Advertisement

Membrane Lipid Degradation and Lipid Cycles in Microbes

  • Diana X. Sahonero-Canavesi
  • Isabel M. López-Lara
  • Otto GeigerEmail author
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

All living cells are delimited from the exterior world by a membrane, and membrane-forming lipids are the structural determinants for membrane assembly and maintenance. Although biosynthesis of membrane-forming lipids is well understood in many organisms, turnover, degradation, and remodeling of these lipids are less studied. An initial degradation of glycerol-containing membrane lipids may occur by (phospho)lipases or transferases which remove distinct groups from the membrane lipid converting it into a lysolipid or diacylglycerol. These degradation intermediates can either be totally degraded into low-molecular-weight metabolites or missing groups can be reintroduced onto the intermediates to convert them into fully functional membrane lipids again, thereby completing a lipid cycle. Classic examples in Escherichia coli are the lyso-phosphatidylethanolamine cycle, the diacylglycerol cycle, or cycles involving the isoprenoid undecaprenol. It is evident that many more lipid cycles exist in other proteobacteria and in gram-positive bacteria and that these cycles play major roles in decorating biomolecules located outside the cytoplasmic compartment.

Notes

Acknowledgement

Research in our lab was supported by grants from Consejo Nacional de Ciencia y Tecnología-México (CONACyT-Mexico) (178359 and 253549 in Investigación Científica Básica as well as 118 in Investigación en Fronteras de la Ciencia) and from Dirección General de Asuntos del Personal Académico-Universidad Nacional Autónoma de México (DGAPA-UNAM; PAPIIT IN202616, IN203612). We thank Lourdes Martínez-Aguilar for skillful technical assistance.

