Advertisement

Chemolithoheterotrophy: Means to Higher Growth Yields from This Widespread Metabolic Trait

  • Rich BodenEmail author
  • Lee P. Hutt
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Chemolithoheterotrophy is a mixed metabolic mode in which heterotrophic growth is augmented by energy conserved from the oxidation of an inorganic electron donor such as thiosulfate or sulfide (or from sulfide moieties in methylated sulfur species). This results in an increased specific molar growth yield and a more efficient uptake of carbon from the carbon source, which can lead to more efficient biomass or product formation or more efficient degradation of pollutants etc. In this chapter we discuss the potential for harnessing this metabolic trait in biotechnology with critical evaluation of studies thus far.

Notes

Acknowledgments

We thank Professor Donovan P. Kelly, Professor Emeritus at the University of Warwick, UK, for many stimulating discussions on the subject of chemolithoheterotrophy over the years and his continual encouragement in this area.

References

  1. Albuquerque L, Santos J, Travassos P, Nobre MN, Rainey FA, Wait R, Empadinhas N, Silva MT, da Costa MS (2002) Albidovulum inexpectatum gen. nov., sp. nov., a nonphotosynthetic and slightly thermophilic bacterium from a marine hot spring that is very closely related to members of the photosynthetic genus Rhodovulum. Appl Environ Microbiol 68:4266–4273CrossRefGoogle Scholar
  2. Bailey JE, Ollis DF (1986) Biochemical engineering fundamentals. McGraw-Hill, New YorkGoogle Scholar
  3. Berresheim H, Huey JW, Thorn RP, Eisele FL, Tanner DJ, Jefferson A (1998) Measurements of dimethyl sulfide, dimethyl sulfoxide, dimethyl sulfone, and aerosol ions at Palmer Station, Antarctica. J Geophys Res 103:1629–1637CrossRefGoogle Scholar
  4. Boden R, Kelly DP, Murrell JC, Schäfer H (2010) Oxidation of dimethylsulfide to tetrathionate by Methylophaga thiooxidans sp. nov.: a new link in the sulfur cycle. Environ Microbiol 12: 2688–2699PubMedGoogle Scholar
  5. Boden R, Murrell JC, Schäfer H (2011) Dimethylsulfide is an energy source for the heterotrophic marine bacterium Sagittula stellata. FEMS Microbiol Lett 322:188–193CrossRefGoogle Scholar
  6. Boden R, Hutt LP, Rae AW (2017) Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the ‘Proteobacteria’, and four new families within the orders Nitrosomonadales and Rhodocyclales. Int J Syst Evol Microbiol 67:1191–1205CrossRefGoogle Scholar
  7. Borodina E, Kelly DP, Rainey FA, Ward-Rainey NL, Wood AP (2000) Dimethylsulfone as a growth substrate for novel methylotrophic species of Hyphomicrobium and Arthrobacter. Arch Microbiol 173:425–237CrossRefGoogle Scholar
  8. Das SK, Mishra AK (1996) Transposon mutagenesis affecting thiosulfate oxidation in Bosea thiooxidans, a new chemolithoheterotrophic bacterium. J Bacteriol 178:3628–3633CrossRefGoogle Scholar
  9. De Zwart JMM, Nelisse PN, Kuenen JG (1996) Isolation and characterization of Methylophaga sulfidovorans sp. nov.: an obligately methylotrophic, aerobic, dimethylsulfide oxidizing bacterium from a microbial mat. FEMS Microbiol Ecol 20:261–270CrossRefGoogle Scholar
  10. Dick GJ, Podell S, Johnson HA, Rivera-Espinoza Y, Bernier-Latmani R, McCarthy JK, Torpey JW, Clement BG, Gaasterland T, Tebo BM (2008) Genomic insights into Mn(II) oxidation by the marine Alphaproteobacterium Aurantimonas sp. Strain SI85-9A1. Appl Environ Microbiol 74:2646–2658CrossRefGoogle Scholar
