Advertisement

Diversity and Common Principles in Enzymatic Activation of Hydrocarbons: An Introduction

  • F. WiddelEmail author
  • F. Musat
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Hydrocarbons are apolar compounds devoid of functional groups and therefore exhibit (with some exceptions) low chemical reactivity at room temperature. Utilization of hydrocarbons by microorganisms as growth substrates is initiated by the introduction of a functional group. An astounding diversity of activation reactions has evolved in microorganisms, notably in bacteria. Saturated hydrocarbons are activated by initial C–H-bond cleavage, while unsaturated (including aromatic) hydrocarbons are activated by an addition of a co-reactant to form an initial σ-bonded adduct. There is a principal difference between co-reactants and activation reactions in (1) aerobic and (2) anaerobic microorganisms. (1) Aerobic microorganisms always make use of molecular oxygen as a co-substrate so as to introduce one or two oxygen atoms by means of oxygenases. These enzymes usually contain metals (iron, copper). A common principle is the reduction of metal-bound O2 to the peroxide level; this converts into a metal-bound oxygen atom that performs the primary attack on the hydrocarbon. (2) Mechanisms in anaerobic activation of hydrocarbons are principally different. The anaerobic oxidation of methane is associated with a redox reaction of a nickel cofactor that is also involved in methanogenesis. The apparently most widely employed anaerobic activation mechanism of non-methane alkanes and alkyl-substituted aromatic hydrocarbons is a C–H-bond cleavage by a protein-hosted radical followed by addition of the radical product to fumarate; this results in a substituted succinate. A few alkyl-substituted aromatic hydrocarbons may be anaerobically hydroxylated (with the HO-group originating from H2O) at the side chain. In addition, there may be yet unknown mechanisms in anaerobic hydrocarbon activation.

References

  1. Aeckersberg F, Rainey FA, Widdel F (1998) Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol 170:361–369PubMedCrossRefGoogle Scholar
  2. Austin RN, Buzzi K, Kim E, Zylstra GJ, Groves JT (2003) Xylene monooxygenase, a membrane-spanning non-heme diiron enzyme that hydroxylates hydrocarbons via a substrate radical intermediate. J Biol Inorg Chem 8:733–740PubMedCrossRefGoogle Scholar
  3. Baird WM, Hooven LA, Mahadevan(2005) Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanisms of action. Environ Mol Mutagen 45: 106–114.PubMedCrossRefGoogle Scholar
  4. Balasubramanian R, Rosenzweig AC (2007) Structural and mechanistic insights into methane oxidation by particulate methane monooxygenase. Acc Chem Res 40:573–580PubMedCrossRefGoogle Scholar
  5. Ballou DP, Entsch B, Cole LJ (2005) Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases. Biochem Biophys Res Commun 338:590–598PubMedCrossRefGoogle Scholar
  6. Bathelt CM, Mulholland AJ, Harvey JN (2008) QM/MM modeling of benzene hydroxylation in human cytochrome P450 2C9. J Phys Chem A.  https://doi.org/10.1021/jp8016908CrossRefPubMedGoogle Scholar
  7. Bédard C, Knowles R (1989) Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev 53:68–84PubMedPubMedCentralGoogle Scholar
  8. Beller HR, Spormann AM (1997) Anaerobic activation of toluene and o-xylene by addition to fumarate in denitrifying strain T. J Bacteriol 179:670–676PubMedPubMedCentralCrossRefGoogle Scholar
  9. Beller H, Reinhard M, Grbić-Galić D (1992) Metabolic by-products of anaerobic toluene degradation by sulfate-reducing enrichment cultures. Appl Environ Microbiol 58:3192–3195PubMedPubMedCentralGoogle Scholar
