Advertisement

Pathways for the Degradation of Fatty Acids in Bacteria

  • Lorena Jimenez-DiazEmail author
  • Antonio Caballero
  • Ana Segura
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

The metabolism of fatty acids is of central importance to wide range of microbes, and the related metabolic pathways have been intensely studied for decades. Fatty acid degradation occurs through the well-characterized β-oxidation cycle and yields acetyl-coenzyme A (CoA), which is further metabolized to obtain energy and precursors for cellular biosynthesis. As demand for sustainable biofuels and bioplastics grows, there is ever-increasing interest in fatty acid flux and related genomic bacterial diversity, which is opening avenues to exciting new biotechnological applications. In this chapter, we describe the steps involved in bacterial fatty acid degradation, with an emphasis on the latest advancements in the determination of enzymatic structures and characterization of novel fatty acid degradation enzymes. Finally, we briefly discuss the relevance of fatty acid degradation to several industrial applications.

Notes

Acknowledgments

This work was funded by Abengoa Research.

We thank Ben Pakuts for editing the manuscript.

References

  1. Binstock JF, Pramanik A, Schulz H (1977) Isolation of a multi-enzyme complex of fatty acid oxidation from Escherichia coli. Proc Natl Acad Sci USA 74:492–495PubMedCrossRefPubMedCentralGoogle Scholar
  2. Black PN (1990) Characterization of FadL-specific fatty acid binding in Escherichia coli. Biochim Biophys Acta (BBA)/Lipids Lipid Metab 1046:97–105CrossRefGoogle Scholar
  3. Black PN, DiRusso CC (1994) Molecular and biochemical analyses of fatty acid transport, metabolism, and gene regulation in Escherichia coli. Biochim Biophys Acta 1210:123–145Google Scholar
  4. Black PN, Zhang Q, Weimar JD, DiRusso CC (1997) Mutational analysis of a fatty acyl-coenzyme A synthetase signature motif identifies seven amino acid residues that modulate fatty acid substrate specificity. J Biol Chem 272:4896–4903PubMedCrossRefPubMedCentralGoogle Scholar
  5. Call TP, Akhtar MK, Baganz F, Grant C (2016) Modulating the import of medium-chain alkanes in E. coli through tuned expression of FadL. J Biol Eng 10:5PubMedPubMedCentralCrossRefGoogle Scholar
  6. Campanaro S, Treu L, Kougias PG, De Francisci D, Valle G, Angelidaki I (2016) Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy. Biotechnol Biofuels 9:26PubMedPubMedCentralCrossRefGoogle Scholar
  7. Campbell JW (2002) The enigmatic Escherichia coli fadE gene is yafH. Society 184:3759–3764Google Scholar
  8. Campbell JW, Morgan-Kiss RM, Cronan JE (2003) A new Escherichia coli metabolic competency: growth on fatty acids by a novel anaerobic β-oxidation pathway. Mol Microbiol 47:793–805CrossRefGoogle Scholar
  9. Clark DP, Cronan JE (2005) Two-Carbon compounds and fatty acids as carbon sources. EcoSal Plus Escherichia Coli Salmonella Cell Mol Biol 1:1–34Google Scholar
  10. Cohen GN (2011) The tricarboxylic acid cycle and the glyoxylate bypass. In: Microbial biochemistry, 2nd edn. Springer, Dordrecht/New York, pp 79–99CrossRefGoogle Scholar
  11. Cronan JE, Laporte D (2006) Tricarboxylic acid cycle and glyoxylate bypass. EcoSal Plus 1:1–26Google Scholar
  12. Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R (2011) Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 476:355–359PubMedCrossRefPubMedCentralGoogle Scholar
