Enzymes for Aerobic Degradation of Alkanes in Bacteria

  • Renata Moreno
  • Fernando RojoEmail author
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Alkanes are major constituents of crude oil but they are also present at low concentrations in diverse noncontaminated habitats since many living organisms produce them as chemoattractants or as agents that help to protect against water loss. Although the metabolism of these compounds poses problems (mainly to do with their hydrophobicity), many microorganisms can use them as a carbon and energy source. This chapter examines how bacteria metabolize n-alkanes aerobically, paying particular attention to the enzymes involved in the initial oxidation of the alkane molecule – the most critical step given that n-alkanes are chemically rather inert.



Work in the author’s laboratory is funded by the Spanish Ministry of Economy and Competitiveness (grant BIO2015-66203-P) and the European Commission VII Framework Program (grant number 312139).


  1. Alonso H, Kleifeld O, Yeheskel A, Ong PC, Liu YC, Stok JE, De Voss JJ, Roujeinikova A (2014) Structural and mechanistic insight into alkane hydroxylation by Pseudomonas putida AlkB. Biochem J 460:283–293PubMedCrossRefPubMedCentralGoogle Scholar
  2. Alvarez HM, Steinbuchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376PubMedCrossRefPubMedCentralGoogle Scholar
  3. Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H (2000) Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589PubMedCrossRefGoogle Scholar
  4. Arp DJ (1999) Butane metabolism by butane-grown “Pseudomonas butanovora”. Microbiology 145:1173–1180CrossRefGoogle Scholar
  5. Ashraf W, Mihdhir A, Murrell JC (1994) Bacterial oxidation of propane. FEMS Microbiol Lett 122:1–6PubMedCrossRefGoogle Scholar
  6. Ashraf W, Murrell JC (1990) Purification and characterization of a NAD+-dependent secondary alcohol dehydrogenase from propane-grown Rhodococcus rhodochrous PNKb1. Arch Microbiol 153:163–168CrossRefGoogle Scholar
  7. Austin RN, Chang H-K, Zylstra GJ, Groves JT (2000) The non-heme diiron alkane monooxygenase of Pseudomonas oleovorans (AlkB) hydroxylates via a substrate radical intermediate. J Am Chem Soc 122:11747–11748CrossRefGoogle Scholar
  8. Baptist JN, Gholson RK, Coon MJ (1963) Hydrocarbon oxidation by a bacterial enzyme system. I Products of octane oxidation Biochim Biophys Acta 69:40–47PubMedCrossRefPubMedCentralGoogle Scholar
  9. Beal R, Betts WB (2000) Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. J Appl Microbiol 89:158–168CrossRefGoogle Scholar
  10. Bertrand E, Sakai R, Rozhkova-Novosad E, Moe L, Fox BG, Groves JT, Austin RN (2005) Reaction mechanisms of non-heme diiron hydroxylases characterized in whole cells. J Inorg Biochem 99:1998–2006PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bihari Z, Szvetnik A, Szabó Z, Blastyák A, Zombori Z, Balázs M, Kiss I (2011) Functional analysis of long-chain n-alkane degradation by Dietzia spp. FEMS Microbiol Lett 316:100–107PubMedCrossRefPubMedCentralGoogle Scholar
  12. Boles BR, Thoendel M, Singh PK (2005) Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 57:1210–1223PubMedCrossRefPubMedCentralGoogle Scholar
  13. Britton LN (1984) Microbial degradation of aliphatic hydrocarbons. Marcel Dekker, New YorkGoogle Scholar
  14. Caiazza NC, Shanks RM, O’Toole GA (2005) Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J Bacteriol 187:7351–7361PubMedPubMedCentralCrossRefGoogle Scholar
  15. Call TP, Akhtar MK, Baganz F, Grant C (2016) Modulating the import of medium-chain alkanes in E. coli through tuned expression of FadL. J Biol Eng 10:5PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cameotra SS, Singh P (2009) Synthesis of rhamnolipid biosurfactant and mode of hexadecane uptake by Pseudomonas species. Microb Cell Factories 8:16CrossRefGoogle Scholar
  17. Coleman JP, Perry JJ (1985) Purification and characterization of the secondary alcohol dehydrogenase from propane-utilizing Mycobacterium vaccae strain JOB-5. J Gen Microbiol 131:2901–2907PubMedPubMedCentralGoogle Scholar
  18. Coon MJ (2005) Omega oxygenases: nonheme-iron enzymes and P450 cytochromes. Biochem Biophys Res Commun 338:378–385PubMedCrossRefPubMedCentralGoogle Scholar
