Advertisement

Biochemistry and Molecular Biology of Methane Monooxygenase

  • Tim NicholEmail author
  • J. Colin Murrell
  • Thomas J. Smith
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Methane-oxidizing bacteria (methanotrophs) are a unique group of aerobic bacteria that can gain all of their carbon and energy requirements from methane. The enzymes that catalyze the first step in the bacterial methane oxidation pathway, the oxidation of methane to methanol, are called methane monooxygenases. These are remarkable enzymes because methane is chemically very stable, and to convert methane to methanol chemically requires expensive catalysts, high temperatures, and pressures. There are two types of methane monooxygenase that occur in methanotrophs, a membrane-bound, particulate methane monooxygenase, and a cytoplasmic, soluble methane monooxygenase which belongs to a class of enzymes known as soluble diiron monooxygenases. The expression of these enzymes in methanotrophs is often regulated by the availability of copper. The soluble methane monooxygenase has attracted significant attention and has considerable potential in biocatalysis and bioremediation since it can co-oxidize a very wide range of aliphatic and aromatic compounds, even though methanotrophs themselves do not grow on these compounds. We review here the biochemistry and molecular biology of both the particulate and soluble methane monooxygenases and their biotechnological potential.

References

  1. Anthony C (1982) The biochemistry of Methylotrophs. Academic, New YorkGoogle Scholar
  2. Baani M, Liesack W (2008) Two isoenzymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp SC2. Proc Natl Acad Sci 105:10203–10208PubMedCrossRefGoogle Scholar
  3. Baik MH, Newcomb M, Friesner RA, Lippard SJ (2003) Mechanistic studies on the hydroxylation of methane by methane monooxygenase. Chem Rev 103:2385–2419PubMedCrossRefGoogle Scholar
  4. Balasubramanian R, Rosenzweig AC (2008) Copper methanobaction: a molecule whose time has come. Curr Opin Chem Eng 12:245–249CrossRefGoogle Scholar
  5. Balasubramanian R, Smith SM, Rawat S, Yatsunyk LA, Stemmler TL, Rosenzweig AC (2010) Oxidation of methane by a biological dicopper center. Nature 465:115–119PubMedPubMedCentralCrossRefGoogle Scholar
  6. Banerjee R, Proshlyakov Y, Lipscomb JD, Proshlyakov DA (2015) Structure of the key species in the enzymatic oxidation of methane to methanol. Nature 518:431–434PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bjorck CE, Dobson PD, Pandhal J (2018) Biotechnological conversion of methane to methanol: evaluation of progress and potential. AIMS Bioeng 5:1–38CrossRefGoogle Scholar
  8. Borodina E, Nichol T, Dumont MG, Smith TJ, Murrell JC (2007) Mutagenesis of the “leucine gate” to explore the basis of catalytic versatility in soluble methane monooxygenase. Appl Environ Microbiol 73:6460–6467PubMedPubMedCentralCrossRefGoogle Scholar
  9. Cantera S, Muñoz R, Lebrero R, López JC, Rodríguez Y, García-Encina PA (2018) Technologies for the bioconversion of methane into more valuable products. Curr Opin Biotechnol 50:128–135PubMedCrossRefGoogle Scholar
  10. Cao L, Caldararu O, Rosenzweig AC, Ryde U (2018) Quantum refinement does not support dinuclear copper sites in crystal structures of particulate methane monooxygenase. Angew Chem 130:168–172CrossRefGoogle Scholar
  11. Castillo RG, Banerjee R, Allpress CJ, Rohde GT, Bill E, Que L, Lipscomb JD, DeBeer S (2017) High-energy-resolution fluorescence-detected X-ray absorption of the Q intermediate of soluble methane monooxygenase. J Am Chem Soc 139:18024–18033PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chatwood LL, Muller J, Gross JD, Wagner G, Lippard SJ (2004) Biochemistry 43:11983–11991PubMedCrossRefGoogle Scholar
  13. Cho U-S, Lee SJ, Kim H, An S, Park YR, Jang H, Park S (2018) MMOD-induced structural changes of hydroxylase in soluble methane monooxygenase. BioRxiv.  https://doi.org/10.1101/331512