  13. DiRusso CC (1990) Primary sequence of the Escherichia coli fadBA operon, encoding the fatty acid-oxidizing multienzyme complex, indicates a high degree of homology to eucaryotic enzymes. J Bacteriol 172:6459–6468PubMedPubMedCentralCrossRefGoogle Scholar
  14. DiRusso CC, Black PN (2004) Bacterial long chain fatty acid transport: gateway to a fatty acid-responsive signaling system. J Biol Chem 279:49563–49566PubMedCrossRefPubMedCentralGoogle Scholar
  15. Dirusso CC, Nunn WD (1985) Cloning and characterization of a gene (FadR) involved in regulation of fatty-acid metabolism in Escherichia coli. J Bacteriol 161:583–588PubMedPubMedCentralGoogle Scholar
  16. Duncombe GR, Frerman FE (1976) Molecular and catalytic properties of the acetoacetyl-coenzyme A thiolase of Escherichia coli. Arch Biochem Biophys 176:159–170PubMedCrossRefPubMedCentralGoogle Scholar
  17. Feigenbaum J, Schulz H (1975) Thiolases of Escherichia coli: purification and chain Length. J Bacteriol 1122:407–411Google Scholar
  18. Fiedler S, Steinbuchel A, Rehm BH (2002) The role of the fatty acid β-oxidation multienzyme complex from Pseudomonas oleovorans in polyhydroxyalkanoate biosynthesis: molecular characterization of the fadBA operon from P. oleovorans and of the enoyl-CoA hydratase genes phaJ from P. oleovorans and Pseudomonas putida. Arch Microbiol 178:149–160PubMedCrossRefPubMedCentralGoogle Scholar
  19. Fong WF, Heller JS, Canellakis ES (1976) The appearance of an ornithine decarboxylase inhibitory protein upon the addition of putrescine to cell cultures. Biochim Biophys Acta 428:456–465PubMedCrossRefPubMedCentralGoogle Scholar
  20. Ford TJ, Way JC (2015) Enhancement of E. coli acyl-CoA synthetase FadD activity on medium chain fatty acids. PeerJ 3:e1040PubMedPubMedCentralCrossRefGoogle Scholar
  21. Grant C, Deszcz D, Wei Y-C, Martínez-Torres RJ, Morris P, Follieard T, Sreenivasan R, Ward J, Dalby P, Woodley JM, Baganz F (2014) Identification and use of an alkane. Sci Rep 4:5844PubMedPubMedCentralCrossRefGoogle Scholar
  22. Groot PH, Scholte HR, Hülsmann WC (1976) Fatty acid activation: specificity, localization, and function. Adv Lipid Res 14:75PubMedCrossRefPubMedCentralGoogle Scholar
  23. Guzik MW, Narancic T, Ilic-Tomic T, Vojnovic S, Kenny ST, Casey WT, Duane GF, Casey E, Woods T, Babu RP, Nikodinovic-Runic J, O'Connor KE (2014) Identification and characterization of an acyl-CoA dehydrogenase from Pseudomonas putida KT2440 that shows preference towards medium to long chain length fatty acids. Microbiology 160:1760–1771PubMedCrossRefPubMedCentralGoogle Scholar
  24. Hamilton JA (2003) Fast flip-flop of cholesterol and fatty acids in membranes: implications for membrane transport proteins. Curr Opin Lipidol 14:263–271PubMedCrossRefPubMedCentralGoogle Scholar
  25. Hanaki K, Matsuo T, Nagase M (1981) Mechanism of inhibition caused by long chain fatty acids in anaerobic digestion. Biotech Bioeng 12:1591–1610CrossRefGoogle Scholar
  26. Heath RJ, Jackowski S, Rock CO (2002) Chapter 3. Fatty acid and phospholipid metabolism in prokaryotes. In: Vance DE, Vance JE (eds) Biochemistry of lipids, lipoproteins and membranes, 4th edn. Elsevier Science, Amsterdam/Boston, pp 55–92CrossRefGoogle Scholar
  27. Hisanaga Y, Ago H, Nakagawa N, Hamada K, Ida K, Yamamoto M, Hori T, Arii Y, Sugahara M, Kuramitsu S, Yokoyama S, Miyano M (2004) Structural basis of the substrate-specific two-step catalysis of long chain fatty acyl-CoA synthetase dimer. J Biol Chem 279:31717–31726PubMedCrossRefPubMedCentralGoogle Scholar