  19. Coulon F, McKew BA, Osborn AM, McGenity TJ, Timmis KN (2007) Effects of temperature and biostimulation on oil-degrading microbial communities in temperate estuarine waters. Environ Microbiol 9:177–186PubMedCrossRefPubMedCentralGoogle Scholar
  20. de Smet MJ, Eggink G, Witholt B, Kingma J, Wynberg H (1983) Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J Bacteriol 154:870–878PubMedPubMedCentralGoogle Scholar
  21. Dubbels BL, Sayavedra-Soto LA, Arp DJ (2007) Butane monooxygenase of “Pseudomonas butanovora”: purification and biochemical characterization of a terminal-alkane hydroxylating diiron monooxygenase. Microbiology 153:1808–1816PubMedCrossRefPubMedCentralGoogle Scholar
  22. Dubbels BL, Sayavedra-Soto LA, Bottomley PJ, Arp DJ (2009) Thauera butanivorans sp. nov., a C2-C9 alkane-oxidizing bacterium previously referred to as ‘Pseudomonas butanovora’. Int J Syst Evol Microbiol 59:1576–1578PubMedPubMedCentralCrossRefGoogle Scholar
  23. Eastcott L, Shiu WY, Mackay D (1988) Environmentally relevant physical-chemical properties of hydrocarbons: a review of data and development of simple correlations. Oil Chem Pollut 4:191–216CrossRefGoogle Scholar
  24. Fathepure BZ (2014) Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol 5:173PubMedPubMedCentralCrossRefGoogle Scholar
  25. Feng L, Wang W, Cheng J, Ren Y, Zhao G, Gao C, Tang Y, Liu X, Han W, Peng X, Liu R, Wang L (2007) Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci USA 104:5602–5607PubMedCrossRefPubMedCentralGoogle Scholar
  26. Fox MG, Dickinson FM, Ratledge C (1992) Long-chain alcohol and aldehyde dehydrogenase activities in Acinetobacter calcoaceticus strain HO1-N. J Gen Microbiol 138:1963–1972PubMedCrossRefPubMedCentralGoogle Scholar
  27. Frazao C, Silva G, Gomes CM, Matias P, Coelho R, Sieker L, Macedo S, Liu MY, Oliveira S, Teixeira M, Xavier AV, Rodrigues-Pousada C, Carrondo MA, Le Gall J (2000) Structure of a dioxygen reduction enzyme from Desulfovibrio gigas. Nat Struct Biol 7:1041–1045PubMedCrossRefPubMedCentralGoogle Scholar
  28. Funhoff EG, Bauer U, Garcia-Rubio I, Witholt B, van Beilen JB (2006) CYP153A6, a soluble P450 oxygenase catalyzing terminal-alkane hydroxylation. J Bacteriol 188:5220–5227PubMedPubMedCentralCrossRefGoogle Scholar
  29. Golyshin PN, Chernikova TN, Abraham WR, Lunsdorf H, Timmis KN, Yakimov MM (2002) Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 52:901–911Google Scholar
  30. Grage K, Jahns AC, Parlane N, Palanisamy R, Rasiah IA, Atwood JA, Rehm BH (2009) Bacterial polyhydroxyalkanoate granules: biogenesis, structure, and potential use as nano−/micro-beads in biotechnological and biomedical applications. Biomacromolecules 10:660–669PubMedCrossRefGoogle Scholar
  31. Grant C, Deszcz D, Wei YC, Martínez-Torres RJ, Morris P, Folliard T, Sreenivasan R, Ward J, Dalby P, Woodley JM, Baganz F (2014) Identification and use of an alkane transporter plug-in for applications in biocatalysis and whole-cell biosensing of alkanes. Sci Rep 4:5844PubMedPubMedCentralCrossRefGoogle Scholar
  32. Green J, Dalton H (1989) Substrate specificity of soluble methane monooxygenase. Mechanistic implications. J Biol Chem 264:17698–17703PubMedGoogle Scholar
  33. Hagelueken G, Wiehlmann L, Adams TM, Kolmar H, Heinz DW, Tümmler B, Schubert WD (2007) Crystal structure of the electron transfer complex rubredoxin rubredoxin reductase of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 104:12276–12281PubMedCrossRefGoogle Scholar
  34. Hamamura N, Arp DJ (2000) Isolation and characterization of alkane-utilizing Nocardioides sp. strain CF8. FEMS Microbiol Lett 186:21–26PubMedCrossRefGoogle Scholar
  35. Hamamura N, Storfa RT, Semprini L, Arp DJ (1999) Diversity in butane monooxygenases among butane-grown bacteria. Appl Environ Microbiol 65:4586–4593PubMedPubMedCentralGoogle Scholar
  36. Hamamura N, Yeager CM, Arp DJ (2001) Two distinct monooxygenases for alkane oxidation in Nocardioides sp. strain CF8. Appl Environ Microbiol 67:4992–4998PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hara A, Baik SH, Syutsubo K, Misawa N, Smits TH, van Beilen JB, Harayama S (2004) Cloning and functional analysis of alkB genes in Alcanivorax borkumensis SK2. Environ Microbiol 6:191–197CrossRefGoogle Scholar
  38. Hara A, Syutsubo K, Harayama S (2003) Alcanivorax which prevails in oil-contaminated seawater exhibits broad substrate specificity for alkane degradation. Environ Microbiol 5:746–753PubMedCrossRefGoogle Scholar
