Advertisement

Degradation of Aromatic Compounds in Pseudomonas: A Systems Biology View

  • J. Nogales
  • José L. García
  • E. DíazEmail author
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

The increased use of the “omic” techniques, e.g., genomics, proteomics, metabolomics, and fluxomics, as well as the systems biology approaches for addressing biological complexity from a holistic perspective, has contributed significantly to accelerate and complete our understanding on different aspects of the physiology, ecology, biochemistry, and regulatory mechanisms underlying the catabolism of aromatic compounds in bacteria of the Pseudomonas genus. Toxic aromatic compounds simultaneously serve as potential nutrients to be metabolized by bacteria but also as cellular stressors. When bacteria are exposed to these compounds they exhibit a multifactorial response that comprises three major intimately connected programs: (i) metabolic programs that involve not only the compound-specific pathways but also their integration within the global metabolism of the host cell; (ii) stress-response programs, e.g., changes in lipid metabolism, efflux pumps, or molecular chaperones, for adaptation to sub-optimal growth conditions; and (iii) a social program, including cell motility and chemotaxis, reorganization of the cell envelope, biofilm formation, and cell-to-cell interactions. As individual cells rarely metabolize a wide range of substrates, metabolic specialization within the bacterial population becomes a relevant trait in the assembly of efficient microbial biodegrader communities. Genome-scale metabolic models of several Pseudomonas strains have been performed. These models, when combined with the emergent synthetic biology approaches, can be used to explore the potential of Pseudomonas as cell factories in different biotechnological applications. Therefore, Pseudomonas becomes a paradigmatic bacterial genus both for increasing basic knowledge on the catabolism of aromatic compounds and for the bioremediation and/or biosensing of toxic pollutants and the valorization of aromatic compounds present in biowaste toward a sustainable knowledge-based bioeconomy with social and environmental rewards.

Notes

Acknowledgments

Work in our laboratory was supported by the Ministry of Economy and Competitiveness of Spain Grant BIO2012-39501, BIO2016-79736-R, BIO2014-59528-JIN, and PCIN2014-113, European Union FP7 Grant 311815, and Fundación Ramón-Areces XVII CN.