  10. Beltrametti F, Marconi A, Bestetti G, Colombo C, Galli E, Ruzzi M, Zennaro E (1997) Sequencing and functional analysis of styrene catabolism genes from Pseudomonas fluorescens ST. Appl Environ Microbiol 63:2232–2239PubMedPubMedCentralGoogle Scholar
  11. Bender KS, Shang C, Chakraborty R, Belchik SM, Coates JD (2005) Idenfication, characterization, and classification of genes encoding perchlorate reductase. J Bacteriol 187:5090–5096PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bertrand E, Sakai R, Rozhkova-Novosad E, Moe L, Fox BG, Groves JT, Austin RN (2005) Reaction mechanisms of non-heme diiron hydroxylases characterized in whole cells. J Inorg Biochem 99:1998–2006PubMedCrossRefPubMedCentralGoogle Scholar
  13. Biegert T, Fuchs F, Heider J (1996) Evidence that anaerobic oxidation of toluene in the denitrifying bacterium Thauera aromatica is initiated by formation of benzylsuccinate from toluene and fumarate. Eur J Biochem 238:661–668PubMedCrossRefPubMedCentralGoogle Scholar
  14. Boll M, Estelmann S, Heider J (2018) Anaerobic Degradation of Hydrocarbons: Mechanisms of Hydrocarbon Activation in the Absence of Oxygen. In: Boll M (ed) Anaerobic Utilization of Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology. Springer, ChamCrossRefGoogle Scholar
  15. Boyd DR, Sharma ND, Allen CR (2001) Aromatic dioxygenases: molecular biocatalysis and applications. Curr Opin Biotechnol 12:564–573PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bugg TDH (2003) Dioxygenase enzymes: catalytic mechanisms and chemical models. Tetrahedron 59:7075–7101CrossRefGoogle Scholar
  17. Bumpus JA (1989) Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaetae chrysosporium. Appl Environ Microbiol 55:154–158PubMedPubMedCentralGoogle Scholar
  18. Burrows KJ, Cornish A, Scott D, Higgins IJ (1984) Substrate specificities of the soluble and particulate methane monooxygenases of Methylosinus trichosporium OB3b. J Gen Microbiol 130:327–333Google Scholar
  19. Caldwell ME, Suflita JM (2000) Detection of phenol and benzoate as intermediates of anaerobic benzene biodegradation under different terminal electron-accepting conditions. Environ Sci Technol 34:1216–1220CrossRefGoogle Scholar
  20. Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368CrossRefGoogle Scholar
  21. Chakrabarty S, Austin RN, Deng D, Groves JT, Lipscomb JD (2007) Radical intermediates in monooxygenase reactions of Rieske dioxygenases. J Am Chem Soc 129:3514–3515PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chan SI, Yu SS-F (2008) Controlled oxidation of hydrocarbons by the membrane-bound methane monooxygenase: the case for a tricopper cluster. Acc Chem Res 41:969–979PubMedCrossRefPubMedCentralGoogle Scholar
  23. Chen PP-Y, Yang RB-G, Lee JC-M, Chan SI (2007) Facile O-atom insertion into C−C and C−H bonds by a trinuclear copper complex designed to harness a singlet oxene. Proc Natl Acad Sci 104:14570–14575PubMedCrossRefPubMedCentralGoogle Scholar
  24. Coates JD, Chakraborty R, McInerney MJ (2002) Anaerobic benzene biodegradation − a new era. Res Microbiol 153:621–628PubMedCrossRefPubMedCentralGoogle Scholar
  25. Coon MJ (2005) Omega hydroxylases: nonheme-iron enzymes and P450 cytochromes. Biochem Biophys Res Commun 338:378–385PubMedCrossRefPubMedCentralGoogle Scholar
  26. Crosbie SJ, Blain PG, Williams FM (1997) Metabolism of n-hexane by rat liver and extrahepatic tissues and the effect of cytochrome P-450 inducers. Hum Exp Toxicol 16:131–137PubMedCrossRefGoogle Scholar