  39. Harayama S, Kasai Y, Hara A (2004) Microbial communities in oil-contaminated seawater. Curr Opin Biotechnol 15:205–214PubMedCrossRefGoogle Scholar
  40. Hazelbauer GL, Falke JJ, Parkinson JS (2008) Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem Sci 33:9–19PubMedCrossRefGoogle Scholar
  41. Head IM, Jones DM, Roling WF (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182PubMedCrossRefPubMedCentralGoogle Scholar
  42. Holden PA, LaMontagne MG, Bruce AK, Miller WG, Lindow SE (2002) Assessing the role of Pseudomonas aeruginosa surface-active gene expression in hexadecane biodegradation in sand. Appl Environ Microbiol 68:2509–2518PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hommel RK (1990) Formation and physiological role of biosurfactants produced by hydrocarbon-utilizing microorganisms. Biosurfactants in hydrocarbon utilization. Biodegradation 1:107–119CrossRefGoogle Scholar
  44. Hou CT, Patel RN, Laskin AI, Barist I, Barnabe N (1983) Thermostable NAD-linked secondary alcohol dehydrogenase from propane-grown Pseudomonas fluorescens NRRL B-1244. Appl Environ Microbiol 46:98–105PubMedPubMedCentralGoogle Scholar
  45. Hua F, Wang HQ (2013) Selective pseudosolubilization capability of Pseudomonas sp. DG17 on n-alkanes and uptake mechanisms analysis. Front Environ Sci Eng 7:539–551CrossRefGoogle Scholar
  46. Hua F, Wang HQ (2014) Uptake and trans-membrane transport of petroleum hydrocarbons by microorganisms. Biotechnol Biotechnol Equip 28:165–175PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hua F, Wang HQ, Li Y, Zhao YC (2013) Trans-membrane transport of n-octadecane by Pseudomonas sp. DG17. J Microbiol 51:791–799PubMedCrossRefGoogle Scholar
  48. Iida T, Sumita T, Ohta A, Takagi M (2000) The cytochrome P450ALK multigene family of an n-alkane-assimilating yeast, Yarrowia lipolytica: cloning and characterization of genes coding for new CYP52 family members. Yeast 16:1077–1087CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ishige T, Tani A, Sakai Y, Kato N (2000) Long-chain aldehyde dehydrogenase that participates in n-alkane utilization and wax ester synthesis in Acinetobacter sp. strain M-1. Appl Environ Microbiol 66:3481–3486PubMedPubMedCentralCrossRefGoogle Scholar
  50. Ishige T, Tani A, Takabe K, Kawasaki K, Sakai Y, Kato N (2002) Wax ester production from n-alkanes by Acinetobacter sp. strain M-1: ultrastructure of cellular inclusions and role of acyl coenzyme a reductase. Appl Environ Microbiol 68:1192–1195PubMedPubMedCentralCrossRefGoogle Scholar
  51. Johnson EL, Hyman MR (2006) Propane and n-butane oxidation by Pseudomonas putida GPo1. Appl Environ Microbiol 72:950–952PubMedPubMedCentralCrossRefGoogle Scholar
  52. Julsing MK, Schrewe M, Cornelissen S, Hermann I, Schmid A, Bühler B (2012) Outer membrane protein AlkL boosts biocatalytic oxyfunctionalization of hydrophobic substrates in Escherichia coli. Appl Environ Microbiol 78:5724–5733PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kalscheuer R, Stoveken T, Malkus U, Reichelt R, Golyshin PN, Sabirova JS, Ferrer M, Timmis KN, Steinbuchel A (2007) Analysis of storage lipid accumulation in Alcanivorax borkumensis: evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol 189:918–928PubMedCrossRefGoogle Scholar
  54. Kasai Y, Kishira H, Sasaki T, Syutsubo K, Watanabe K, Harayama S (2002) Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water. Environ Microbiol 4:141–147PubMedCrossRefGoogle Scholar
  55. Kohler T, Curty LK, Barja F, van Delden C, Pechere JC (2000) Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182:5990–5996PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kotani T, Kawashima Y, Yurimoto H, Kato N, Sakai Y (2006) Gene structure and regulation of alkane monooxygenases in propane-utilizing Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7. J Biosci Bioeng 102:184–192PubMedCrossRefGoogle Scholar
  57. Kotani T, Yamamoto T, Yurimoto H, Sakai Y, Kato N (2003) Propane monooxygenase and NAD+−dependent secondary alcohol dehydrogenase in propane metabolism by Gordonia sp. strain TY-5. J Bacteriol 185:7120–7128PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kotani T, Yurimoto H, Kato N, Sakai Y (2007) Novel acetone metabolism in a propane-utilizing bacterium, Gordonia sp. strain TY-5. J Bacteriol 189:886–893PubMedCrossRefGoogle Scholar