  11. Frolova EN, Belousovaa EV, Lavrinenkoa KS, Dubinina GA, Grabovich MY (2013) Capacity of Azospirillum thiophilum for lithotrophic growth coupled to oxidation of reduced sulfur compounds. Microbiology (Russia) 82:271–279Google Scholar
  12. Gaokar UG, Eshwar MC (1982) Rapid spectrophotometric determination of manganese (II) with 4-(2-thiazolylazo)-resorcinol. Microchim Acta 78:247–252CrossRefGoogle Scholar
  13. Gil-Hwan A, Choi E-S (2003) Preparation of the red yeast Xanthophyllomyces dendrorhous, as a feed additive with increased availability of astaxanthin. Biotechnol Lett 25:767–771CrossRefGoogle Scholar
  14. Giovannelli D, Grosche A, Starovoytov V, Yakimov M, Manini E, Vetriani C (2012) Galenea microaerophila gen. nov., sp. nov., a mesophilic, microaerophilic, chemosynthetic, thiosulfate-oxidizing bacterium isolated from a shallow-water hydrothermal vent. Int J Syst Evol Microbiol 62:3060–3066CrossRefGoogle Scholar
  15. Gommers PJF, Kuenen JG (1988) Thiobacillus strain Q, a chemolithoheterotrophic sulphur bacterium. Arch Microbiol 150:117–125CrossRefGoogle Scholar
  16. Grabovich MYU, Dul’tseva NM, Dubinina GA (2002) Carbon and sulfur metabolism in representatives of two clusters of bacteria of the genus Leucothrix: a comparative study. Microbiology (Russia) 71:255–261Google Scholar
  17. Grabovich MY, Muntyan MS, Lebedeva VY, Ustiyan VS, Dubinina GA (1999) Lithoheterotrophic growth and electron transfer chain components of the filamentous gliding bacterium Leucothrix mucor DSM 2157 during oxidation of sulfur compounds. FEMS Microbiol Lett 178:155–161CrossRefGoogle Scholar
  18. Horvath AS, Garrick LV, Moreau JW (2014) Manganese-reducing Pseudomonas fluorescens-group bacteria control arsenic mobility in gold mining-contaminated groundwater. Env Earth Sci 71:4187–4198CrossRefGoogle Scholar
  19. Hutt LP (2016) Taxonomy, physiology and biochemistry of the sulfur Bacteria. Ph.D Thesis, University of PlymouthGoogle Scholar
  20. Kanagawa T, Kelly DP (1986) Breakdown of dimethyl sulfide by mixed cultures and by Thiobacillus thioparus. FEMS Microbiol Lett 34:13–19CrossRefGoogle Scholar
  21. Kelly DP (1978) Bioenergetics of chemolithotrophic bacteria. In: Bull AT, Meadow PM (eds) Companion to microbiology. Longman, London, pp 363–386Google Scholar
  22. Kelly DP (1990) Energetics of chemolithotrophs. In: Krulwich TA (ed) The Bacteria: a treatise on structure and function volume XII: bacterial energetics. Academic, LondonGoogle Scholar
  23. Kelly DP, Kuenen JG (1984) Ecology of the colourless sulphur bacteria. In: Codd GA (ed) Aspects of microbial metabolism and ecology. Academic, Orlando, pp 210–240Google Scholar
  24. Kelly DP, Wood AP (1994) Synthesis and determination of polythionates and thiosulfate. Methods Enzymol 243:475–501CrossRefGoogle Scholar
  25. Kompantseva EI, Kublanov IV, Perevalova AA, Chernyh NA, Toshchakov SV, Litti YV, Antipov AN, Bonch-Osmolovskaya EA, Miroshnichenko ML (2017) Calorithrix insularis gen. nov., sp. nov., a novel representative of the phylum Calditrichaeota. Int J Syst Evol Microbiol 67:1486–1490CrossRefGoogle Scholar
  26. Krumbein W, Altmann H (1973) A new method for the detection and enumeration of manganese oxidizing and reducing microorganisms. Helgol Mar Res 25:347–356Google Scholar
  27. Mandalasi M (2002) pH stability of higher polythionates: S9O62–, S12O62–, S15O62–, S18O62–, S21O62–, S24O62–. MS Thesis, Indiana University of PennsylvaniaGoogle Scholar
  28. Mason J (1986) Microbial growth and the oxidation of inorganic sulphur compounds. PhD Thesis. University of Warwick, United KingdomGoogle Scholar
