JP Jr (1988) Determination of mercaptan content of the atmosphere. In: Lodge JP Jr (ed) Methods of air sampling and analysis, 3rd edn. CRC Press LLC, Boca RatonGoogle Scholar
  78. Lomans B, Smolders A, Intven LM, Pol A, Op D, van der Drift C (1997) Formation of dimethyl sulfide and methanethiol in anoxic freshwater sediments. Appl Environ Microbiol 63:4741–4747PubMedPubMedCentralGoogle Scholar
  79. MacArthur R, Wilson EO (1967) The theory of island biogeography. Princeton University Press, PrincetonGoogle Scholar
  80. Marazano C, Maziere M, Berger G, Comar D (1977) Synthesis of methyl iodide-11C and formaldehyde-11C. Int J Appl Radiat Isot 28:49–52PubMedCrossRefPubMedCentralGoogle Scholar
  81. McAllan DT, Cullum TV, Dean RA, Fidler FA (1951) The preparation and properties of sulfur compounds related to petroleum. I. The dialkyl sulphides and disulfides. J Am Chem Soc 73:3627–3632CrossRefGoogle Scholar
  82. McDevitt CA, Hugenholtz P, Hanson GR, McEwan AG (2002a) Molecular analysis of dimethyl sulphide dehydrogenase from Rhodovulum sulfidophilum: its place in the dimethyl sulphoxide reductase family of microbial molybdopterin-containing enzymes. Mol Microbiol 44:1575–1587PubMedCrossRefPubMedCentralGoogle Scholar
  83. McDevitt CA, Hanson GR, Noble CJ, Cheesman MR, McEwan AG (2002b) Characterization of the redox centers in dimethyl sulfide dehydrogenase from Rhodovulum sulfidophilum. Biochemistry 41:15233–15244CrossRefGoogle Scholar
  84. Meites L, Meites T (1948) Removal of oxygen from gas streams. Anal Chem 20:984–985CrossRefGoogle Scholar
  85. Menger FM, Elrington AR (1990) Rapid deactivation of mustard via microemulsion technology. J Am Chem Soc 112:8201–8203CrossRefGoogle Scholar
  86. Moses AJ (1964) Nuclear techniques in analytical chemistry. Pergamon, LondonGoogle Scholar
  87. Murakami-Nitta T, Kurimura H, Kirimura K, Kino K, Usami S (2002) Continuous degradation of dimethyl sulfoxide to sulfate ion by Hyphomicrobium denitrificans WU-K217. J Biosci Bioeng 94:52–56PubMedCrossRefPubMedCentralGoogle Scholar
  88. Nash T (1953) The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J 55:416–421PubMedPubMedCentralCrossRefGoogle Scholar
  89. Neufeld JD, Boden R, Moussard H, Schäfer H, Murrell JC (2008) Substrate-specific clades of active marine methylotrophs associated with a phytoplankton bloom in a temperate coastal environment. Appl Environ Microbiol 74:7321–7328PubMedPubMedCentralCrossRefGoogle Scholar
  90. O’Donnell BV, Tew DG, Jones OT, England PJ (1993) Studies on the inhibitory mechanism of iodonium compounds with special reference to neutrophil NADPH oxidase. Biochem J 290:41–49PubMedPubMedCentralCrossRefGoogle Scholar
  91. Ogata M, Fujii T, Yoshida Y (1979) Quantitative determination of urinary dimethyl sulfoxide and dimethyl sulfone by the gas chromatography equipped with a flame photometric detector. Ind Health 17:73–78CrossRefGoogle Scholar
  92. Padden AN (1997) Microbial degradation of organic sulfur compounds. PhD thesis, King’s College London, LondonGoogle Scholar
  93. Padden AN, Rainey FA, Kelly DP, Wood AP (1997) Xanthobacter tagetidis sp. nov., an organism associated with Tagetes species and able to grow on substituted thiophenes. Int J Syst Bacteriol 47:394–491PubMedCrossRefPubMedCentralGoogle Scholar
  94. Padden AN, Kelly DP, Wood AP (1998) Chemolithoautotrophy and mixotrophy in the thiophene-2-carboxylic acid-utilizing Xanthobacter tagetidis. Arch Microbiol 169:249–256PubMedCrossRefPubMedCentralGoogle Scholar
  95. Palumbo SA, Alford JA (1970) Inhibitory action of tetrathionate enrichment broth. Appl Environ Microbiol 20:970–976Google Scholar