  27. Cryle MJ, Schlichting I (2008) Structural insights from a P450 carrier protein complex reveal how specificity is achieved in the P450 (BioI) ACP complex. Proc Natl Acad Sci USA 105:15696–15701PubMedCrossRefPubMedCentralGoogle Scholar
  28. Denisov IG, Makris TM, Sligar SG, Schlichting I (2005) Structure and chemistry of cytochrome P450. Chem Rev 105:2253–2277PubMedCrossRefGoogle Scholar
  29. Elshahed MS, Gieg LM, McInerney MJ, Suflita JM (2001) Signature metabolites attesting to the in situ attenuation of alkylbenzenes in anaerobic environments. Environ Sci Technol 35:682–689PubMedCrossRefGoogle Scholar
  30. Elstner EF (1990) Der Sauerstoff. Wissenschaftsverlag, MannheimGoogle Scholar
  31. Erwin DP, Erickson IK, Delwiche ME, Colwell FS, Strap JL, Crawford RL (2005) Diversity of oxygenase genes from methane- and ammonia-oxidizing bacteria in the Eastern Snake River Plain aquifer. Appl Environ Microbiol 71:2016–2025PubMedPubMedCentralCrossRefGoogle Scholar
  32. Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH, Op den Camp HJ, Jetten MS, Strous M (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol 10:3164–3173PubMedCrossRefGoogle Scholar
  33. Evans PJ, Mang DT, Kim KS, Young LY (1991) Anaerobic degradation of toluene by a denitrifying bacterium. Appl Environ Microbiol 57:1139–1145PubMedPubMedCentralGoogle Scholar
  34. Fasan R, Chen MM, Crook NC, Arnold FH (2007) Engineered alkane-hydroxylating cytochrome P450BM3 exhibiting nativelike catalytic properties. Angew Chem Int Ed Engl 46:8414–8418PubMedCrossRefGoogle Scholar
  35. Feng L, Wang W, Cheng J, Ren Y, Zhao G, Gao C, Tang Y, Liu X, Han W, Peng X, Liu R, Wang L (2008) Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80–2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci USA 104:5602–5607CrossRefGoogle Scholar
  36. Fosdike WL, Smith TJ, Dalton H (2005) Adventitious reactions of alkene monooxygenase reveal common reaction pathways and component interactions among bacterial hydrocarbon oxygenases. FEBS J 272:2661–2669PubMedCrossRefGoogle Scholar
  37. Frommer U, Ullrich V, Staudinger H, Orrenius S (1972) The monooxygenation of n-heptane by rat liver microsomes. Biochim Biophys Acta 280:487–494PubMedCrossRefGoogle Scholar
  38. Funhoff EG, Bauer U, García-Rubio I, Witholt B, van Beilen JB (2006) CYP153A6, a soluble P450 oxygenase catalyzing terminal-alkane hydroxylation. J Bacteriol 188:5220–5227PubMedPubMedCentralCrossRefGoogle Scholar
  39. Golding BT, Watson WP (1999) Possible mechanisms of carcinogenesis after exposure to benzene. IARC Sci Publ 150:75–88Google Scholar
  40. Green J, Dalton H (1989) Substrate specificity of soluble methane monooxygenase. J Biol Chem 264:17698–17703PubMedGoogle Scholar
  41. Groves JT (2006) High-valent iron in chemical and biological oxidations. J Inorg Biochem 100:434–447PubMedCrossRefGoogle Scholar
  42. Guroff G, Daly JW, Jerina DM, Renson J, Witkop B, Udenfriend S (1967) Hydroxylation-induced migration: the NIH shift. Science 157:1524–1530PubMedCrossRefGoogle Scholar
  43. Haddock JD (2010) Aerobic Degradation of Aromatic Hydrocarbons: Enzyme Structures and Catalytic Mechanisms. In: Timmis KN (ed) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  44. Hakemian AS, Kondapalli KC, Telser J, Hoffman BM, Stemmler TL, Rosenzweig AC (2008) The metal centers of particulate methane monooxygenase from Methylosinus trichosporium OB3b. Biochemistry 47:6793–6801PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hallam SJ, Girguis PR, Preston CM, Richardson PM, DeLong EF (2003) Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing Archaea. Appl Environ Microbiol 69:5483–5491PubMedPubMedCentralCrossRefGoogle Scholar