  59. Kurth EG, Doughty DM, Bottomley PJ, Arp DJ, Sayavedra-Soto LA (2008) Involvement of BmoR and BmoG in n-alkane metabolism in “Pseudomonas butanovora”. Microbiology 154:139–147CrossRefGoogle Scholar
  60. Lanfranconi MP, Alvarez HM, Studdert CA (2003) A strain isolated from gas oil-contaminated soil displays chemotaxis towards gas oil and hexadecane. Environ Microbiol 5:1002–1008PubMedCrossRefPubMedCentralGoogle Scholar
  61. Lea-Smith DJ, Biller SJ, Davey MP, Cotton CA, Perez Sepulveda BM, Turchyn AV, Scanlan DJ, Smith AG, Chisholm SW, Howe CJ (2015) Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle. Proc Natl Acad Sci USA 112:13591–11356CrossRefGoogle Scholar
  62. Li L, Liu X, Yang W, Xu F, Wang W, Feng L, Bartlam M, Wang L, Rao Z (2008) Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the long-chain alkane hydroxylase. J Mol Biol 376:453–465PubMedCrossRefGoogle Scholar
  63. Li P, Wang L, Feng L (2013) Characterization of a novel Rieske-type alkane monooxygenase system in Pusillimonas sp. strain T7-7. J Bacteriol 195:1892–1901PubMedPubMedCentralCrossRefGoogle Scholar
  64. Liu C, Wang W, Wu Y, Zhou Z, Lai Q, Shao Z (2011) Multiple alkane hydroxylase systems in a marine alkane degrader, Alcanivorax dieselolei B-5. Environ Microbiol 13:1168–1178PubMedCrossRefGoogle Scholar
  65. Liu H, Xu J, Liang R, Liu J (2014) Characterization of the medium- and long-chain n-alkanes degrading Pseudomonas aeruginosa strain SJTD-1 and its alkane hydroxylase genes. PLoS One 9:e105506PubMedPubMedCentralCrossRefGoogle Scholar
  66. Liu H, Sun WB, Liang RB, Huang L, Hou JL, Liu JH (2015) iTRAQ-based quantitative proteomic analysis of Pseudomonas aeruginosa SJTD-1: a global response to n-octadecane induced stress. J Proteome 123:14–28CrossRefGoogle Scholar
  67. Lo Piccolo L, De Pasquale C, Fodale R, Puglia AM, Quatrini P (2001) Involvement of an alkane hydroxylase system of Gordonia sp. strain SoCg in degradation of solid n-alkanes. Appl Environ Microbiol 77:1204–1213CrossRefGoogle Scholar
  68. Luu RA, Kootstra JD, Nesteryuk V, Brunton CN, Parales JV, Ditty JL, Parales RE (2015) Integration of chemotaxis, transport and catabolism in Pseudomonas putida and identification of the aromatic acid chemoreceptor PcaY. Mol Microbiol 96:134–147PubMedCrossRefGoogle Scholar
  69. Maeng JH, Sakai Y, Ishige T, Tani Y, Kato N (1996) Diversity of dioxygenases that catalyze the first step of oxidation of long-chain n-alkanes in Acinetobacter sp. strain M-1. FEMS Microbiol Lett 141:177–182CrossRefGoogle Scholar
  70. Maier T, Forster HH, Asperger O, Hahn U (2001) Molecular characterization of the 56-kDa CYP153 from Acinetobacter sp. EB104. Biochem Biophys Res Commun 286:652–658PubMedCrossRefGoogle Scholar
  71. Margesin R, Labbe D, Schinner F, Greer CW, Whyte LG (2003) Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl Environ Microbiol 69:3085–3092PubMedPubMedCentralCrossRefGoogle Scholar
  72. Marín MM, Smits TH, van Beilen JB, Rojo F (2001) The alkane hydroxylase gene of Burkholderia cepacia RR10 is under catabolite repression control. J Bacteriol 183:4202–4209PubMedPubMedCentralCrossRefGoogle Scholar
  73. Marín MM, Yuste L, Rojo F (2003) Differential expression of the components of the two alkane hydroxylases from Pseudomonas aeruginosa. J Bacteriol 185:3232–3237PubMedPubMedCentralCrossRefGoogle Scholar
  74. McKew BA, Coulon F, Osborn AM, Timmis KN, McGenity TJ (2007a) Determining the identity and roles of oil-metabolizing marine bacteria from the Thames estuary, UK. Environ Microbiol 9:165–176PubMedCrossRefPubMedCentralGoogle Scholar
  75. McKew BA, Coulon F, Yakimov MM, Denaro R, Genovese M, Smith CJ, Osborn AM, Timmis KN, McGenity TJ (2007b) Efficacy of intervention strategies for bioremediation of crude oil in marine systems and effects on indigenous hydrocarbonoclastic bacteria. Environ Microbiol 9:1562–1571PubMedCrossRefPubMedCentralGoogle Scholar
  76. Minerdi D, Sadeghi SJ, Di Nardo G, Rua F, Castrignanò S, Allegra P, Gilardi G (2015) CYP116B5: a new class VII catalytically self-sufficient cytochrome P450 from Acinetobacter radioresistens that enables growth on alkanes. Mol Microbiol 95:539–554PubMedCrossRefPubMedCentralGoogle Scholar