References

  1. Abril MA, Michán C, Timmis KN, Ramos JL (1989) Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway. J Bacteriol 171:6782–6790PubMedPubMedCentralCrossRefGoogle Scholar
  2. Achkar J, Xian M, Zhao H, Frost JW (2005) Biosynthesis of phloroglucinol. J Am Chem Soc 127:5332–5333PubMedCrossRefPubMedCentralGoogle Scholar
  3. Agulló L, Cámara B, Martínez P, Latorre V, Seeger M (2007) Response to (chloro)biphenyls of the polychlorobiphenyl-degrader Burkholderia xenovorans LB400 involves stress proteins also induced by heat shock and oxidative stress. FEMS Microbiol Lett 267:167–175PubMedCrossRefPubMedCentralGoogle Scholar
  4. Alonso S, Navarro-Llorens JM, Tormo A, Perera J (2003) Construction of a bacterial biosensor for styrene. J Biotechnol 102:301–306PubMedCrossRefPubMedCentralGoogle Scholar
  5. Álvarez MS, Rodríguez A, Sanromán MÁ, Deive FJ (2015) Simultaneous biotreatment of polycyclic aromatic hydrocarbons and dyes in a one-step bioreaction by an acclimated Pseudomonas strain. Bioresour Technol 198:181–188PubMedCrossRefPubMedCentralGoogle Scholar
  6. Applegate BM, Kehrmeyer SR, Sayler GS (1998) A chromosomally based tod-luxCDABE whole-cell reporter for benzene, toluene, ethybenzene, and xylene (BTEX) sensing. Appl Environ Microbiol 64:2730–2735PubMedPubMedCentralGoogle Scholar
  7. Arcos M, Olivera ER, Arias S, Naharro G, Luengo JM (2010) The 3,4-dihydroxyphenylacetic acid catabolon, a catabolic unit for degradation of biogenic amines tyramine and dopamine in Pseudomonas putida U. Environ Microbiol 12:1684–1704PubMedPubMedCentralGoogle Scholar
  8. Arias S, Olivera ER, Arcos M, Naharro G, Luengo JM (2008) Genetic analyses and molecular characterization of the pathways involved in the conversion of 2-phenylethylamine and 2-phenylethanol into phenylacetic acid in Pseudomonas putida U. Environ Microbiol 10:413–432PubMedCrossRefPubMedCentralGoogle Scholar
  9. Arias-Barrau E, Olivera ER, Luengo JM, Fernández C, Galán B, García JL, Díaz E, Miñambres B (2004) The homogentisate pathway: a central catabolic pathway involved in the degradation of L-phenylalanine, L-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida. J Bacteriol 186:5062–5077PubMedPubMedCentralCrossRefGoogle Scholar
  10. Arora PK, Srivastava A, Singh VP (2014) Degradation of 4-chloro-3-nitrophenol via a novel intermediate, 4-chlororesorcinol by Pseudomonas sp. JHN Sci Rep 4:4475PubMedCrossRefGoogle Scholar
  11. Babaei P, Ghasemi-Kahrizsangi T, Marashi SA (2014) Modeling the differences in biochemical capabilities of Pseudomonas species by flux balance analysis: how good are genome-scale metabolic networks at predicting the differences? Sci World J 2014:416289Google Scholar
  12. Babaei P, Marashi SA, Asad S (2015) Genome-scale reconstruction of the metabolic network in Pseudomonas stutzeri A1501. Mol BioSyst 11:3022–3032PubMedCrossRefGoogle Scholar
  13. Bartell JA, Blazier AS, Yen P, Thøgersen JC, Jelsbak L, Goldberg JB, Papin JA (2017) Reconstruction of the metabolic network of Pseudomonas aeruginosa to interrogate virulence factor synthesis. Nat Commun 8:14631PubMedPubMedCentralCrossRefGoogle Scholar
  14. Beckham GT, Johnson CW, Karp EM, Salvachúa D, Vardon DR (2016) Opportunities and challenges in biological lignin valorization. Curr Opin Biotechnol 42:40–53PubMedCrossRefGoogle Scholar
  15. Belda E, van Heck RG, José Lopez-Sanchez M, Cruveiller S, Barbe V, Fraser C, Klenk HP, Petersen J, Morgat A, Nikel PI, Vallenet D, Rouy Z, Sekowska A, Martins dos Santos VAP, de Lorenzo V, Danchin A, Médigue C (2016) The revisited genome of Pseudomonas putida KT2440 enlightens its value as a robust metabolic chassis. Environ Microbiol 18:3403–3424PubMedCrossRefGoogle Scholar
  16. Benedetti I, de Lorenzo V, Nikel PI (2016) Genetic programming of catalytic Pseudomonas putida biofilms for boosting biodegradation of haloalkanes. Metab Eng 33:109–118PubMedCrossRefGoogle Scholar