  14. Choi DW, Antholine WE, Do YS, Semrau JD, Kisting CJ, Kunz RC, Campbell D, Rao V, Hartsel SC, DiSpirito AA (2005) Effect of methanobactin on the activity and electron paramagnetic resonance spectra of the membrane-associated methane monooxygenase in Methylococcus capsulatus Bath. Microbiology 151:3417–3426PubMedCrossRefGoogle Scholar
  15. Choi DW, Do YS, Zea JC (2006) Spectral and thermodynamic properties of Ag(I), Au(III), Cd(II), Co(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(IV), and Zn(II) binding by methanobactin from Methylosinus trichosporium OB3b. J Inorg Biochem 100:2150–2161PubMedCrossRefGoogle Scholar
  16. Coleman NV, Bui NB, Holmes AJ (2006) Soluble di-iron monooxygenase gene diversity in soils, sediments and ethene enrichments. Environ Microbiol 8:1228–1239PubMedCrossRefGoogle Scholar
  17. Crombie AT, Murrell JC (2014) Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris. Nature 510:148–151PubMedCrossRefGoogle Scholar
  18. Csaki R, Bodrossy L, Klem J, Murrell JC, Kovacs KL (2003) Genes involved in the copper-dependent regulation of soluble methane monooxygenase of Methylococcus capsulatus (Bath): cloning, sequencing and mutational analysis. Microbiology 149:1785–1795PubMedCrossRefGoogle Scholar
  19. Dalton H (2005) The Leeuwenhoek lecture 2000. The natural and unnatural history of methane oxidizing bacteria. Philos Trans R Soc Lond B 360:1207–1222CrossRefGoogle Scholar
  20. Dedysh SN, Knief C, Dunfield P (2005) Methylocella species are facultatively methanotrophic. J Bacteriol 187:4665–4667PubMedPubMedCentralCrossRefGoogle Scholar
  21. Dedysh SN, Naumoff DG, Vorobev AV, Kyrpides N, Woyke T, Shapiro N, Crombie AT, Murrell JC, Kalyuzhnaya MG, Smirnova AV, Dunfield PF (2015) Draft genome sequence of Methyloferula stellata AR4, an obligate methanotroph possessing only a soluble methane monooxygenase. Genome Announc 3:e01555–e01514PubMedPubMedCentralCrossRefGoogle Scholar
  22. DiSpirito AA, Zahn JA, Graham DW, Kim HJ, Larive CK, Derrick TS, Cox CD, Taylor A (1998) Copper-binding compounds from Methylosinus trichosporium OB3b. J Bacteriol 180:3606–3613PubMedPubMedCentralGoogle Scholar
  23. DiSpirito AA, Semrau JD, Murrell JC, Gallagher WH, Dennison C, Vuilleumier S (2016) Methanobactin and the link between copper and bacterial methane oxidation. Microbiol Mol Biol Rev 80:387–409PubMedPubMedCentralCrossRefGoogle Scholar
  24. Elango N, Radhakrishnan R, Froland WA, Wallar BJ, Earhart CA, Lipscomb JD, Ohlendorf DH (1997) Crystal structure of the hydroxylase component of the soluble methane monooxygenase from Methylosinus trichosporium OB3b. Protein Sci 6:556–568PubMedPubMedCentralCrossRefGoogle Scholar
  25. Gu W, Semrau JD (2017) Copper and cerium-regulated gene expression in Methylosinus trichosporium OB3b. Appl Microbiol Biotechnol 101:8499–8516PubMedCrossRefGoogle Scholar
  26. Gu W, Farhan Ul Haque M, Semrau, JD (2017) Characterization of the role of copCD in copper uptake and the ‘copper-switch’ in Methylosinus trichosporium OB3b. FEMS Microbiol Lett, 364:fnx094.Google Scholar
  27. Hakemian AS, Rosenzweig AC (2007) The biochemistry of methane oxidation. Annu Rev Biochem 76:223–241PubMedCrossRefGoogle Scholar
  28. Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471PubMedPubMedCentralGoogle Scholar
  29. Hazen TC, Chakraborty R, Fleming JM, Gregory IR, Bowman JP, Jimenez L, Zhang D, Pfiffner SM, Brockman FJ, Sayler GS (2009) Use of gene probes to assess the impact and effectiveness of aerobic in situ bioremediation of TCE. Arch Microbiol 91:221–232CrossRefGoogle Scholar
  30. Im J, Semrau JD (2011) Pollutant degradation by a Methylocystis strain SB2 grown on ethanol: bioremediation via facultative methanotrophy. FEMS Microbiol Lett 318:137–142PubMedCrossRefGoogle Scholar
  31. Jasniewski AJ, Que L (2018) Dioxygen activation by nonheme diiron enzymes: diverse dioxygen adducts, high-valent intermediates, and related model complexes. Chem Rev 18:2554–2592CrossRefGoogle Scholar