  77. Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60:151–166PubMedPubMedCentralGoogle Scholar
  78. Nhi-Cong LT, Mikolasch A, Klenk H-P, Schauer F (2009) Degradation of the multiple branched alkane 2,6,10,14-tetramethyl-pentadecane (pristane) in Rhodococcus ruber and mycobacterium neoaurum. Int Biodeterior Biodegrad 63:201–207CrossRefGoogle Scholar
  79. Nhi-Cong LT, Mikolasch A, Awe S, Sheikhany H, Klenk HP, Schauer F (2010) Oxidation of aliphatic, branched chain, and aromatic hydrocarbons by Nocardia cyriacigeorgica isolated from oil-polluted sand samples collected in the Saudi Arabian Desert. J Basic Microbiol 50:241–253CrossRefGoogle Scholar
  80. Nie Y, Chi CQ, Fang H, Liang JL, SL L, Lai GL, Tang YQ, XL W (2014a) Diverse alkane hydroxylase genes in microorganisms and environments. Sci Rep 4:4968PubMedPubMedCentralCrossRefGoogle Scholar
  81. Nie Y, Liang J, Fang H, Tang YQ, XL W (2011) Two novel alkane hydroxylase-rubredoxin fusion genes isolated from a Dietzia bacterium and the functions of fused rubredoxin domains in long-chain n-alkane degradation. Appl Environ Microbiol 77:7279–7288PubMedPubMedCentralCrossRefGoogle Scholar
  82. Nie Y, Liang JL, Fang H, Tang YQ, XL W (2014b) Characterization of a CYP153 alkane hydroxylase gene in a gram-positive Dietzia sp. DQ12-45-1b and its “team role” with alkW1 in alkane degradation. Appl Microbiol Biotechnol 98:163–173CrossRefGoogle Scholar
  83. Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656PubMedPubMedCentralCrossRefGoogle Scholar
  84. Noordman WH, Janssen DB (2002) Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa. Appl Environ Microbiol 68:4502–4508PubMedPubMedCentralCrossRefGoogle Scholar
  85. Ohkuma M, Zimmer T, Iida T, Schunck WH, Ohta A, Takagi M (1998) Isozyme function of n-alkane-inducible cytochromes P450 in Candida maltosa revealed by sequential gene disruption. J Biol Chem 273:3948–3953CrossRefGoogle Scholar
  86. Pandey G, Jain RK (2002) Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl Environ Microbiol 68:5789–5795PubMedPubMedCentralCrossRefGoogle Scholar
  87. Parales RE, Harwood CS (2002) Bacterial chemotaxis to pollutants and plant-derived aromatic molecules. Curr Opin Microbiol 5:266–273PubMedCrossRefPubMedCentralGoogle Scholar
  88. Pedrini N, Ortiz-Urquiza A, Huarte-Bonnet C, Zhang S, Keyhani NO (2013) Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: hydrocarbon oxidation within the context of a host-pathogen interaction. Front Microbiol 4:24PubMedPubMedCentralCrossRefGoogle Scholar
  89. Pirnik MP, Atlas RM, Bartha R (1974) Hydrocarbon metabolism by Brevibacterium erythrogenes: normal and branched alkanes. J Bacteriol 119:868–878PubMedPubMedCentralGoogle Scholar
  90. Post-Beitenmiller D (1996) Biochemistry and molecular biology of wax production in plants. Annu Rev Plant Physiol Plant Mol Biol 47:405–430CrossRefGoogle Scholar
  91. Reva ON, Hallin PF, Willenbrock H, Sicheritz-Ponten T, Tümmler B, Ussery DW (2008) Global features of the Alcanivorax borkumensis SK2 genome. Environ Microbiol 10:614–625PubMedCrossRefPubMedCentralGoogle Scholar
  92. Rojo F (2005) Specificity at the end of the tunnel: understanding substrate length discrimination by the AlkB alkane hydroxylase. J Bacteriol 187:19–22PubMedPubMedCentralCrossRefGoogle Scholar
  93. Rojo F (2009) Degradation of alkanes by bacteria. Environ Microbiol 11:2477–2490CrossRefGoogle Scholar
  94. Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3:229–236PubMedCrossRefPubMedCentralGoogle Scholar
  95. Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252CrossRefGoogle Scholar
  96. Rosenberg E (1993) Exploiting microbial growth on hydrocarbons – new markets. Trends Biotechnol 11:419–424CrossRefGoogle Scholar
  97. Sabirova JS, Ferrer M, Regenhardt D, Timmis KN, Golyshin PN (2006) Proteomic insights into metabolic adaptations in Alcanivorax borkumensis induced by alkane utilization. J Bacteriol 188:3763–3773PubMedPubMedCentralCrossRefGoogle Scholar
  98. Sarand I, Osterberg S, Holmqvist S, Holmfeldt P, Skärfstad E, Parales RE, Shingler V (2008) Metabolism-dependent taxis towards (methyl)phenols is coupled through the most abundant of three polar localized Aer-like proteins of Pseudomonas putida. Environ Microbiol 10:1320–1334PubMedCrossRefGoogle Scholar
