Advertisement

Potential for Microbial Interventions to Reduce Global Warming

  • Donovan P. KellyEmail author
  • Ann P. WoodEmail author
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

The identity, atmospheric concentrations, lifetimes, and radiative forcing potentials of the biogenic, anthropogenic, and atmospheric “greenhouse gases” primarily responsible for global warming and consequent climate change are described. Possible and actual microbiological processes which might reduce the atmospheric burden of carbon dioxide and methane are considered, and the uncertainties both of the feasibility of such processes and of the hypotheses underpinning them are evaluated.

References

  1. Buffett B (2004) Global inventory of methane clathrate: sensitivity to changes in the deep ocean. Earth Planet Sci Lett 227:185–199CrossRefGoogle Scholar
  2. Cai Y, Yan Z, Bodelier PLE, Conrad R, Jia Z (2016) Conventional methanotrophs are responsible for methane oxidation in paddy soils. Nat Commun 7:11728CrossRefGoogle Scholar
  3. Coale KH et al (1996) A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383:495–501.18CrossRefGoogle Scholar
  4. Dickens GR, Castillo RM, Walker JCG (1997) A blast of gas in the late Paleocene: simulating first order effects of massive dissociation of oceanic methane hydrates. Geology 25:259–262CrossRefGoogle Scholar
  5. EIA (2016) Climate change indicators: greenhouse gases. https://www.epa.gov/climate-indicators/greenhouse-gases. Retrieved 28 Oct 2016
  6. Ettwig KF et al (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol 10:3164–3173CrossRefGoogle Scholar
  7. Fonty G, Joblin K, Chavarot M, Roux R, Naylor G, Michallon F (2007) Establishment and development of ruminal hydrogenotrophs in methanogen-free lambs. Appl Environ Microbiol 73:6391–6403CrossRefGoogle Scholar
  8. Harper DB, Hamilton JTG (2003) The global cycles of the naturally-occurring monohalomethanes. In: Natural production of organohalogen compounds, The handbook of environmental chemistry, vol 3P. Springer, Berlin, pp 17–41CrossRefGoogle Scholar
  9. Henckel T, Jäckel U, Schnell S, Conrad R (2000) Molecular analyses of novel methanotrophic communities in forest soil that oxidize atmospheric methane. Appl Environ Microbiol 66:1801–1808CrossRefGoogle Scholar
  10. Holmes AJ, Roslev P, McDonald IR, Iverson N, Henriksen K, Murrell JC (1999) Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Appl Environ Microbiol 65:3312–3318PubMedPubMedCentralGoogle Scholar
  11. Hulme M (2008) The star wars solution to climate change that will crash back to earth. Times Higher Education, 26 June 2008, pp 24–25Google Scholar
  12. IAEA (2008) Belching ruminants, a minor player in atmospheric methane. Joint FAO/IAEA Programme: nuclear techniques in food and agriculture. http://www-naweb.iaea.org/nafa/aph/stories/2008-atmospheric-methane.html. Retrieved 14 May 2009
  13. IPCC (2007) Historical overview of climate change science. Intergovernmental Panel on Climate Change, WG1 AR4 Report, p 97Google Scholar
  14. Iqbal MF, Cheng Y-F, Zhu W-Y, Zeshan B (2008) Mitigation of ruminant methane production: current strategies, constraints and future options. World J Microbiol Biotechnol 24:2747–2755CrossRefGoogle Scholar
  15. Karl DM, Beversdorf L, Björkman KM, Church MJ, Martinez A, DeLong EF (2008) Aerobic production of methane by the sea. Nat Geosci 1:473–478CrossRefGoogle Scholar
  16. Kelly DP (1996) A global perspective on sources and sinks of biogenic trace gases: an atmospheric system driven by microbiology. In: Murrell JC, Kelly DP (eds) Microbiology of atmospheric trace gases. Sources, sinks and global change processes, NATO ASI series I, vol 39. Springer, Berlin, pp 1–16Google Scholar
  17. Kelly DP, Malin G, Wood AP (1993) Microbial transformations and biogeochemical cycling of one-carbon substrates containing sulphur, nitrogen or halogens. In: Murrell JC, Kelly DP (eds) Microbial growth on C1 compounds. Intercept Ltd, Andover, pp 47–63Google Scholar
  18. Kelly DP et al (1996) Working group 2: global environmental change. In: Murrell JC, Kelly DP (eds) Microbiology of atmospheric trace gases. Sources, sinks and global change processes, NATO ASI series I, vol 39. Springer, Berlin, pp 261–270Google Scholar
  19. Kvenvolden K (1993) Methane hydrates and global climate. Glob Biogeochem Cycles 3:221–229Google Scholar
  20. Kvenvolden KA (1998) A primer on the geological occurrence of gas hydrate. Geol Soc Lond Spec Publ 137:9–30CrossRefGoogle Scholar
  21. Kvenvolden KA, Collett TS, Lorensen TD (1988) Studies on permafrost and gas-hydrates as possible sources of atmospheric methane at high latitudes. In: Oremland RS (ed) Biogeochemistry of global change. Radiatively active trace gases. Chapman & Hall, New York, pp 487–501Google Scholar
  22. Lee JM et al (1995) Observed stratospheric profiles and stratospheric lifetimes of HCFC-141b and HCFC-142b. Geophys Res Lett 22:1369–1372CrossRefGoogle Scholar
  23. Macdonald GJ (1990) Role of methane clathrates in past and future climates. Clim Chang 16:247–281CrossRefGoogle Scholar
  24. Manley SL, Goodwin K, North WJ (1992) Laboratory production of bromoform, methylene bromide and methyl iodide by macroalgae and distribution in near-shore California waters. Limnol Oceanogr 37:1652–1659CrossRefGoogle Scholar