  32. Jin Y, Lipscomb JD (2000) Mechanistic insights into C-H activation from radical clock chemistry: oxidation of substituted methylcyclopropanes catalyzed by soluble methane monooxygenase from Methylosinus trichosporium OB3b. Biochim Biophys Acta 1543:47–59PubMedCrossRefGoogle Scholar
  33. Kenney GE, Rosenzweig AC (2018) Methanobactins: maintaining copper homeostasis in methanotrophs and beyond. J Biol Chem 293:4606. TM117.000185PubMedCrossRefGoogle Scholar
  34. Kenney GE, Sadek M, Rosenzweig AC (2016) Copper-responsive gene expression in the methanotroph Methylosinus trichosporium OB3b. Metallomics 8:931–940PubMedPubMedCentralCrossRefGoogle Scholar
  35. Kim HJ, Graham DW, DiSpirito AA, Alterman MA, Galeva N, Larive CK, Asunskis D (2004) Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria. Science 305:1612–1615PubMedCrossRefGoogle Scholar
  36. Kim HJ, Galeva N, Larive CK, Alterman M, Graham DW (2005) Purification and physical-chemical properties of methanobactin: a chalkophore from Methylosinus trichosporium OB3b. Biochemistry 44:5140–5148PubMedCrossRefGoogle Scholar
  37. Kitmitto A, Myronova N, Basu P, Dalton H (2005) Characterization and structural analysis of an active particulate methane monooxygenase trimer from Methylococcus capsulatus (Bath). Biochemistry 44:10954–10965PubMedCrossRefGoogle Scholar
  38. Lawton TJ, Rosenzweig AC (2016) Methane-oxidizing enzymes: an upstream problem in biological gas-to-liquids conversion. J Am Chem Soc 138:9327–9340PubMedPubMedCentralCrossRefGoogle Scholar
  39. Leahy JG, Batchelor PJ, Morcomb SM (2003) Evolution of the soluble diiron monooxygenases. FEMS Microbiol Rev 27:449–479PubMedCrossRefPubMedCentralGoogle Scholar
  40. Lee SJ (2016) Hydroxylation of methane through component interactions in soluble methane monooxygenases. J Microbiol 54:277–282PubMedCrossRefGoogle Scholar
  41. Lee SW, Keeney DR, Lim DH, Dispirito AA, Semrau JD (2006) Mixed pollutant degradation by Methylosinus trichosporium OB3b expressing either soluble or particulate methane monooxygenase: can the tortoise beat the hare? Appl Environ Microbiol 72:7503–7509PubMedPubMedCentralCrossRefGoogle Scholar
  42. Lee SJ, McCormick MS, Lippard SJ, Cho US (2013) Control of substrate access to the active site in methane monooxygenase. Nature 494:380–384PubMedPubMedCentralCrossRefGoogle Scholar
  43. Lieberman RL, Rosenzweig AC (2005) Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 434:177–182PubMedCrossRefGoogle Scholar
  44. Lock M, Nichol T, Murrell JC, Smith TJ (2017) Mutagenesis and expression of methane monooxygenase to alter regioselectivity with aromatic substrates. FEMS Microbiol Lett 364.  https://doi.org/10.1093/femsle/fnx137
  45. Lontoh S, DiSpirito AA, Krema CL, Whittaker MR, Hooper AB, Semrau JD (2008) Differential inhibition in vivo of ammonia monooxygenase, soluble methane monooxygenase and membrane-associated methane monooxygenase by phenylacetylene. Env Microbiol 2:485–494CrossRefGoogle Scholar
  46. Martinho M, Choi DW, DiSpirito AA, Antholine WE, Semrau JD, Münck E (2007) Mössbauer studies of the membrane-associated methane monooxygenase from Methylococcus capsulatus Bath: evidence for a diiron center. J Am Chem Soc 129:15783–15785PubMedPubMedCentralCrossRefGoogle Scholar
  47. McDonald IR, Bodrossy L, Chen Y, Murrell JC (2008) Molecular ecology techniques for the study of aerobic methanotrophs. Appl Environ Microbiol 74:1305–1315PubMedCrossRefGoogle Scholar
  48. Murrell JC, McDonald IR, Gilbert B (2000) Regulation of expression of methane monooxygenases by copper ions. Trends Microbiol 8:221–225PubMedCrossRefGoogle Scholar
  49. Myronova N, Kitmitto A, Collins RF, Miyaji A, Dalton H (2006) Three-dimensional structure determination of a protein supercomplex that oxidizes methane to formaldehyde in Methylococcus capsulatus (Bath). Biochemistry 45:11905–11914PubMedCrossRefGoogle Scholar