  46. Halliwell B, Gutteridge JM (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14PubMedPubMedCentralCrossRefGoogle Scholar
  47. Han W-G, Noodleman L (2008) Structural model for the peroxo intermediate P and the reaction pathway from P → Q of methane monooxygenase using broken-symmetry density functional calculations. Inorg Chem 47:2975–2986PubMedCrossRefGoogle Scholar
  48. Harder J (2010) Anaerobic Degradation of Isoprene-Derived Compounds. In: Timmis KN (ed) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  49. Harmer J, Finazzo C, Piskorski R, Ebner S, Duin EC, Goenrich M, Thauer RK, Reiher M, Schweiger A, Hinderberger D, Jaun B (2008) A nickel hydride complex in the active site of methyl-coenzyme M reductase: implications for the catalytic cycle. J Am Chem Soc 130:10907–10920PubMedCrossRefGoogle Scholar
  50. Hedegaard J, Gunsalus IC (1965) Mixed function oxidation. J Biol Chem 240:4038–4043PubMedGoogle Scholar
  51. Heider J (2007) Adding handles to unhandy substrates: anaerobic hydrocarbon activation mechanisms. Curr Opin Chem Biol 11:188–194PubMedCrossRefGoogle Scholar
  52. Isin EM, Guengerich EP (2008) Substrate binding to cytochrome P450. Anal Bioanal Chem 392:1019–1030PubMedPubMedCentralCrossRefGoogle Scholar
  53. Johnson HA, Pelletier DA, Spormann AM (2001) Isolation and characterization of anaerobic ethylbenzene dehydrogenase, a novel Mo-Fe-S enzyme. J Bacteriol 183:4536–4542PubMedPubMedCentralCrossRefGoogle Scholar
  54. Käppeli O (1986) Cytochromes P-450 of yeasts. Microbiol Rev 50:244–258PubMedPubMedCentralGoogle Scholar
  55. Karlsson A, Parales JV, Parales RE, Gibson DT, Eklund H, Ramaswamy S (2003) Crystal structure of naphthalene dioxygenase: side-on binding of dioxygen to iron. Science 299:1039–1042PubMedCrossRefGoogle Scholar
  56. Kniemeyer O, Heider J (2001) Ethylbenzene dehydrogenase, a novel hydrocarbon-oxidizing molybdenum/iron-sulfur/heme enzyme. J Biol Chem 276:21381–21386PubMedCrossRefGoogle Scholar
  57. Kniemeyer O, Fischer T, Wilkes H, Glöckner F-O, Widdel F (2003) Anaerobic degradation of ethylbenzene by a new type of marine sulfate-reducing bacterium. Appl Environ Microbiol 69:760–768PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kniemeyer O, Musat F, Sievert S, Knittel K, Wilkes H, Blumenberg M, Michaelis W, Classen A, Bolm C, Joye S, Widdel F (2007) Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449:898–902PubMedCrossRefGoogle Scholar
  59. Kovaleva EG, Neibergall MB, Chakrabarty S, Lipscomb JD (2007) Finding intermediates in the O2 activation pathways of non-heme iron oxgenases. Acc Chem Res 40:475–483PubMedPubMedCentralCrossRefGoogle Scholar
  60. Krüger M, Meyerdierks A, Glöckner FO, Amann R, Widdel F, Kube M, Reinhardt R, Kahnt J, Thauer RK, Shima S (2003) A conspicuous nickel protein in microbial mats that oxidise methane anaerobically. Nature 426:878–881PubMedCrossRefGoogle Scholar
  61. Kweon O, Kim S-J, Baek S, Chae J-C, Adjei MD, Baek D-H, Kim Y-C, Cerniglia CE (2008) A new classification system for bacteria Rieske non-heme iron aromatic ring-hydroxylating oxygenases. BMC Biochem. doi:10.1186/1471-2091-9/11CrossRefPubMedPubMedCentralGoogle Scholar
  62. Leahy JG, Batchelor PJ, Morcomb SM (2003) Evolution of the soluble diiron monooxygenases. FEMS Microbiol Rev 27:449–479PubMedCrossRefPubMedCentralGoogle Scholar