References

  1. Arendt W, Groenewold MK, Hebecker S, Dickschat JS, Moser J (2013) Identification and characterization of a periplasmic aminoacyl-phosphatidylglycerol hydrolase responsible for Pseudomonas aeruginosa lipid homeostasis. J Biol Chem 288:24717–24730CrossRefGoogle Scholar
  2. Beld J, Finzel K, Burkart MD (2014) Versatility of acyl-acyl carrier protein synthetases. Chem Biol 21:1293–1299CrossRefGoogle Scholar
  3. Bohin JP (2000) Osmoregulated periplasmic glucans in Proteobacteria. FEMS Microbiol Lett 186:11–19CrossRefGoogle Scholar
  4. Bontemps-Gallo S, Lacroix JM (2015) New insights into the biological role of the osmoregulated periplasmic glucans in pathogenic and symbiotic bacteria. Environ Microbiol Rep 7:690–697CrossRefGoogle Scholar
  5. Bontemps-Gallo S, Cogez V, Robbe-Masselot C, Quintard K, Dondeyne J, Madec E, Lacroix JM (2013) Biosynthesis of osmoregulated periplasmic glucans in Escherichia coli: the phosphoethanolamine transferase is encoded by opgE. Biomed Res Int 2013:371429. http://www.hindawi.com/journals/bmri/2013/371429/CrossRefGoogle Scholar
  6. Carini P, Van Mooy BA, Thrash JC, White A, Zhao Y, Campbell CO, Fredricks HF, Giovannoni SJ (2015) SAR11 lipid renovation in response to phosphate starvation. Proc Natl Acad Sci USA 112:7767–7772CrossRefGoogle Scholar
  7. Dalebroux ZD, Matamouros S, Whittington D, Bishop RE, Miller SI (2014) PhoPQ regulates acidic glycerophospholipid content of the Salmonella typhimurium outer membrane. Proc Natl Acad Sci USA 111:1963–1968CrossRefGoogle Scholar
  8. Dalebroux ZD, Edrozo MB, Pfuetzner RA, Ressl S, Kulasekara BR, Blanc MP, Miller SI (2015) Delivery of cardiolipins to the Salmonella outer membrane is necessary for survival within host tissues and virulence. Cell Host Microbe 17:441–451CrossRefGoogle Scholar
  9. van der Es D, Hohendorf WFJ, Overkleeft HS, van der Marel GA, JDC C (2017) Teichoic acids: synthesis and applications. Chem Soc Rev 46:1464–1482.  https://doi.org/10.1039/c6cs00270fCrossRefPubMedGoogle Scholar
  10. Flores-Díaz M, Monturiol-Gross L, Naylor C, Alape-Girón A, Flieger A (2016) Bacterial sphingomyelinases and phospholipases as virulence factors. Microbiol Mol Biol Rev 80:597–628CrossRefGoogle Scholar
  11. Geiger O, Röhrs V, Weissenmayer B, Finan TM, Thomas-Oates JE (1999) The regulator gene phoB mediates phosphate stress-controlled synthesis of the membrane lipid diacylglyceryl-N,N,N-trimethylhomoserine in Rhizobium (Sinorhizobium) meliloti. Mol Microbiol 32:63–73CrossRefGoogle Scholar
  12. Geiger O, Sohlenkamp C, López-Lara IM (2018) Formation of Bacterial Glycerol-Based Membrane Lipids: Pathways, Enzymes, and Reactions. In: Geiger O (ed) Biogenesis of Fatty Acids, Lipids and Membranes. Handbook of Hydrocarbon and Lipid Microbiology. Springer, ChamGoogle Scholar
  13. van Golde LMG, Schulman H, Kennedy EP (1973) Metabolism of membrane phospholipids and its relation to a novel class of oligosaccharides in Escherichia coli. Proc Natl Acad Sci USA 70:1368–1372CrossRefGoogle Scholar
  14. Gupta SD, Dowhan W, Wu HC (1991) Phosphatidylethanolamine is not essential for the N-acylation of apolipoprotein in Escherichia coli. J Biol Chem 266:9983–9986PubMedGoogle Scholar
  15. Harvat EM, Zhang YM, Tran CV, Zhang Z, Frank MW, Rock RO, Saier MH Jr (2005) Lysophospholipid flipping across the Escherichia coli inner membrane catalyzed by a transporter (LplT) belonging to the major facilitator superfamily. J Biol Chem 280:12028–12034CrossRefGoogle Scholar
  16. Henderson JC, Zimmerman SM, Crofts AA, Boll JM, Kuhns LG, Herrera CM, Trent MS (2016) The power of asymmetry: architecture and assembly of the Gram-negative outer membrane lipid bilayer. Annu Rev Microbiol 70:255–278CrossRefGoogle Scholar
  17. Hsu L, Jackowski S, Rock CO (1989) Uptake and acylation of 2-acyl-lysophospholipids by Escherichia coli. J Bacteriol 171:1203–1205CrossRefGoogle Scholar