  28. Hu Y, Gai Y, Yin L, Wang X, Feng C, Feng L, Li D, Jiang XN, Wang DC (2010) Crystal structures of a Populus tomentosa 4-coumarate:CoA ligase shed light on its enzymatic mechanisms. Plant Cell 22:3093–3104PubMedPubMedCentralCrossRefGoogle Scholar
  29. Hubbard P, Liang X, Schulz H, Kim J-JP (2003) The crystal structure and reaction mechanism of Escherichia coli 2,4-dienoyl-CoA reductase. J Biol Chem 278:37553–37560PubMedPubMedCentralCrossRefGoogle Scholar
  30. Hume AR, Nikodinovic-Runic J, O’Connor KE (2009) FadD from Pseudomonas putida CA-3 is a true long-chain fatty acyl coenzyme A synthetase that activates phenylalkanoic and alkanoic acids. J Bacteriol 191:7554–7565PubMedPubMedCentralCrossRefGoogle Scholar
  31. Insomphun C, Mifune J, Orita I, Numata K, Nakamura S, Fukui T (2014) Modification of β-oxidation pathway in Ralstonia eutropha for production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from soybean oil. J Biosci Bioeng 117:184–190PubMedCrossRefPubMedCentralGoogle Scholar
  32. Iram SH, Cronan JE (2006) The β-oxidation systems of Escherichia coli and Salmonella enterica are not functionally equivalent. J Bacteriol 188:599–608PubMedPubMedCentralCrossRefGoogle Scholar
  33. Ishikawa M, Mikami Y, Usukura J, Iwasaki H, Shinagawa H, Morikawa K (1997) Reconstitution, morphology and crystallization of a fatty acid beta-oxidation multienzyme complex from Pseudomonas fragi. Biochem J 328:815–820PubMedPubMedCentralCrossRefGoogle Scholar
  34. Ishikawa M, Tsuchiya D, Oyama T, Tsunaka Y, Morikawa K (2004) Structural basis for channelling mechanism of a fatty acid beta-oxidation multienzyme complex. EMBO J 23:2745–2754PubMedPubMedCentralCrossRefGoogle Scholar
  35. Iuchi S, Lin EC (1988) arcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Proc Natl Acad Sci USA 85:1888–1892CrossRefGoogle Scholar
  36. IUPAC (1997) Compendium of chemical terminology, 2nd ed. (the “Gold Book”). Compiled by AD. Mc Naught and A. Wilkinson. Blackwell Scientific Publications, OxfordGoogle Scholar
  37. Jenkins LS, Nunn WD (1987a) Genetic and molecular characterization of the genes involved in short-chain fatty acid degradation in Escherichia coli: the ato system. J Bacteriol 169:42–52PubMedPubMedCentralCrossRefGoogle Scholar
  38. Jenkins LS, Nunn WD (1987b) Regulation of the ato operon by the atoC gene in Escherichia coli. J Bacteriol 169:2096–2102PubMedPubMedCentralCrossRefGoogle Scholar
  39. Jiménez-Díaz L, Caballero A, Pérez-Hernández N, Segura A (2016) Microbial alkane production for jet fuel industry: motivation, state of the art and perspectives. Microb Biotechnol.  https://doi.org/10.1111/1751-7915.12423CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kameda K, Nunn WD (1981) Purification and characterization of acyl coenzyme A synthetase from Escherichia coli. J Biol Chem 256:5702–5707PubMedPubMedCentralGoogle Scholar
  41. Klein K, Steinberg R, Fiethen B, Overath P (1971) Fatty acid degradation in Escherichia coli. Eur J Biochem 19:442–450PubMedCrossRefPubMedCentralGoogle Scholar
  42. Kornberg HL (1966) The role and control of the glyoxylate cycle in Escherichia coli. Biochem J 99:1–11PubMedPubMedCentralCrossRefGoogle Scholar
  43. Lalman JA, Bagley DM (1995) Anaerobic degradation and inhibitory effects of linoleic acid. Water Res 34:4220–4228CrossRefGoogle Scholar
  44. Lepore BW, Indic M, Pham H, Hearn EM, Patel DR, van den Berg B (2011) Ligand-gated diffusion across the bacterial outer membrane. Proc Natl Acad Sci USA 108:10121–10126PubMedCrossRefPubMedCentralGoogle Scholar