  63. Li L, Liu X, Yang W, Xu F, Wang W, Feng L, Barlam M, Wang L, Rao Z (2008) Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the long-chain alkane hydroxylase. J Mol Biol 376:453–465PubMedCrossRefGoogle Scholar
  64. Liebermann RL, Rosenzweig AC (2005) Crystal structure of membrane-bound metalloenzyme that catalyzes the biological oxidation of methane. Nature 434:177–182CrossRefGoogle Scholar
  65. Lippard SJ (2005) Hydroxylation of C-H bonds at carboxylate-bridged diiron centres. Philos Trans R Soc Lond A 363:861–877CrossRefGoogle Scholar
  66. Lipscomb JD (1994) Biochemistry of the soluble methane monooxygenase. Annu Rev Microbiol 48:371–399PubMedCrossRefGoogle Scholar
  67. Lorimer GH (1981) The carboxylation and oxygenation of ribulose-1,5-bisphosphate: the primary events in photosynthesis and photorespiration. Annu Rev Plant Physiol 32:349–383CrossRefGoogle Scholar
  68. Lösekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, Amann R (2007) Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby mud volcano, Barents Sea. Appl Environ Microbiol 73:3348–3362PubMedPubMedCentralCrossRefGoogle Scholar
  69. Maeng JH, Sakai Y, Tani Y, Kato N (1996) Isolation and characterization of a novel oxygenase that catalyzes the first step of n-alkane oxidation in Acinetobacter sp. strain M-1. J Bacteriol 178:3695–3700PubMedPubMedCentralCrossRefGoogle Scholar
  70. Martinho M, Choi DW, Dispirito AA, Antholine WE, Semrau JD, Münck E (2007) Mössbauer studies of the membrane-associated methane monooxygenase from Methylococcus capsulatus Bath: evidence for a diiron center. J Am Chem Soc 129:15783–15785PubMedPubMedCentralCrossRefGoogle Scholar
  71. Morohashi K, Sadano H, Okada Y, Omura T (1982) Position specificity in n-hexane hydroxylation by two forms of cytochrome P-450 in rat liver microsomes. J Biochem 93:413–419CrossRefGoogle Scholar
  72. Munro AW, Girvan HM, McLean KJ (2007) Variations on a theme – novel mechanisms, redox partners and catalytic functions in the cytochrome P450 superfamily. Nat Prod Rep 24:585–609PubMedCrossRefGoogle Scholar
  73. Murrell JC, Gilbert B, McDonald IR (2000) Molecular biology and regulation of methane monooxygenase. Arch Microbiol 173:325–332PubMedCrossRefGoogle Scholar
  74. Musat F, Widdel F (2009) Anaerobic degradation of benzene by a marine sulfate-reducing enrichment culture, and cell hybridization of the dominant phylotype. Environ Microbiol 10:10–19Google Scholar
  75. Musat F, Galushko A, Jacob J, Widdel F, Kube M, Reinhardt R, Wilkes H, Schink B, Rabus R (2009) Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria. Environ Microbiol 11:209–219PubMedCrossRefGoogle Scholar
  76. Oku Y, Ohtaki A, Kamitori S, Nakamura N, Yohda M, Ohno H, Kawarabayasi Y (2004) Structure and direct electrochemistry of cytochrome P450 from the thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain 7. J Inorg Biochem 98:1194–1199PubMedCrossRefPubMedCentralGoogle Scholar
  77. Perbellini L, Brugnone F, Pavan I (1980) Identification of the metabolites of n-hexane, cyclohexane, and their isomers in men’s urine. Toxicol Appl Pharmacol 53:220–229PubMedCrossRefGoogle Scholar
  78. Poulos TL, Finzel BC, Howard AJ (1987) High-resolution crystal structure of cytochrome P450cam. J Mol Biol 195:687–700PubMedCrossRefGoogle Scholar
  79. Powley MW, Carlson GP (2000) Cytochrome P450 involved with benzene metabolism in hepatic and pulmonary microsomes. J Biochem Mol Toxicol 14:303–309PubMedCrossRefGoogle Scholar
  80. Rabus R, Wilkes H, Behrends A, Armstroff A, Fischer T, Pierik AJ, Widdel F (2001) Anaerobic initial reaction of n-alkanes: evidence for (1-methylpentyl)succinate as initial product and for involvement of an organic radical in the metabolism of n-hexane in a denitrifying bacterium. J Bacteriol 183:1707–1715PubMedPubMedCentralCrossRefGoogle Scholar