  17. Biggs MB, Papin JA (2017) Managing uncertainty in metabolic network structure and improving predictions using EnsembleFBA. PLoS Comput Biol 13:e1005413PubMedPubMedCentralCrossRefGoogle Scholar
  18. Blank LM, Ionidis G, Ebert BE, Bühler B, Schmid A (2008) Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase. FEBS J 275:5173–5190PubMedCrossRefGoogle Scholar
  19. Blasco R, Ramos JL, Wittich RM (2008) Pseudomonas aeruginosa strain RW41 mineralizes 4-chlorobenzenesulfonate, the major polar by-product from DDT manufacturing. Environ Microbiol 10:1591–1600PubMedCrossRefGoogle Scholar
  20. Bobadilla Fazzini RA, Skindersoe ME, Bielecki P, Puchałka J, Givskov M, Martins dos Santos VA (2013) Protoanemonin: a natural quorum sensing inhibitor that selectively activates iron starvation response. Environ Microbiol 15:111–120PubMedCrossRefGoogle Scholar
  21. Borgos SE, Bordel S, Sletta H, Ertesvåg H, Jakobsen Ø, Bruheim P, Ellingsen TE, Nielsen J, Valla S (2013) Mapping global effects of the anti-sigma factor MucA in Pseudomonas fluorescens SBW25 through genome-scale metabolic modeling. BMC Syst Biol 7:19PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bugg TD, Ahmad M, Hardiman EM, Rahmanpour R (2011) Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 28:1883–1896PubMedCrossRefGoogle Scholar
  23. Bundy BM, Campbell AL, Neidle EL (1998) Similarities between the antABC-encoded anthranilate dioxygenase and the benABC-encoded benzoate dioxygenase of Acinetobacter sp. strain ADP1. J Bacteriol 180:4466–4474PubMedPubMedCentralGoogle Scholar
  24. Cámara B, Nikodem P, Bielecki P, Bobadilla R, Junca H, Pieper DH (2009) Characterization of a gene cluster involved in 4-chlorocatechol degradation by Pseudomonas reinekei MT1. J Bacteriol 191:4905–4915PubMedPubMedCentralCrossRefGoogle Scholar
  25. Carmona M, Prieto MA, Galán B, García JL, Díaz E (2008) Signaling networks and design of pollutant biosensors. In: Díaz E (ed) Microbial biodegradation, genomics and molecular biology. Caister Academic Press, Norkfolk, pp 97–143Google Scholar
  26. Chen YF, Chao H, Zhou NY (2014) The catabolism of 2,4-xylenol and p-cresol share the enzymes for the oxidation of para-methyl group in Pseudomonas putida NCIMB 9866. Appl Microbiol Biotechnol 98:1349–1356PubMedCrossRefGoogle Scholar
  27. Chen Z, Niu Y, Zhao S, Khan A, Ling Z, Chen Y, Liu P, Li X (2016) A novel biosensor for p-nitrophenol based on an aerobic anode microbial fuel cell. Biosens Bioelectron 85:860–868PubMedCrossRefGoogle Scholar
  28. Cheng L, Yin S, Chen M, Sun B, Hao S, Wang C (2016) Enhancing indigo production by over-expression of the styrene monooxygenase in Pseudomonas putida. Curr Microbiol 73:248–254PubMedCrossRefGoogle Scholar
  29. Choi EN, Cho MC, Kim Y, Kim CK, Lee K (2003) Expansion of growth substrate range in Pseudomonas putida F1 by mutations in both cymR and todS, which recruit a ring-fission hydrolase CmtE and induce the tod catabolic operon, respectively. Microbiology 149:795–805PubMedCrossRefGoogle Scholar
  30. Choi C, Münch R, Leupold S, Klein J, Siegel I, Thielen B, Benkert B, Kucklick M, Schobert M, Barthelmes J, Ebeling C, Haddad I, Scheer M, Grote A, Hiller K, Bunk B, Schreiber K, Retter I, Schomburg D, Jahn D (2007) SYSTOMONAS-an integrated database for systems biology analysis of Pseudomonas. Nucleic Acids Res 35:D533–D537PubMedPubMedCentralCrossRefGoogle Scholar
  31. Choi MH, Xu J, Rho JK, Shim JH, Yoon SC (2009) Shifting of the distribution of aromatic monomer-units in polyhydroxyalkanoic acid to longer units by salicylic acid in Pseudomonas fluorescens BM07 grown with mixtures of fructose and 11-phenoxyundecanoic acid. Biotechnol Bioeng 102:1209–1221PubMedCrossRefGoogle Scholar