  99. Sayavedra-Soto LA, Hamamura N, Liu CW, Kimbrel JA, Chang JH, Arp DJ (2011) The membrane-associated monooxygenase in the butane-oxidizing gram-positive bacterium Nocardioides sp. strain CF8 is a novel member of the AMO/PMO family. Environ Microbiol Rep 3:390–396PubMedCrossRefPubMedCentralGoogle Scholar
  100. Scheps D, Malca SH, Hoffmann H, Nestl BM, Hauer B (2011) Regioselective ω-hydroxylation of medium-chain n-alkanes and primary alcohols by CYP153 enzymes from Mycobacterium marinum and Polaromonas sp. strain JS666. Org Biomol Chem 9:6727–6733PubMedCrossRefPubMedCentralGoogle Scholar
  101. Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559CrossRefGoogle Scholar
  102. Schmitz C, Goebel I, Wagner S, Vomberg A, Klinner U (2000) Competition between n-alkane-assimilating yeasts and bacteria during colonization of sandy soil microcosms. Appl Microbiol Biotechnol 54:126–132PubMedCrossRefPubMedCentralGoogle Scholar
  103. Schneiker S, Martins dos Santos VA, Bartels D, Bekel T, Brecht M, Buhrmester J, Chernikova TN, Denaro R, Ferrer M, Gertler C, Goesmann A, Golyshina OV, Kaminski F, Khachane AN, Lang S, Linke B, McHardy AC, Meyer F, Nechitaylo T, Puhler A, Regenhardt D, Rupp O, Sabirova JS, Selbitschka W, Yakimov MM, Timmis KN, Vorholter FJ, Weidner S, Kaiser O, Golyshin PN (2006) Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat Biotechnol 24:997–1004CrossRefGoogle Scholar
  104. Sekine M, Tanikawa S, Omata S, Saito M, Fujisawa T, Tsukatani N, Tajima T, Sekigawa T, Kosugi H, Matsuo Y, Nishiko R, Imamura K, Ito M, Narita H, Tago S, Fujita N, Harayama S (2006) Sequence analysis of three plasmids harboured in Rhodococcus erythropolis strain PR4. Environ Microbiol 8:334–346PubMedCrossRefPubMedCentralGoogle Scholar
  105. Shanklin J, Achim C, Schmidt H, Fox BG, Munck E (1997) Mossbauer studies of alkane omega-hydroxylase: evidence for a diiron cluster in an integral-membrane enzyme. Proc Natl Acad Sci USA 94:2981–2986PubMedCrossRefPubMedCentralGoogle Scholar
  106. Shanklin J, Whittle E, Fox BG (1994) Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33:12787–12794PubMedCrossRefPubMedCentralGoogle Scholar
  107. Shingler V (2003) Integrated regulation in response to aromatic compounds: from signal sensing to attractive behaviour. Environ Microbiol 5:1226–1241PubMedCrossRefPubMedCentralGoogle Scholar
  108. Singer ME, Finnerty WR (1985a) Alcohol dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecane and hexadecanol metabolism. J Bacteriol 164:1017–1024PubMedPubMedCentralGoogle Scholar
  109. Singer ME, Finnerty WR (1985b) Fatty aldehyde dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecanol metabolism. J Bacteriol 164:1011–1016PubMedPubMedCentralGoogle Scholar
  110. Sluis MK, Sayavedra-Soto LA, Arp DJ (2002) Molecular analysis of the soluble butane monooxygenase from “ Pseudomonas butanovora”. Microbiology 148:3617–3629PubMedCrossRefPubMedCentralGoogle Scholar
  111. Smith CA, Hyman MR (2004) Oxidation of methyl tert-butyl ether by alkane hydroxylase in dicyclopropylketone-induced and n-octane-grown Pseudomonas putida GPo1. Appl Environ Microbiol 70:4544–4550PubMedPubMedCentralCrossRefGoogle Scholar
  112. Smits TH, Balada SB, Witholt B, van Beilen JB (2002) Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria. J Bacteriol 184:1733–1742PubMedPubMedCentralCrossRefGoogle Scholar
  113. Smits TH, Witholt B, van Beilen JB (2003) Functional characterization of genes involved in alkane oxidation by Pseudomonas aeruginosa. Antonie Van Leeuwenhoek 84:193–200PubMedCrossRefPubMedCentralGoogle Scholar
  114. Smits THM, Röthlisberger M, Witholt B, van Beilen JB (1999) Molecular screening for alkane hydroxylase genes in gram-negative and gram-positive strains. Environ Microbiol 1:307–317PubMedCrossRefPubMedCentralGoogle Scholar
  115. Solano-Serena F, Marchal R, Heiss S, Vandecasteele JP (2004) Degradation of isooctane by Mycobacterium austroafricanum IFP 2173: growth and catabolic pathway. J Appl Microbiol 97:629–639PubMedCrossRefPubMedCentralGoogle Scholar
  116. Soussan L, Pen N, Belleville MP, Marcano JS, Paolucci-Jeanjean D (2016) Alkane biohydroxylation: interests, constraints and future developments. J Biotechnol 222:117–142PubMedCrossRefPubMedCentralGoogle Scholar