  81. Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJ, Ettwig KF, Rijpstra WI, Schouten S, Damsté JS, Op den Camp HJ, Jetten MS, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921PubMedCrossRefGoogle Scholar
  82. Reineke W (2001) Aerobic and anaerobic biodegradation potentials of microorganisms. In: Beek B (ed) The handbook of environmental chemistry, vol. 2, part K, Biodegradation and persistence. Springer, Berlin, pp. 1–161.Google Scholar
  83. Resnick SM, Lee K, Gibson DT (1996) Diverse reactions catalyzed by naphthalene dioxygenase from Pseudomonas sp strain NCIB 9816. J Ind Microbiol 17:438–457Google Scholar
  84. Rosenzweig AC, Frederick CA, Lippard SJ, Nordlund P (1993) Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Nature 366:537–543PubMedCrossRefGoogle Scholar
  85. Safinowski M, Meckenstock RU (2006) Methylation is the initial reaction in anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Environ Microbiol 8:347–352PubMedCrossRefPubMedCentralGoogle Scholar
  86. Sawyer DT (1981) How super is superoxide? Acc Chem Res 14:393–400CrossRefGoogle Scholar
  87. Sazinsky MH, Bard J, Di Donato A, Lippard SJ (2004) Crystal structure of the toluene/o-xylene monooxygenase hydroxylase from Pseudomonas stutzeri OX1. J Biol Chem 279:30600–30610PubMedCrossRefPubMedCentralGoogle Scholar
  88. Scheller U, Zimmer T, Kärgel E, Schunck W-H (1996) Characterization of the n-alkane and fatty acid hydroxylating cytochrome P450 forms 52A3 and 52A4. Arch Biochem Biophys 328:245–254PubMedCrossRefPubMedCentralGoogle Scholar
  89. Schink B (1985) Degradation of unsaturated hydrocarbons by methanogenic enrichment cultures. FEMS Microbiol Lett 31:69–77CrossRefGoogle Scholar
  90. Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE, Sweet RM, Ringe D, Petsko GA, Sligar S (2000) The catalytic pathway of cytochrome P450cam at atomic resolution. Science 287:1615–1622PubMedCrossRefPubMedCentralGoogle Scholar
  91. Seiffert GB, Ullmann GM, Messerschmidt A, Schink B, Kroneck PMH (2007) Structure of the non-redox-active tungsten/[4Fe:4S] enzyme acetylene hydratase. Proc Natl Acad Sci USA 104:3073–3077PubMedCrossRefPubMedCentralGoogle Scholar
  92. Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids. Ann Rev Plant Physiol Plant Mol Biol 49:611–641CrossRefGoogle Scholar
  93. Shima S, Thauer RK (2005) Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea. Curr Opin Microbiol 8:643–648PubMedCrossRefGoogle Scholar
  94. Smith BD, Sanders JL, Porubsky PR, Lushington GH, Stout CD, Scott EE (2007) Structure of the human lung cytochrome P450 2A13. J Biol Chem 282:17306–17313PubMedCrossRefGoogle Scholar
  95. So CM, Phelps CD, Young LY (2003) Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3. Appl Environ Microbiol 69:3892–3900PubMedPubMedCentralCrossRefGoogle Scholar
  96. Spormann AM, Widdel F (2001) Metabolism of alkylbenzenes, alkanes and other hydrocarbons in anaerobic bacteria. Biodegradation 11:85–105CrossRefGoogle Scholar
  97. Szaleniec M, Hagel C, Menke M, Nowak P, Witko M, Heider J (2007) Kinetics and mechanism of oxygen-independent hydrocarbon hydroxylation by ethylbenzene dehydrogenase. Biochemistry 46:7637–7646PubMedCrossRefPubMedCentralGoogle Scholar
  98. Taupp M, Constan L, Hallam S (2010) The Biochemistry of Anaerobic Methane Oxidation. In: Timmis KN (ed) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  99. Thauer RK, Shima S (2008) Methane as a fuel for anaerobic microorganisms. Ann N Y Acad Sci 1125:158–170PubMedCrossRefPubMedCentralGoogle Scholar