  96. Park S-W, Lee W (2015) Development of a validated determination of methylsulfonylmethane in dietary supplements by gas chromatography. KSBB J 30:141–147CrossRefGoogle Scholar
  97. Paskach TJ, Schrader GL, McCarley RE (2002) Synthesis of methanethiol from methanol over reduced molybdenum sulfide catalysts based on the Mo6S8 cluster. J Catal 211:285–295CrossRefGoogle Scholar
  98. Pianka ER (1970) On r and K selection. Am Nat 104:592–597CrossRefGoogle Scholar
  99. Quesenberry MS, Lee YC (1996) A rapid formaldehyde assay using purpald reagent: application under periodation conditions. Anal Biochem 234:50–55PubMedCrossRefPubMedCentralGoogle Scholar
  100. Reussi Calvo NI, Echeverrìa HE, Sainz Rozas H (2009) Determination of sulfate concentration in soil: depth of sampling. Commun Soil Sci Plant Anal 40(9–10):1624CrossRefGoogle Scholar
  101. Roberts JS (2000) Thiols. In: Ley C (ed) Kirk-Othmer encyclopedia of chemical technology. Wiley, New YorkGoogle Scholar
  102. Ross PN (1985) Oxygen. In: Bard AJ, Parsons R, Jordan J (eds) Standard potentials in aqueous solutions. Marcel Dekker, New York, pp 49–66Google Scholar
  103. Šatínský D, Pospíšilová M, Sladovský R (2014) A new gas chromatography method for quality control of methylsulfonylmethane content in multicomponent dietary supplements. Food Anal Methods 7:1118–1122CrossRefGoogle Scholar
  104. Schäfer H (2007) Isolation of Methylophaga spp. from marine dimethylsulfide-degrading enrichment cultures and identification of polypeptides induced during growth on dimethylsulfide. Appl Environ Microbiol 73:2580–2591PubMedPubMedCentralCrossRefGoogle Scholar
  105. Schäfer H, Myronova N, Boden R (2010) Microbial degradation of dimethylsulphide and related C1-sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere. J Exp Bot 61:315–334PubMedCrossRefPubMedCentralGoogle Scholar
  106. Sigren LK, Byrd GT, Fisher FM, Sass RL (1997) Comparison of soil acetate concentrations and methane production, transport, and emission in two rice cultivars. Global Biogeochem Cycles 11:1–14CrossRefGoogle Scholar
  107. Silvertown J, Franco M, McConway K (1992) A demographic interpretation of Grime’s triangle. Funct Ecol 62:130–136CrossRefGoogle Scholar
  108. Smith NA (1988) Metabolism of dimethyl disulphide, carbon disulphide and other volatile sulphur compounds by chemolithoautotrophic sulphur bacteria. PhD thesis, University of WarwickGoogle Scholar
  109. Smith NA, Kelly DP (1988) Mechanism of oxidation of dimethyl disulphide by Thiobacillus thioparus E6. J Gen Microbiol 134:3031–3039Google Scholar
  110. Smith TJ, Murrell JC (2011) Mutagenesis of soluble methane monooxygenase. Methods Enzymol 495:135–147PubMedCrossRefPubMedCentralGoogle Scholar
  111. Suylen GMH (1988) Microbial metabolism of dimethyl sulphide and related compounds. PhD thesis, University of Technology DelftGoogle Scholar
  112. Suylen GMH, Large PJ, van Dijken JP, Kuenen JG (1987) Methyl mercaptan oxidase, a key enzyme in the metabolism of methylated sulphur compounds by Hyphomicrobium EG. J Gen Microbiol 133:2989–2997Google Scholar
  113. Suylen GMH, Stefess GC, Kuenen JG (1996) Chemolithotrophic potential of a Hyphomicrobium species, capable of growth on methylated sulphur compounds. Arch Microbiol 146:192–198CrossRefGoogle Scholar
  114. Suzuki I, Silver M (1966) The initial product and properties of the sulfur-oxidizing enzyme of thiobacilli. Biochim Biophys Acta 122:22–33CrossRefGoogle Scholar
  115. Takeuchi A, Yamamoto S, Narai R, Nishida M, Yashiki M, Sakui N, Namera N (2009) Determination of dimethyl sulfoxide and dimethyl sulfone in urine by gas chromatography-mass spectrometry after preparation using 2,2-dimethoxypropane. Biomed Chromatogr 24:465–471Google Scholar