  29. Mason J, Kelly DP (1988) Thiosulfate oxidation by obligately heterotrophic bacteria. Microb Ecol 15:123–134CrossRefGoogle Scholar
  30. Menger FM, Elrington AR (1990) Rapid deactivation of mustard via microemulsion technology. J Am Chem Soc 112:8201–8203CrossRefGoogle Scholar
  31. Miroshnichenko ML, L’Haridon S, Jeanthon C, Antipov AN, Kostrikina NA, Tindall BJ, Schumann P, Spring S, Stackebrandt E, Bonch-Osmolovskaya EA (2003a) Oceanithermus profundus gen. nov, sp. nov., a thermophilic, microaerophilic, facultatively chemolithoheterotrophic bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:747–752CrossRefGoogle Scholar
  32. Miroshnichenko ML, L’Haridon S, Nercessian O, Antipov AN, Kostrinkina NA, Tindall BJ, Schumann P, Spring S, Stackebrandt E, Bonch-Osmolovskaya EA, Jeanthon C (2003b) Vulcanithermus mediatlanticus gen. nov, sp. nov., a novel member of the family Thermaceae from a deep-sea hot vent. Int J Syst Evol Microbiol 53:1143–1148CrossRefGoogle Scholar
  33. Miroshnichenko ML, Kostrikina NA, Chernyh NA, Pimenov NV, Tourova TP, Antipov AN, Spring S, Stackebrandt E, Bonch-Osmolovskaya EA (2003c) Caldithrix abyssi gen. nov., sp. nov., a nitrate-reducing, thermophilic, anaerobic bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent, represents a novel bacterial lineage. Int J Syst Evol Microbiol 53:323–329CrossRefGoogle Scholar
  34. Moreira C, Rainey FA, Nobre MF, da Silva MT, da Costa MS (2000) Tepidimonas ignava gen. nov., sp. nov., a new chemolithoheterotrophic thermophilic member of the β-Proteobacteria. Int J Syst Evol Microbiol 50:735–742CrossRefGoogle Scholar
  35. Mori K, Maruyama A, Urabe T, Suzuki K-I, Hanada S (2008) Archaeoglobus infectus sp. nov., a novel thermophilic, chemolithoheterotrophic archaeon isolated from a deep-sea rock collected at Suiyo Seamount, Izu-Bonin Arc, western Pacific Ocean. Int J Syst Evol Microbiol 58:810–816CrossRefGoogle Scholar
  36. Murthy ARV (1953) Estimation of dithionate. Curr Sci 22:371Google Scholar
  37. Palmer WG (1954) Experimental inorganic chemistry. Cambridge University Press, CambridgeGoogle Scholar
  38. Parshina SN, Sipma J, Nakashimada Y, Meint Henstra A, Smidt H, Lysenko AM, Lens PNL, Lettinga G, Stams AJM (2005) Desulfotomaculum carboxydivorans sp. nov., a novel sulfate-reducing bacterium capable of growth at 100% CO. Int J Syst Evol Microbiol 55:2159–2165CrossRefGoogle Scholar
  39. Pfansteil R (1946) 50. Salts of dithionic acid. Inorg Synth 2:167–172Google Scholar
  40. Pikuta E, Lysenko A, Suzina N, Osipov G, Kuznetsov B, Tourova T, Akimenko V, Laurinavichius K (2000) Desulfotomaculum alkaliphilum sp. nov., a new alkaliphilic, moderately thermophilic, sulfate-reducing bacterium. Int J Syst Evol Microbiol 50:25–33CrossRefGoogle Scholar
  41. Pollard FH, Jones DJ (1958) The inter-relations of the sulphur oxy-acids. Symp Chem Soc 12:363–390Google Scholar
  42. Roy AB, Trudinger PA (1970) The biochemistry of inorganic compounds of sulphur. Cambridge University Press, CambridgeGoogle Scholar
  43. Sar P, D’Souza SF (2002) Biosorption of thorium (IV) by a Pseudomonas biomass. Biotechnol Lett 24:239–243CrossRefGoogle Scholar
  44. Skidmore DW (1979) Purification of carbon disulphide for use as a solvent in gas chromatography. Ann Occup Hyg 22:181–182PubMedGoogle Scholar
  45. Smith NA (1988) Metabolism of dimethyl disulphide, carbon disulphide and other volatile sulphur compounds by chemolithoautotrophic sulphur bacteria. Ph.D Thesis, University of WarwickGoogle Scholar