  25. Martin JH et al (1994) Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371:123–129CrossRefGoogle Scholar
  26. Matsumato R (1995) Causes of the δ 13C anomalies of carbonates and a new paradigm “gas hydrate hypothesis”. J Geol Soc Jpn 101:902–924CrossRefGoogle Scholar
  27. McCarty PL, Reinhard M (1993) Biological and chemical transformations of halogenated aliphatic compounds in aquatic and terrestrial environments. In: Oremland RS (ed) Biogeochemistry of global change. Radiatively active trace gases. Chapman & Hall, New York, pp 839–852CrossRefGoogle Scholar
  28. Moss AR, Jouany J-P, Newbold J (2000) Methane production by ruminants: its contribution to global warming. Ann Zootech 49:231–253CrossRefGoogle Scholar
  29. Nouchi I, Mariko S (1993) Mechanism of methane transport by rice plants. In: Oremland RS (ed) Biogeochemistry of global change. Radiatively active trace gases. Chapman & Hall, New York, pp 336–352CrossRefGoogle Scholar
  30. O’Mara F (2004) Greenhouse gas production from dairying: reducing methane production. Adv Dairy Technol 16:295–309Google Scholar
  31. Oremland RS (1993) Aspects of the biogeochemistry of methane in Mono Lake and the Mono Basin of California. In: Oremland RS (ed) Biogeochemistry of global change. Radiatively active trace gases. Chapman & Hall, New York, pp 704–741CrossRefGoogle Scholar
  32. Oremland RS (1996) Microbial degradation of atmospheric halocarbons. In: Murrell JC, Kelly DP (eds) Microbiology of atmospheric trace gases. Sources, sinks and global change processes, NATO ASI series I, vol 39. Springer, Berlin, pp 85–101CrossRefGoogle Scholar
  33. Portnoy A, Vadakkepuliyambatta S, Mienert J, Hubbard A (2016) Ice-sheet-driven methane storage and release in the Arctic. Nat Commun 7:10314CrossRefGoogle Scholar
  34. Qin D (2007) Decline in concentrations of chlorofluorocarbons (CFC-11, CFC-12 and CFC-113) in an urban area of Beijing, China. Atmos Environ 41:8424–8430CrossRefGoogle Scholar
  35. Raynaud D et al (2000) The ice core record of greenhhouse gases: a view in the context of future changes. Quat Sci Rev 19:9–17Google Scholar
  36. Raynaud D (1993) Ice core records as a key to understanding the history of atmospheric trace gases. In: Oremland RS (ed) Biogeochemistry of global change. Radiatively active trace gases. Chapman & Hall, New York, pp 29–45CrossRefGoogle Scholar
  37. Sergienko VI et al (2012) The degradation of submarine permafrost and the destruction of hydrates on the shelf of east arctic seas as a potential cause of the methane catastrophe: some results of integrated studies in 2011. Dokl Earth Sci 446:1132–1137CrossRefGoogle Scholar
  38. Shakhova N, Seemiletov I, Salyuk A, Kosmach D, Bel’cheva N (2007) Methane release on the Arctic East Siberian shelf. Geophys Res Abstr 9:01071Google Scholar
  39. Shakhova N, Seemiletov I, Salyuk A, Kosmach D (2008) Anomalies of methane in the atmosphere over the East Siberian shelf: is there any sign of methane leakage from shallow shelf hydrates? Geophys Res Abstr 10:01526Google Scholar
  40. Shakhova N et al (2010) Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic shelf. Dokl Earth Sci 327:1246–1250Google Scholar
  41. Sidebotham H, Franklin J (1996) Atmospheric fate and impact of hydrochlorofluorocarbons and chlorinated solvents. Pure Appl Chem 68:1757–1769CrossRefGoogle Scholar
  42. Strous M, Jetten MSM (2004) Anaerobic oxidation of methane and ammonium. Annu Rev Microbiol 58:99–117CrossRefGoogle Scholar
  43. Sunda WG, Huntsman SA (1995) Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar Chem 50:189–206CrossRefGoogle Scholar
  44. Tedeschi LO, Fox DG, Tylutki TP (2003) Potential environmental benefits of ionophores in ruminant diets. J Environ Qual 32:1591–1602CrossRefGoogle Scholar
  45. Thauer RK, Shima S (2008) Methane as fuel for anaerobic microorganisms. Ann N Y Acad Sci 1125:158–170CrossRefGoogle Scholar
  46. UNEP (1987) Montreal protocol on substances that deplete the ozone layer. UNEP Service No. 87–6106Google Scholar
  47. UNEP (2003) Handbook for the international treaties for the protection of the ozone layer. UNEP, New YorkGoogle Scholar
  48. Wartiainen I, Hesnes AG, Svenning MM (2003) Methanotroph diversity in high arctic wetlands on the island of Svalbard (Norway). Can J Microbiol 49:602–612CrossRefGoogle Scholar
  49. Wever R (1991) Formation of halogenated gases by natural sources. In: Rogers JE, Whitman WB (eds) Microbial production and consumption of greenhouse gases: methane, nitrogen oxides and halomethanes. American Society for Microbiology, Washington, DC, pp 277–285Google Scholar
  50. Wever R (1993) Sources and sinks of halogenated methanes in nature. In: Murrell JC, Kelly DP (eds) Microbial growth on C1 compounds. Intercept Ltd, Andover, pp 35–45Google Scholar
  51. Yokouchi Y et al (2000) A strong source of methyl chloride to the atmosphere from tropical coastal land. Nature 403:295–298CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Life SciencesUniversity of WarwickCoventryUK
  2. 2.Department of BiochemistryKing’s College LondonLondonUK

Personalised recommendations