  50. Nguyen HT, Elliott SJ, Yip JH, Chan SI (1998) The particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a novel copper-containing three-subunit enzyme. J Biol Chem 273:7957–7978PubMedCrossRefGoogle Scholar
  51. Nichol T, Murrell JC, Smith TJ (2015) Controlling the activities of the diiron centre in bacterial monooxygenases: lessons from mutagenesis and biodiversity. Eur J Inorg Chem 2015: 3419–3431CrossRefGoogle Scholar
  52. Pieja AJ, Morse MC, Cal AJ (2017) Methane to bioproducts: the future of the bioeconomy? Curr Opin Chem Biol 41:123–131PubMedCrossRefGoogle Scholar
  53. Richards AO, Stanley SH, Suzuki M, Dalton H (1994) The biotransformation of propylene to propylene oxide by Methylococcus capsulatus (Bath). Biocatalysis 8:253–267CrossRefGoogle Scholar
  54. Ricke P, Erkel C, Kube M, Reinhardt R, Liesack W (2004) Comparative analysis of the conventional and novel pmo (particulate methane monooxygenase) operons from Methylocystis strain SC2. Appl Environ Microbiol 70:3055–3063PubMedPubMedCentralCrossRefGoogle Scholar
  55. Rosenzweig AC, Frederick CA, Lippard SJ, Nordlund P (1993) Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Nature 366:537–543PubMedCrossRefGoogle Scholar
  56. Rosenzweig AC, Brandstetter H, Whittington DA, Nordlund P, Lippard SJ, Frederick CA (1997) Crystal structures of the methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath): implications for substrate gating and component interactions. Proteins 29:141–152PubMedCrossRefGoogle Scholar
  57. Ross MO, Rosenzweig AC (2017) A tale of two methane monooxygenases. J Biol Inorg Chem 22:307–319PubMedCrossRefGoogle Scholar
  58. Sazinsky MH, Lippard SJ (2015) Methane monooxygenase: functionalizing methane at iron and copper. In: Kroneck PMH, Sosa Torres ME (eds) Sustaining life on planet earth: Metalloenzymes mastering dioxygen and other chewy gases. Springer, Heidelberg, pp 205–256Google Scholar
  59. Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34:496–531PubMedCrossRefGoogle Scholar
  60. Semrau JD, Jagadevan S, DiSpirito AA, Khalifa A, Scanlan J, Bergman BH, Freemeier BC, Baral BS, Bandow NL, Vorobev A, Haft DH, Vuilleumier S, Murrell JC (2013) Methanobactin and MmoD work in concert to act as the ‘copper-switch’in methanotrophs. Environ Microbiol 15:3077–3086PubMedGoogle Scholar
  61. Semrau JD, DiSpirito AA, Gu W, Yoon S (2018) Metals and Methanotrophy. Appl Environ Microbiol 84:AEM-02289CrossRefGoogle Scholar
  62. Sigdel S, Hui G, Smith TJ, Murrell JC, Lee JK (2015) Molecular dynamics simulation to rationalize regioselective hydroxylation of aromatic substrates by soluble methane monooxygenase. Bioorg Med Chem Lett 25:1611–1615PubMedCrossRefGoogle Scholar
  63. Sirajuddin S, Rosenzweig AC (2015) Enzymatic oxidation of methane. Biochemistry 54:2283–2294.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Smith DDS, Dalton H (1989) Solubilization of methane monooxygenase from Methylococcus capsulatus (Bath). Eur J Biochem 182:667–671PubMedCrossRefGoogle Scholar
  65. Smith TJ, Dalton H (2004) Biocatalysis by methane monooxygenase and its implications for the petroleum industry. Petroleum biotechnology: developments and perspectives. Stud Surf Sci Catal 151:177–192CrossRefGoogle Scholar
  66. Smith TJ, Murrell JC (2008) Methanotrophs. In: Flickinger M (ed) Encyclopedia of industrial biotechnology. Wiley, Hoboken, NJGoogle Scholar
  67. Smith TJ, Slade SE, Burton NP, Murrell JC, Dalton H (2002) An improved system for protein engineering of the hydroxylase component of soluble methane monooxygenase. Appl Environ Microbiol 68:5265–5273PubMedPubMedCentralCrossRefGoogle Scholar
  68. Stafford GP, Scanlan J, McDonald IR, Murrell JC (2003) Characterization of rpoN, mmoR and mmoG, genes involved in regulating the expression of soluble methane monooxygenase in Methylosinus trichosporium OB3b. Microbiology 149:1771–1784PubMedCrossRefGoogle Scholar