  100. Throne-Holst M, Wentzel A, Ellingson TE, Kotlar H-K, Zotchev SB (2007) Identification of novel genes involved in long-chain n-alkane degradation by Acitnetobacter sp. strain DSM 17874. Appl Environ Microbiol 73:3327–3332PubMedPubMedCentralCrossRefGoogle Scholar
  101. Ullrich R, Hofrichter M (2007) Enyzmatic hydroxylation of aromatic compounds. Cell Mol Life Sci 64:271–293PubMedCrossRefPubMedCentralGoogle Scholar
  102. Ulrich AC, Beller HR, Edwards EA (2005) Metabolites detected during biodegradation of 13C6-benzene in nitrate-reducing and methanogenic enrichment cultures. Environ Sci Technol 39:6681–6691PubMedCrossRefPubMedCentralGoogle Scholar
  103. Urlacher VB, Schmid RD (2006) Recent advances in oxygenase-catalyzed biotransformations. Curr Opin Chem Biol 10:156–161PubMedCrossRefPubMedCentralGoogle Scholar
  104. van Beilen JB, Funhoff EG (2005) Expanding the alkane oxygenase toolbox: new enzymes and applications. Curr Opin Biotechnol 16:308–314PubMedCrossRefPubMedCentralGoogle Scholar
  105. van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21CrossRefGoogle Scholar
  106. van Beilen JB, Neuenschwander M, Smits THM, Roth C, Balada SB, Witholt B (2002) Rubredoxins involved in alkane oxidation. J Bacteriol 184:1722–1732PubMedPubMedCentralCrossRefGoogle Scholar
  107. van Beilen JB, Funhoff EG, van Loon A, Just A, Kaysser L, Bouza M, Holtackers R, Röthlisberger M, Li Z, Witholt B (2006) Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl Environ Microbiol 72:59–65PubMedPubMedCentralCrossRefGoogle Scholar
  108. van Berkel WJH, Kamerbeek NM, Fraaije MW (2006) Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J Biotechnol 124:670–689PubMedCrossRefPubMedCentralGoogle Scholar
  109. Whittington DA, Lippard SJ (2001) Crystal structures of the soluble methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath) demonstrating geometrical variability at the dinuclear iron active site. J Am Chem Soc 123:827–38PubMedCrossRefPubMedCentralGoogle Scholar
  110. Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276PubMedCrossRefPubMedCentralGoogle Scholar
  111. Widdel F, Musat F, Knittel K, Galusko A (2007) Anaerobic degradation of hydrocarbons with sulphate as electron acceptor. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria. Cambridge University Press, Cambridge, pp 265–303CrossRefGoogle Scholar
  112. Wilkes H, Rabus R, Fischer T, Armstroff A, Behrend A, Widdel F (2002) Anaerobic degradation of n-hexane in a denitrifying bacterium: further degradation of the initial intermediate (1-methylpentyl)succinate via C-skeleton rearrangement. Arch Microbiol 177:235–243PubMedCrossRefPubMedCentralGoogle Scholar
  113. Wolter M, Zadrazil F, Martens R, Bahadir M (1997) Degradation of eight highly condensed polycyclic aromatic hydrocarbons by Pleurotus sp. Florida in solid wheat straw substrate. Appl Microbiol Biotechnol 48:398–404CrossRefGoogle Scholar
  114. Yoshizawa K, Yumura T (2003) A non-radical mechanism for methane hydroxylation at the diiron active site of soluble methane monooxygenase. Chem Eur J 9:2347–2358PubMedCrossRefGoogle Scholar
  115. Zahn JA, Arciero DM, Hooper AB, DiSpirito AA (1996) Evidence for an iron center in the ammonia monooxygenase from Nitrosomonas europaea. FEBS Lett 397:35–38PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Max Planck Institute for Marine MicrobiologyBremenGermany
  2. 2.UFZ – Helmholtz Centre for Environmental ResearchLeipzigGermany

Personalised recommendations