  46. Sorokin DY (1992) Catenococcus thiocyclus gen. nov., sp. nov. – a new facultatively anaerobic bacterium from a near-shore sulphidic hydrothermal area. J Gen Microbiol 138:2287–2292CrossRefGoogle Scholar
  47. Sorokin DY, Teske A, Robertson LA, Kuenen JG (1999) Anaerobic oxidation of thiosulfate to tetrathionate by obligately heterotrophic bacteria belonging to the Pseudomonas stutzeri group. FEMS Microbiol Ecol 30:113–123CrossRefGoogle Scholar
  48. Sorokin DY, Tourova TP, Muyzer G (2005) Citreicella thiooxidans gen. nov., sp. nov., a novel lithoheterotrophic sulfur-oxidizing bacterium from the Black Sea. Syst Appl Microbiol 28:679–687CrossRefGoogle Scholar
  49. Spring S, Kämpfer P, Schleifer KH (2003) Limnobacter thiooxidans gen. nov., sp. nov., a novel thiosulfate-oxidizing bacterium isolated from freshwater lake sediment. Int J Syst Evol Microbiol 51:1463–1470CrossRefGoogle Scholar
  50. Spring S, Jäckel U, Wagner M, Kämpfer P (2004) Ottowia thiooxydans gen. nov, sp. nov., a novel facultatively anaerobic, N2O-producing bacterium isolated from activated sludge, and transfer of Aquaspirillum gracile to Hylemonella gracilis gen. nov., comb. nov. Int J Syst Evol Microbiol 54:99–106CrossRefGoogle Scholar
  51. Stamm H, Seipold O, Goehring M (1941) Zur Kenntnis der Polythionsäuren und ihrer Bildung. 4. Mitteilung. Die Reaktionen zwischen Polythionsäuren und schwefliger Säuare bzw. Thioschwefelsäure. Z Anorg Allgem Chemie 247:277–306CrossRefGoogle Scholar
  52. Suylen GMH, Stefess GC, Kuenen JG (1986) Chemolithotrophic potential of a Hyphomicrobium species, capable of growth on methylated sulphur compounds. Arch Microbiol 146:192–198CrossRefGoogle Scholar
  53. Terry LR, Kulp TR, Wiatrowski H, Miller LG, Oremland RS (2015) Microbial oxidation of antimony(III) with oxygen or nitrate by bacteria isolated from contaminated mine sediments. Appl Environ Microbiol 81:8478–8488CrossRefGoogle Scholar
  54. Trautwein K (1921) Beitrag zur Physiologie und Morphologie der Thionsäurebakterien (Omeliansky). Inaugural-dissertation, Bayerischen Julius-Maximilians-Universität Würzburg. Gustav Fischer, JenaGoogle Scholar
  55. Trudinger P (1961) Thiosulphate oxidation and cytochromes in Thiobacillus X. 2. Thiosulphate-oxidizing enzyme. Biochem J 78:680–686CrossRefGoogle Scholar
  56. Wainwright M, Grayston SJ (1988) Fungal growth and stimulation by thiosulphate under oligocarbotrophic conditions. Trans Br Mycol Soc 91:149–156CrossRefGoogle Scholar
  57. Walden GH, Hamett LP, Edmonds SM (1934) Phenanthroline-ferrous ion. III. A silver redactor. The direct determination of iron in the presence of vanadium. J Am Chem Soc 56:350–353CrossRefGoogle Scholar
  58. Weatherburn MW (1967) Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39:971–974CrossRefGoogle Scholar
  59. Weitz E, Achterberg F (1928) Über höhere Polythionsäuren, I. Mitteil.: Die Hexathionsäure. Ber Dtsch Chem Ges 61:399–408CrossRefGoogle Scholar
  60. Willstätter R (1903) Ueber die Einwirkung von Hydroperoxyd auf Natriumthiosulfat. Ber Dtsch Chem Ges 36:1831–1833CrossRefGoogle Scholar
  61. Wood AP, Kelly DP (1986) Chemolithotrophic metabolism of the newly-isolated moderately thermophilic, obligately autotrophic Thiobacillus tepidarius. Arch Microbiol 144:71–77CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Biological and Marine Sciences, Sustainable Earth Institute, Faculty of Science and EngineeringUniversity of PlymouthPlymouthUK
  2. 2.School of Biological and Marine Sciences, Faculty of Science and EngineeringUniversity of PlymouthPlymouthUK

Personalised recommendations