  69. Stanley SH, Prior SD, Leak DJ, Dalton H (1983) Copper stress underlies the fundamental change in intracellular location of methane monooxygenase in methane-oxidizing organisms: studies in batch and continuous cultures. Biotechnol Lett 5:487–492CrossRefGoogle Scholar
  70. Stolyar S, Franke M, Lidstrom ME (2001) Expression of individual copies of Methylococcus capsulatus Bath particulate methane monooxygenase genes. J Bacteriol 183:1810–1812PubMedPubMedCentralCrossRefGoogle Scholar
  71. Strong PJ, Xie S, Clarke WP (2015) Methane as a resource: can the methanotrophs add value? Environ Sci Technol 49:4001–4018PubMedCrossRefGoogle Scholar
  72. Tchawa Yimga M, Dunfield PF, Ricke P, Heyer J, Liesack W (2003) Wide distribution of a novel pmoA-like gene copy among type II methanotrophs, and its expression in Methylocystis strain SC2. Appl Environ Microbiol 69:5593PubMedPubMedCentralCrossRefGoogle Scholar
  73. Theisen AR, Ali HM, Radajewski S, Dumont MG, Dunfield PF, McDonald IR, Dedysh SN, Miguez CB, Murrell JC (2005) Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Mol Microbiol 58:682–692PubMedCrossRefGoogle Scholar
  74. Tinberg CE, Lippard SJ (2010) Oxidation reactions performed by soluble methane monooxygenase hydroxylase intermediates Hperoxo and Q proceed by distinct mechanisms. Biochemistry 49:7902–7912PubMedPubMedCentralCrossRefGoogle Scholar
  75. Trehoux A, Mahy JP, Avenier F (2016) A growing family of O2 activating dinuclear iron enzymes with key catalytic diiron (III)-peroxo intermediates: biological systems and chemical models. Coord Chem Rev 322:142–158CrossRefGoogle Scholar
  76. Trotsenko YA, Murrell JC (2008) Metabolic aspects of aerobic obligate methylotrophy. Adv App Microbiol 63:183–229CrossRefGoogle Scholar
  77. Vita N, Platsaki S, Baslé A, Allen SJ, Paterson NG, Crombie AT, Murrell JC, Waldron KJ, Dennison C (2015) A four-helix bundle stores copper for methane oxidation. Nature 525:140–143PubMedPubMedCentralCrossRefGoogle Scholar
  78. Vita N, Landolfi G, Baslé A, Platsaki S, Lee J, Waldron KJ, Dennison C (2016) Bacterial cytosolic proteins with a high capacity for Cu (I) that protect against copper toxicity. Sci Rep 6:39065PubMedPubMedCentralCrossRefGoogle Scholar
  79. Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, Dedysh SN (2011) Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evol Microbiol 61:2456–2463PubMedCrossRefGoogle Scholar
  80. Walters KJ, Gassner GT, Lippard SJ, Wagner G (1999) Structure of the soluble methane monooxygenase regulatory protein B. Proc Natl Acad Sci USA 96:7877–7882PubMedCrossRefGoogle Scholar
  81. Welte KU, Rasigraf O, Vaksmaa A, Versantvoort W, Arshad A, Op den Camp HJM, Jetten MSM, Lüke C, Reimann J (2016) Environ Microbiol Rep 8:941–955PubMedCrossRefGoogle Scholar
  82. Yoon S, Im J, Bandow N, DiSpirito AA, Semrau JD (2011) Constitutive expression of pMMO by Methylocystis strain SB2 when grown on multi-carbon substrates: implications for biodegradation of chlorinated ethenes. Environ Microbiol Rep 3:182–188PubMedCrossRefGoogle Scholar
  83. Zahn JA, DiSpirito AA (1996) Membrane-associated methane monooxygenase from Methylococcus capsulatus (Bath). J Bacteriol 178:1018–1029PubMedPubMedCentralCrossRefGoogle Scholar
  84. Zhang S, Karthikeyan R, Fernando SD (2017) Low-temperature biological activation of methane: structure, function and molecular interactions of soluble and particulate methane monooxygenases. Rev Environ Sci Biotechnol 6:611–623CrossRefGoogle Scholar
  85. Zheng H, Lipscomb JD (2006) Regulation of methane monooxygenase catalysis based on size exclusion and quantum tunneling. Biochemistry 45:1685–1692PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tim Nichol
    • 1
    Email author
  • J. Colin Murrell
    • 2
  • Thomas J. Smith
    • 1
  1. 1.Biomolecular Sciences Research CentreSheffield Hallam UniversitySheffieldUK
  2. 2.School of Environmental SciencesUniversity of East Anglia, Norwich Research ParkNorwichUK

Personalised recommendations