  117. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406:959–964PubMedCrossRefPubMedCentralGoogle Scholar
  118. Tani A, Ishige T, Sakai Y, Kato N (2001) Gene structures and regulation of the alkane hydroxylase complex in Acinetobacter sp. strain M-1. J Bacteriol 183:1819–1823PubMedPubMedCentralCrossRefGoogle Scholar
  119. Tapilatu YH, Grossi V, Acquaviva M, Militon C, Bertrand JC, Cuny P (2010) Isolation of hydrocarbon-degrading extremely halophilic archaea from an uncontaminated hypersaline pond (Camargue, France). Extremophiles 14:225–231PubMedCrossRefPubMedCentralGoogle Scholar
  120. Throne-Holst M, Markussen S, Winnberg A, Ellingsen TE, Kotlar HK, Zotchev SB (2006) Utilization of n-alkanes by a newly isolated strain of Acinetobacter venetianus: the role of two AlkB-type alkane hydroxylases. Appl Microbiol Biotechnol 72:353–360PubMedCrossRefPubMedCentralGoogle Scholar
  121. Throne-Holst M, Wentzel A, Ellingsen TE, Kotlar HK, Zotchev SB (2007) Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874. Appl Environ Microbiol 73:3327–3332PubMedPubMedCentralCrossRefGoogle Scholar
  122. van Beilen JB, Eggink G, Enequist H, Bos R, Witholt B (1992a) DNA sequence determination and functional characterization of the OCT-plasmid-encoded alkJKL genes of Pseudomonas oleovorans. Mol Microbiol 6:3121–3136PubMedCrossRefPubMedCentralGoogle Scholar
  123. van Beilen JB, Funhoff EG (2005) Expanding the alkane oxygenase toolbox: new enzymes and applications. Curr Opin Biotechnol 16:308–314PubMedCrossRefPubMedCentralGoogle Scholar
  124. van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21CrossRefGoogle Scholar
  125. van Beilen JB, Funhoff EG, van Loon A, Just A, Kaysser L, Bouza M, Holtackers R, Rothlisberger M, Li Z, Witholt B (2006) Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl Environ Microbiol 72:59–65PubMedPubMedCentralCrossRefGoogle Scholar
  126. van Beilen JB, Holtackers R, Luscher D, Bauer U, Witholt B, Duetz WA (2005a) Biocatalytic production of perillyl alcohol from limonene by using a novel Mycobacterium sp. cytochrome P450 alkane hydroxylase expressed in Pseudomonas putida. Appl Environ Microbiol 71:1737–1744PubMedPubMedCentralCrossRefGoogle Scholar
  127. van Beilen JB, Li Z, Duetz WA, Smits THM, Witholt B (2003) Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci Technol 58:427–440CrossRefGoogle Scholar
  128. van Beilen JB, Marin MM, Smits TH, Rothlisberger M, Franchini AG, Witholt B, Rojo F (2004) Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis. Environ Microbiol 6:264–273CrossRefGoogle Scholar
  129. van Beilen JB, Neuenschwander M, Smits TH, Roth C, Balada SB, Witholt B (2002a) Rubredoxins involved in alkane oxidation. J Bacteriol 184:1722–1732PubMedPubMedCentralCrossRefGoogle Scholar
  130. van Beilen JB, Panke S, Lucchini S, Franchini AG, Röthlisberger M, Witholt B (2001) Analysis of Pseudomonas putida alkane degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk-genes. Microbiology 147:1621–1630CrossRefGoogle Scholar
  131. van Beilen JB, Penninga D, Witholt B (1992b) Topology of the membrane-bound alkane hydroxylase of Pseudomonas oleovorans. J Biol Chem 267:9194–9201PubMedPubMedCentralGoogle Scholar
  132. van Beilen JB, Smits TH, Roos FF, Brunner T, Balada SB, Rothlisberger M, Witholt B (2005b) Identification of an amino acid position that determines the substrate range of integral membrane alkane hydroxylases. J Bacteriol 187:85–91PubMedPubMedCentralCrossRefGoogle Scholar
  133. van Beilen JB, Smits TH, Whyte LG, Schorcht S, Rothlisberger M, Plaggemeier T, Engesser KH, Witholt B (2002b) Alkane hydroxylase homologues in gram-positive strains. Environ Microbiol 4:676–682PubMedCrossRefGoogle Scholar
  134. van Beilen JB, Wubbolts MG, Chen Q, Nieboer M, Witholt B (1996) Effects of two-liquid-phase systems and expression of alk genes on the physiology of alkane-oxidizing strains. In: Nakazawa T, Furukawa K, Haas D, Silver S (eds) Molecular biology of pseudomonads. ASM Press, Washington, DC, pp 35–47Google Scholar
  135. van Beilen JB, Wubbolts MG, Witholt B (1994) Genetics of alkane oxidation by Pseudomonas oleovorans. Biodegradation 5:161–174CrossRefGoogle Scholar
  136. van den Berg B (2005) The FadL family: unusual transporters for unusual substrates. Curr Opin Struct Biol 15:401–407PubMedCrossRefGoogle Scholar