  18. Jerga A, Lu YJ, Schujman GE, de Mendoza D, Rock CO (2007) Identification of a soluble diacylglycerol kinase required for lipoteichoic acid production in Bacillus subtilis. J Biol Chem 282:21738–21745CrossRefGoogle Scholar
  19. Konovalova A, Silhavy TJ (2015) Outer membrane lipoprotein biogenesis: Lol is not the end. Phil Trans R Soc B 370:20150030CrossRefGoogle Scholar
  20. Lands WE (1958) Metabolism of glycerolipides; a comparison of lecithin and triglyceride synthesis. J Biol Chem 231:883–888PubMedGoogle Scholar
  21. Lin Y, Bogdanov M, Tong S, Guan Z, Zheng L (2016) Substrate selectivity of lysophospholipid transporter LplT involved in membrane phospholipid remodeling in Escherichia coli. J Biol Chem 291:2136–2149CrossRefGoogle Scholar
  22. López-Lara IM, Geiger O (2016) Bacterial lipid diversity. Biochim Biophys Acta.  https://doi.org/10.1016/j.bbalip.2016.10.007CrossRefGoogle Scholar
  23. López-Lara IM, Gao JL, Soto MJ, Solares-Pérez A, Weissenmayer B, Sohlenkamp C, Verroios GP, Thomas-Oates J, Geiger O (2005) Phosphorus-free membrane lipids of Sinorhizobium meliloti are not required for the symbiosis with alfalfa but contribute to increased cell yields under phosphorus-limiting conditions of growth. Mol Plant-Microbe Interact 18:973–982CrossRefGoogle Scholar
  24. Manat G, Roure S, Auger R, Bouhss A, Barreteau H, Mengin-Lecreulx D, Touze T (2014) Deciphering the metabolism of undecaprenyl-phosphate: the bacterial cell-wall unit carrier at the membrane frontier. Microb Drug Resist 20:199–214CrossRefGoogle Scholar
  25. Meyer BH, Albers SJ (2013) Hot and sweet: protein glycosylation in Crenarchaeota. Biochem Soc Trans 41:384–392CrossRefGoogle Scholar
  26. Mileykovskaya E, Ryan AC, Mo X, Lin CC, Khalaf KI, Dowhan W, Garrett TA (2009) Phosphatidic acid and N-acylphosphatidylethanolamine form membrane domains in Escherichia coli mutant lacking cardiolipin and phosphatidylglycerol. J Biol Chem 284:2990–3000CrossRefGoogle Scholar
  27. Miller KJ, Gore RS, Benesi AJ (1988) Phosphoglycerol substituents present on the cyclic β-1,2-glucans of Rhizobium meliloti 1021 are derived from phosphatidylglycerol. J Bacteriol 170:4569–4575CrossRefGoogle Scholar
  28. Nelson DL, Cox MM (2017) Lehninger – principles of biochemistry, 7th edn. WH Freeman and Company, New YorkGoogle Scholar
  29. Nyström T (2004) Stationary-phase physiology. Annu Rev Microbiol 58:161–181CrossRefGoogle Scholar
  30. Pailler J, Aucher W, Oires M, Buddelmeijer N (2012) Phosphatidylglycerol::prolipoprotein diacylglyceryl transferase(Lgt) of Escherichia coli has seven transmembrane segments, and its essential residues are embedded in the membrane. J Bacteriol 194:2142–2151CrossRefGoogle Scholar
  31. Pech-Canul A, Nogales J, Miranda-Molina A, Álvarez L, Geiger O, Soto MJ, López-Lara IM (2011) FadD is required for utilization of endogenous fatty acids released from membrane lipids. J Bacteriol 193:6295–6304CrossRefGoogle Scholar
  32. Percy MG, Gründling A (2014) Lipoteichoic acid synthesis and function in Gram-positive bacteria. Annu Rev Microbiol 68:81–100CrossRefGoogle Scholar
  33. Qiu Y, Hassaninasab A, Han GS, Carman GM (2016) Phosphorylation of Dgk1 diacyglycerol kinase by casein kinase II regulates phosphatidic acid production in Saccharomyces cerevisiae. J Biol Chem 291:26455–26467CrossRefGoogle Scholar
  34. Raetz CR, Reynolds CM, Trent MS, Bishop RE (2007) Lipid A modification systems in Gram-negative bacteria. Annu Rev Biochem 76:295–329CrossRefGoogle Scholar
  35. Renne MF, Bao X, de Smet CH, de Kroon AIPM (2015) Lipid acyl chain remodeling in yeast. Lipid Insights 8(S1):33–40PubMedGoogle Scholar
  36. Reynolds CM, Kalb SR, Cotter RJ, Raetz CRH (2005) A phosphoethanolamine transferase specific for the outer 3-deoxy-D-manno-octulosonic acid residue of Escherichia coli lipopolysaccharide. Identification of the eptB gene and Ca++ hypersensitivity of an eptB deletion mutant. J Biol Chem 280:21202–21211CrossRefGoogle Scholar