  45. Lioliou EE, Mimitou EP, Grigoroudis AI, Panagiotidis CH, Panagiotidis CA, Kyriakidis DA (2005) Phosphorylation activity of the response regulator of the two-component signal transductionsystem AtoSC in E. coli. Biochim Biophys Acta 1725:257–268PubMedCrossRefPubMedCentralGoogle Scholar
  46. Lolkema JS (2006) Domain structure and pore loops in the 2-hydroxycarboxylate transporterfamily. J Mol Microbiol Biotechno 11:318–325CrossRefGoogle Scholar
  47. Maloy SR, Ginsburgh CL, Simons RW, Nunn WD (1981) Transport of long and medium chain fatty acids by Escherichia coli K12. J Biol Chem 256:3735–3742PubMedPubMedCentralGoogle Scholar
  48. Mangroo D, Gerber GE (1993) Fatty acid uptake in Escherichia coli: regulation by recruitment of fatty acyl-CoA synthetase to the plasma membrane. Biochem Cell Biol 71:51–56PubMedCrossRefPubMedCentralGoogle Scholar
  49. Martínez E, Estupiñán M, Javier Pastor FI, Busquets M, Díaz P, Manresa A (2013) Functional characterization of ExFadLO, an outer membrane protein required for exporting oxygenated long-chain fatty acids in Pseudomonas aeruginosa. Biochimie 95:290–298PubMedCrossRefPubMedCentralGoogle Scholar
  50. McMahon B, Mayhew SG (2007) Identification and properties of an inducible phenylacyl-CoA dehydrogenase in Pseudomonas putida KT2440. FEMS Microbiol Lett 273:50–57PubMedCrossRefPubMedCentralGoogle Scholar
  51. McMahon B, Gallagher ME, Mayhew SG (2005) The protein coded by the PP2216 gene of Pseudomonas putida KT2440 is an acyl-CoA dehydrogenase that oxidises only short-chain aliphatic substrates. FEMS Microbiol Lett 250:121–127PubMedCrossRefPubMedCentralGoogle Scholar
  52. Molina I, Pellicer MT, Badia J, Aguilar J, Baldoma L (1994) Molecular characterization of Escherichia coli malate synthase G. Differentiation with the malate synthase A isoenzyme. Eur J Biochem 224:541–548PubMedCrossRefPubMedCentralGoogle Scholar
  53. Morgan-Kiss RM, Cronan JE (2004) The Escherichia coli fadK (ydiD) gene encodes an anerobically regulated short chain acyl-CoA synthetase. J Biol Chem 279:37324–37333PubMedCrossRefPubMedCentralGoogle Scholar
  54. Możejko-Ciesielska J, Kiewisz R (2016) Bacterial polyhydroxyalkanoates: still fabulous? Microbiol Res 2192:271–282CrossRefGoogle Scholar
  55. Nunn WD, Simons RW (1978) Transport of long-chain fatty acids by Escherichia coli: mapping and characterization of mutants in the fadL gene. Proc Natl Acad Sci USA 75:3377–3381CrossRefGoogle Scholar
  56. Nunn WD (1996) Two-carbon compounds and fatty acids as carbon sources. In: Neidhardt FC (ed) Escherichia coli and Salmonella cellular and molecular biology. ASM Press, Washington, DC, pp 285–302Google Scholar
  57. Nunn WD, Simon RW, Egan PA, Maloy SR (1979) Kinetics of the utilization of medium and long chain fatty acids by mutant of Escherichia coli defective in the fadL gene. J Biol Chem 254:9130–9134PubMedPubMedCentralGoogle Scholar
  58. Olivera ER, Carnicero D, García B, Miñambres B, Moreno MA, Cañedo L, Dirusso CC, Naharro G, Luengo JM (2001) Two different pathways are involved in the b-oxidation of n-alkanoic and n-phenylalkanoic acids in Pseudomonas putida U: genetic studies and biotechnological applications. Mol Microbiol 39:863–874PubMedCrossRefPubMedCentralGoogle Scholar
  59. Park SJ, Lee SY (2003) Identification and characterization of a new enoyl coenzyme A hydratase involved in biosynthesis of medium-chain length polyhydroxyalkanoates in recombinant Escherichia coli. J Bacteriol 185:5391–5397PubMedPubMedCentralCrossRefGoogle Scholar
  60. Park SJ, Yup Lee S (2004) New FadB homologous enzymes and their use in enhanced biosynthesis of medium-chain-length polyhydroxyalkanoates in FadB mutant Escherichia coli. Biotechnol Bioeng 86:681–686PubMedCrossRefPubMedCentralGoogle Scholar