  137. Vangnai AS, Arp DJ (2001) An inducible 1-butanol dehydrogenase, a quinohaemoprotein, is involved in the oxidation of butane by “Pseudomonas butanovora”. Microbiology 147:745–756PubMedCrossRefGoogle Scholar
  138. Vangnai AS, Arp DJ, Sayavedra-Soto LA (2002) Two distinct alcohol dehydrogenases participate in butane metabolism by Pseudomonas butanovora. J Bacteriol 184:1916–1924PubMedPubMedCentralCrossRefGoogle Scholar
  139. van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549PubMedPubMedCentralCrossRefGoogle Scholar
  140. Wadhams GH, Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5:1024–1037PubMedCrossRefPubMedCentralGoogle Scholar
  141. Waltermann M, Hinz A, Robenek H, Troyer D, Reichelt R, Malkus U, Galla HJ, Kalscheuer R, Stoveken T, von Landenberg P, Steinbuchel A (2005) Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up. Mol Microbiol 55:750–763PubMedCrossRefGoogle Scholar
  142. Wang L, Wang W, Lai Q, Shao Z (2010) Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean. Environ Microbiol 12:1230–1242CrossRefGoogle Scholar
  143. Wang W, Shao Z (2012a) Diversity of flavin-binding monooxygenase genes (almA) in marine bacteria capable of degradation long-chain alkanes. FEMS Microbiol Ecol 80:523–533CrossRefGoogle Scholar
  144. Wang W, Shao Z (2012b) Genes involved in alkane degradation in the Alcanivorax hongdengensis strain A-11-3. Appl Microbiol Biotechnol 94:437–448CrossRefGoogle Scholar
  145. Wang W, Shao Z (2013) Enzymes and genes involved in aerobic alkane degradation. Front Microbiol 4:116PubMedPubMedCentralGoogle Scholar
  146. Wang W, Shao Z (2014) The long-chain alkane metabolism network of Alcanivorax dieselolei. Nat Commun 5:5755CrossRefGoogle Scholar
  147. Watkinson RJ, Morgan P (1990) Physiology of aliphatic hydrocarbon-degrading microorganisms. Biodegradation 1:79–92PubMedCrossRefPubMedCentralGoogle Scholar
  148. Wentzel A, Ellingsen TE, Kotlar HK, Zotchev SB, Throne-Holst M (2007) Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 76:1209–1221PubMedCrossRefPubMedCentralGoogle Scholar
  149. Whyte LG, Hawari J, Zhou E, Bourbonniere L, Inniss WE, Greer CW (1998) Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl Environ Microbiol 64:2578–2584PubMedPubMedCentralGoogle Scholar
  150. Whyte LG, Smits TH, Labbe D, Witholt B, Greer CW, Van Beilen JB (2002) Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531. Appl Environ Microbiol 68:5933–5942PubMedPubMedCentralCrossRefGoogle Scholar
  151. Witholt B, de Smet MJ, Kingma J, van Beilen JB, Kok M, Lageveen RG, Eggink G (1990) Bioconversions of aliphatic compounds by Pseudomonas oleovorans in multiphase bioreactors: background and economic potential. Trends Biotechnol 8:46–52PubMedCrossRefPubMedCentralGoogle Scholar
  152. Yakimov MM, Giuliano L, Denaro R, Crisafi E, Chernikova TN, Abraham WR, Luensdorf H, Timmis KN, Golyshin PN (2004) Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 54:141–148PubMedCrossRefPubMedCentralGoogle Scholar
  153. Yakimov MM, Giuliano L, Gentile G, Crisafi E, Chernikova TN, Abraham WR, Lunsdorf H, Timmis KN, Golyshin PN (2003) Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int J Syst Evol Microbiol 53:779–785CrossRefGoogle Scholar
  154. Yakimov MM, Golyshin PN, Lang S, Moore ER, Abraham WR, Lunsdorf H, Timmis KN (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48(Pt 2):339–348CrossRefGoogle Scholar
  155. Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18:257–266CrossRefGoogle Scholar
  156. Yang HY, Jia RB, Chen B, Li L (2014) Degradation of recalcitrant aliphatic and aromatic hydrocarbons by a dioxin-degrader Rhodococcus sp. strain p52. Environ Sci Pollut Res Int 21:11086–11093PubMedCrossRefGoogle Scholar
  157. Zimmer T, Ohkuma M, Ohta A, Takagi M, Schunck WH (1996) The CYP52 multigene family of Candida maltosa encodes functionally diverse n-alkane-inducible cytochromes P450. Biochem Biophys Res Commun 224:784–789PubMedPubMedCentralCrossRefGoogle Scholar
  158. Zulianello L, Canard C, Kohler T, Caille D, Lacroix JS, Meda P (2006) Rhamnolipids are virulence factors that promote early infiltration of primary human airway epithelia by Pseudomonas aeruginosa. Infect Immun 74:3134–3147PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centro Nacional de Biotecnología, CSICMadridSpain

Personalised recommendations