  116. Thompson AS, Owens NJP, Murrell JC (1995) Isolation and characterization of methanesulfonic acid-degrading bacteria from the marine environment. Appl Environ Microbiol 61:2388–2393PubMedPubMedCentralGoogle Scholar
  117. Tripp HJ, Kitner JB, Schwalbach MS, Dacey JW, Wilhelm LJ, Giovannoni SJ (2008) SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature 452:741–744PubMedCrossRefPubMedCentralGoogle Scholar
  118. van der Ploeg JE, Weiss MA, Saller E, Nashimoto H, Saito N, Kertesz MA, Leisinger T (1996) Identification of sulfate starvation-regulated genes in Escherichia coli: a gene cluster involved in the utilization of taurine as a sulfur source. J Bacteriol 178:5438–5446PubMedPubMedCentralCrossRefGoogle Scholar
  119. Visscher PT, Taylor BF (1993a) A new mechanism for the aerobic catabolism of dimethyl sulfide. Appl Environ Microbiol 59:3784–3789PubMedPubMedCentralGoogle Scholar
  120. Visscher PT, Taylor BF (1993b) Aerobic and anaerobic degradation of a range of alkyl sulfides by a denitrifying marine bacterium. Appl Environ Microbiol 59:4083–4089PubMedPubMedCentralGoogle Scholar
  121. Visscher PT, Quist P, van Gemerden H (1991) Methylated sulfur compounds in microbial mats: in situ concentrations and metabolism by a colorless sulfur bacterium. Appl Environ Microbiol 57:1758–1763PubMedPubMedCentralGoogle Scholar
  122. Warner DR, Hoffman JL (1996) Suicide inactivation of thioether S-methyltransferase by ethyl vinyl sulfide. Biochemistry 35:4480–4484PubMedCrossRefPubMedCentralGoogle Scholar
  123. Wicht DK (2016) The reduced flavin-dependent monooxygenase SfnG converts dimethylsulfone to methanesulfinate. Arch Biochem Biophys 604:159–166PubMedCrossRefPubMedCentralGoogle Scholar
  124. Williams KIH, Whittemore KS, Mellin TN, Layne DS (1965) Oxidation of dimethyl sulfoxide to dimethyl sulfone in the rabbit. Science 149:203–204PubMedCrossRefPubMedCentralGoogle Scholar
  125. Wood AP (1996) Sulfur, carbon and nitrogen interactions. In: Murrell JC, Kelly DP (eds) Microbiology of atmospheric trace gases. NATO ASI series, vol 39. Springer, Berlin, pp 281–295Google Scholar
  126. Yao M, Henny C, Maresca JA (2016) Freshwater bacteria release methane as a by-product of phosphorus acquisition. Appl Environ Microbiol 82:6994–7003PubMedCentralCrossRefGoogle Scholar
  127. Yoshiko A, Takejiro O, Iwaji I (1968) An improved photometric method for the determination of sulfite with pararosaniline and formaldehyde. Bull Chem Soc Jpn 41:1454–1456CrossRefGoogle Scholar
  128. Zhang L, Nelson KJ, Rajagopalan KV, George GN (2008) Structure of the molybdenum site of Escherichia coli trimethylamine N-oxide reductase. Inorg Chem 47:1074–1078PubMedCrossRefPubMedCentralGoogle Scholar
  129. Zhdanov SI (1985) Sulfur, selenium, tellurium and polonium. In: Bard AJ, Parsons R, Jordan J (eds) Standard potentials in aqueous solutions. Marcel Dekker, New York, pp 93–126Google Scholar
  130. Zhou B, Wang J, Guo Z, Tan H, Zhu X (2006) A simple colorimetric method for determination of hydrogen peroxide in plant tissues. Plant Growth Regul 49:113–118CrossRefGoogle Scholar
  131. Zinder SH, Brock TD (1978) Production of methane and carbon dioxide from methane thiol and dimethyl sulphide by aerobic lake sediments. Nature 273:226–228CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Biological and Marine Sciences, Sustainable Earth Institute, Faculty of Science and EngineeringUniversity of PlymouthPlymouthUK
  2. 2.School of Biological and Marine Sciences, Faculty of Science and EngineeringUniversity of PlymouthPlymouthUK

Personalised recommendations