  37. Rock CO (2008) Fatty acids and phospholipids metabolism in prokaryotes. In: Vance DE, Vance JE (eds) Biochemistry of lipids, lipoproteins and membranes, 5th edn. Elsevier, Amsterdam, pp 59–96CrossRefGoogle Scholar
  38. Rolin DB, Pfeffer PE, Osman SF, Szwergold BS, Kappler F, Benesi AJ (1992) Structural studies of a phosphocholine substituted beta-(1,3);(1,6) macrocyclic glucan from Bradyrhizobium japonicum USDA 110. Biochim Biophys Acta 1116:215–225CrossRefGoogle Scholar
  39. Sahonero-Canavesi DX, Sohlenkamp C, Sandoval-Calderón M, Lamsa A, Pogliano K, López-Lara IM, Geiger O (2015) Fatty acid-releasing activities in Sinorhizobium meliloti include unusual diacylglycerol lipase. Environ Microbiol 17:3391–3406CrossRefGoogle Scholar
  40. Sahonero-Canavesi DX, Zavaleta-Pator M, Martínez-Aguilar L, López-Lara IM, Geiger O (2016) Defining substrate specificities for lipase and phospholipase candidates. J Vis Exp 117:e54613.  https://doi.org/10.3791/54613CrossRefGoogle Scholar
  41. Sebastián M, Smith AF, González JM, Fredricks HF, Van Mooy B, Koblížek M, Brandsma J, Koster G, Mestre M, Mostajir B, Pitta P, Postle AD, Sánchez P, Gasol JM, Scanlan DJ, Chen Y (2016) Lipid remodelling is a widespread strategy in marine heterotrophic bacteria upon phosphorus deficiency. ISME J 10:968–978CrossRefGoogle Scholar
  42. Shindou H, Shimizu T (2009) Acyl-CoA:lysophospholipid acyltransferases. J Biol Chem 284:1–5CrossRefGoogle Scholar
  43. Slavetinsky C, Kuhn S, Peschel A (2016) Bacterial aminoacyl phospholipids – biosynthesis and role in basic cellular processes and pathogenicity. Biochim Biophys Acta.  https://doi.org/10.1016/j.bbalip.2016.11.013CrossRefGoogle Scholar
  44. Sohlenkamp C, Geiger O (2016) Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 40:133–159CrossRefGoogle Scholar
  45. Sutterlin HA, Shi H, May KL, Miguel A, Khare S, Huang KC, Silhavy TJ (2016) Disruption of lipid homeostasis in the Gram-negative cell envelope activates a novel cell death pathway. Proc Natl Acad Sci USA 113:E1565–E1574CrossRefGoogle Scholar
  46. Touze T, Tran AX, Hankins JV, Mengin-Lecreulx D, Trent MS (2008) Periplasmic phosphorylation of lipid A is linked to the synthesis of undecaprenyl phosphate. Mol Microbiol 67:264–277CrossRefGoogle Scholar
  47. Vinuesa P, Neumann-Silkow F, Pacios-Bras C, Spaink HP, Martínez-Romero E, Werner D (2003) Genetic analysis of a pH-regulated operon from Rhizobium tropici CIAT899 involved in acid tolerance and nodulation competitiveness. Mol Plant-Microbe Interact 16:159–168CrossRefGoogle Scholar
  48. Wang P, Ingram-Smith C, Hadley JA, Miller KJ (1999) Cloning, sequencing, and characterization of the cgmB gene of Sinorhizobium meliloti involved in cyclic β-glucan biosynthesis. J Bacteriol 181:4576–4583PubMedPubMedCentralGoogle Scholar
  49. Weissborn AC, Rumley MK, Kennedy EP (1991) Biosynthesis of membrane-derived oligosaccharides. Membrane-bound glucosyltransferase system from Escherichia coli requires polyprenyl phosphate. J Biol Chem 266:8062–8067PubMedGoogle Scholar
  50. Zavaleta-Pastor M, Sohlenkamp C, Gao JL, Guan Z, Zaheer R, Finan TM, Raetz CRH, López-Lara IM, Geiger O (2010) Sinorhizobium meliloti phospholipase C required for lipid remodeling during phosphorus limitation. Proc Natl Acad Sci USA 107:302–307CrossRefGoogle Scholar
  51. Zhang XS, Cheng HP (2006) Identification of Sinorhizobium meliloti early symbiotic genes by use of a positive functional screen. Appl Environ Microbiol 72:2738–2748CrossRefGoogle Scholar
  52. Zhang YM, Rock CO (2016) Fatty acid and phospholipid biosynthesis in prokaryotes. In: Ridgway N, McLeod R (eds) Biochemistry of lipids, lipoproteins and membranes, 6th edn. Elsevier BV, Amsterdam, pp 73–112CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Diana X. Sahonero-Canavesi
    • 1
  • Isabel M. López-Lara
    • 1
  • Otto Geiger
    • 1
    Email author
  1. 1.Centro de Ciencias GenómicasUniversidad Nacional Autónoma de MéxicoCuernavacaMexico

Personalised recommendations