  61. Pauli G, Overath P (1972) ato Operon: a highly inducible system for acetoacetate and butyrate degradation in Escherichia coli. Eur J Biochem 29:553–562PubMedCrossRefPubMedCentralGoogle Scholar
  62. Pech-Canul A, Nogales J, Miranda-Molina A, Álvarez L, Geiger O, Soto MJ, López-Lara IM (2011) FadD is required for utilization of endogenous fatty acids released from membrane lipids. J Bacteriol 193:6295–6304PubMedPubMedCentralCrossRefGoogle Scholar
  63. Pellicer MT, Fernandez C, Badía J, Aguilar J, Lin EC, Baldom L (1999) Cross-induction of glc and ace operons of Escherichia coli attributable to pathway intersection. Characterization of the glc promoter. J Biol Chem 274:1745–1752PubMedCrossRefPubMedCentralGoogle Scholar
  64. Pérez AJ, Bode HB (2015) “Click Chemistry” for the simple determination of fatty-acid uptake and degradation: Revising the role of fatty-acid transporters. Chembiochem 16:1588–1591PubMedCrossRefPubMedCentralGoogle Scholar
  65. Pramanik A, Pawar S, Antonian E, Schulz H (1979) Five different enzymatic activities are associated with the multienzyme complex of fatty acid oxidation from Escherichia coli. J Bacteriol 137:469–473PubMedPubMedCentralGoogle Scholar
  66. Rock CO, Jackowski S (1985) Pathways for the incorporation of exogenous fatty acids into phosphatidylethanolamine in Escherichia coli. J Biol Chem 260:12720–12724PubMedPubMedCentralGoogle Scholar
  67. Rodríguez-Moyá M, Gonzalez R (2015) Proteomic analysis of the response of Escherichia coli to short-chain fatty acids. J Proteome 122:86–99CrossRefGoogle Scholar
  68. Ruprecht A, Maddox J, Stirling AJ, Visaggio N, Seah SY (2015) Characterization of novel acyl coenzyme A dehydrogenases involved in bacterial steroid degradation. J Bacteriol 197:1360–1367PubMedPubMedCentralCrossRefGoogle Scholar
  69. Ruth K, de Roo G, Egli T, Ren Q (2008) Identification of two acyl-CoA synthetases from Pseudomonas putida GPo1: one is located at the surface of polyhydroxyalkanoates granules. Biomacromolecules 9:1652–1659PubMedCrossRefPubMedCentralGoogle Scholar
  70. Samuel D, Estroumza J, Ailhaud G (1970) Partial purification and properties of Acyl-CoA synthetase of Escherichia coli. Eur J Biochem 12:576–582PubMedCrossRefPubMedCentralGoogle Scholar
  71. Sato S, Imamura S, Ozeki Y, Kawaguchi A (1992) Induction of enzymes involved in fatty acid beta-oxidation in Pseudomonas fragi B-0771 cells grown in media supplemented with fatty acid. J Biochem 111:16–19PubMedCrossRefPubMedCentralGoogle Scholar
  72. Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280PubMedPubMedCentralGoogle Scholar
  73. Schulz H (1991) Beta oxidation of fatty acids. Biochim Biophys Acta 1081:109–120PubMedCrossRefPubMedCentralGoogle Scholar
  74. Schulz H, Kunau WH (1987) Beta-oxidation of unsaturated fatty acids: a revised pathway. Trends Biochem Sci 12:403–406CrossRefGoogle Scholar
  75. Shen YQ, Lang BF, Burger G (2009) Diversity and dispersal of a ubiquitous protein family: acyl-CoA dehydrogenases. Nucleic Acids Res 37:5619–5631PubMedPubMedCentralCrossRefGoogle Scholar
  76. Snell KD, Feng F, Zhong L, Martin D, Madison LL (2002) YfcX enables medium-chain-length poly (3-hydroxyalkanoate ) formation from fatty acids in recombinant Escherichia coli fadB strains. J Bacteriol 184:5696–5705PubMedPubMedCentralCrossRefGoogle Scholar
  77. Sousa DZ, Pereira MA, Smidt H, Stams AJ, Alves MM (2007) Molecular assessment of complex microbial communities degrading long chain fatty acids in methanogenic bioreactors. FEMS Microbiol Ecol 60:252–265PubMedCrossRefPubMedCentralGoogle Scholar
  78. Swigonová Z, Mohsen AW, Vockley J (2009) Acyl-CoA dehydrogenases: dynamic history of protein family evolution. J Mol Evol 69:176–193PubMedPubMedCentralCrossRefGoogle Scholar
  79. Treu L, Campanaro S, Kougias PG, Zhu X, Angelidaki I (2016) Untangling the effect of fatty acid addition at species level revealed different transcriptional responses of the biogas microbial community members. Environ Sci Technol 50:6079–6090PubMedCrossRefPubMedCentralGoogle Scholar
  80. van den Berg B, Black PN, Clemons WM Jr, Rapoport TA (2004) Crystal structure of the long-chain fatty acid transporter FadL. Science 304:1506–1509PubMedCrossRefPubMedCentralGoogle Scholar
  81. Vanderwinkel E, De Vlieghere M, De Vlieghere M (1968) Physiology and genetics of isocitritase and the malate synthases of Escherichia coli. Eur J Biochem 5:81–90PubMedCrossRefPubMedCentralGoogle Scholar
  82. Wang Q, Nomura CT (2010) Monitoring differences in gene expression levels and polyhydroxyalkanoate (PHA) production in Pseudomonas putida KT2440 grown on different carbon sources. J Biosci Bioeng 110:653–659PubMedCrossRefPubMedCentralGoogle Scholar
  83. Weimar JD, DiRusso CC, Delio R, Black PN (2002) Functional role of fatty acyl-coenzyme A synthetase in the transmembrane movement and activation of exogenous long-chain fatty acids: amino acid residues within the ATP/AMP signature motif of Escherichia coli fadD are required for enzyme activity and fatt. J Biol Chem 277:29369–29376CrossRefGoogle Scholar
  84. Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA, Brinkman FS (2016) Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res 44:646–653CrossRefGoogle Scholar
  85. Wipperman MF, Yang M, Thomas ST, Sampson NS (2013) Shrinking the FadE proteome of Mycobacterium tuberculosis: insights into cholesterol metabolism through identification of an α2β2 heterotetrameric acyl coenzyme A dehydrogenase family. J Bacteriol 195:4331–4341PubMedPubMedCentralCrossRefGoogle Scholar
  86. Yang SY, Li JM, He XY, Cosloy SD, Schulz H (1988) Evidence that the fadB gene of the fadAB operon of Escherichia coli encodes 3-hydroxyacyl-coenzyme A (CoA) epimerase, delta 3-cis-delta 2-trans-enoyl-CoA isomerase, and enoyl-CoA hydratase in addition to 3-hydroxyacyl-CoA dehydrogenase. J Bacteriol 170:2543–2548PubMedPubMedCentralCrossRefGoogle Scholar
  87. You SY, Cosloy S, Schulz H (1989) Evidence for the essential function of 2, 4-dienoyl-coenzyme A reductase in the Beta-oxidation of unsaturated fatty acids in vivo. J Biol Chem 264:16489–16495PubMedPubMedCentralGoogle Scholar
  88. Zarzycki-Siek J, Norris MH, Kang Y, Sun Z, Bluhm AP, McMillan IA, Hoang TT (2013) Elucidating the Pseudomonas aeruginosa fatty acid degradation pathway: identification of additional fatty acyl-CoA synthetase homologues. PLoS One 8:e64554PubMedPubMedCentralCrossRefGoogle Scholar
  89. Zhang H, Wang P, Qi Q (2006) Molecular effect of FadD on the regulation and metabolism of fatty acid in Escherichia coli. FEMS Microbiol Lett 259:249–253PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lorena Jimenez-Diaz
    • 1
    Email author
  • Antonio Caballero
    • 1
    • 2
  • Ana Segura
    • 1
    • 3
  1. 1.Abengoa ResearchSevillaSpain
  2. 2.BacmineTres CantosSpain
  3. 3.Department of Environmental Protection, Consejo Superior de Investigaciones CientíficasEstación Experimental del ZaidínGranadaSpain

Personalised recommendations