  32. Choi MH, Xu J, Rho JK, Zhao XP, Yoon SC (2010) Enhanced production of longer side-chain polyhydroxyalkanoic acid with omega-aromatic group substitution in phaZ-disrupted Pseudomonas fluorescens BM07 mutant through unrelated carbon source cometabolism and salicylic acid beta-oxidation inhibition. Bioresour Technol 101:4540–4548PubMedCrossRefGoogle Scholar
  33. Chugani S, Greenberg EP (2010) LuxR homolog-independent gene regulation by acyl-homoserine lactones in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 107:10673–10678PubMedCrossRefGoogle Scholar
  34. Cuskey SM, Olsen RH (1988) Catabolism of aromatic biogenic amines by Pseudomonas aeruginosa PAO1 via meta cleavage of homoprotocatechuic acid. J Bacteriol 170:393–399PubMedPubMedCentralCrossRefGoogle Scholar
  35. Daubaras DL, Saido K, Chakrabarty AM (1996) Purification of hydroxyquinol 1,2-dioxygenase and maleylacetate reductase: the lower pathway of 2,4,5-trichlorophenoxyacetic acid metabolism by Burkholderia cepacia AC1100. Appl Environ Microbiol 62:4276–4279PubMedPubMedCentralGoogle Scholar
  36. Dejonghe W, Goris J, El Fantroussi S, Hofte M, De Vos P, Verstraete W, Top EM (2000) Effect of dissemination of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation plasmids on 2,4-D degradation and on bacterial community structure in two different soil horizons. Appl Environ Microbiol 66:3297–3304PubMedPubMedCentralCrossRefGoogle Scholar
  37. de las Heras A, Carreño CA, de Lorenzo V (2008) Stable implantation of orthogonal sensor circuits in gram-negative bacteria for environmental release. Environ Microbiol 10:3305–3316PubMedCrossRefGoogle Scholar
  38. de las Heras A, de Lorenzo V (2011) In situ detection of aromatic compounds with biosensor Pseudomonas putida cells preserved and delivered to soil in water-soluble gelatin capsules. Anal Bioanal Chem 400:1093–1104PubMedCrossRefGoogle Scholar
  39. de las Heras A, de Lorenzo V (2012) Engineering whole-cell biosensors with no antibiotic markers for monitoring aromatic compounds in the environment. Methods Mol Biol 834:261–281CrossRefGoogle Scholar
  40. del Castillo T, Ramos JL (2007) Simultaneous catabolite repression between glucose and toluene metabolism in Pseudomonas putida is channeled through different signaling pathways. J Bacteriol 189:6602–6610PubMedPubMedCentralCrossRefGoogle Scholar
  41. Díaz E, Jiménez JI, Nogales J (2013) Aerobic degradation of aromatic compounds. Curr Opin Biotechnol 24:431–442PubMedCrossRefGoogle Scholar
  42. Di Gioia D, Luziatelli F, Negroni A, Ficca AG, Fava F, Ruzzi M (2011) Metabolic engineering of Pseudomonas fluorescens for the production of vanillin from ferulic acid. J Biotechnol 156:309–316PubMedCrossRefGoogle Scholar
  43. Domínguez-Cuevas P, González-Pastor JE, Marqués S, Ramos JL, de Lorenzo V (2006) Transcriptional tradeoff between metabolic and stress-response programs in Pseudomonas putida KT2440 cells exposed to toluene. J Biol Chem 281:11981–11991PubMedCrossRefPubMedCentralGoogle Scholar
  44. Drees SL, Fetzner S (2015) PqsE of Pseudomonas aeruginosa acts as pathway-specific thioesterase in the biosynthesis of alkylquinolone signaling molecules. Chem Biol 22:611–618PubMedCrossRefGoogle Scholar
  45. Duarte M, Jauregui R, Vilchez-Vargas R, Junca H, Pieper DH (2014) AromaDeg, a novel database for phylogenomics of aerobic bacterial degradation of aromatics. Database 2014:bau118.  https://doi.org/10.1093/database/bau118CrossRefPubMedPubMedCentralGoogle Scholar
  46. Dueholm MS, Marques IG, Karst SM, D’Imperio S, Tale VP, Lewis D, Nielsen PH, Nielsen JL (2015) Survival and activity of individual bioaugmentation strains. Bioresour Technol 186:192–199PubMedCrossRefGoogle Scholar
  47. Dunaway-Mariano D, Babbitt PC (1994) On the origins and functions of the enzymes of the 4-chlorobenzoate to 4-hydroxybenzoate converting pathway. Biodegradation 5:259–276PubMedCrossRefGoogle Scholar
  48. Dunn HD, Curtin T, O’Riordan MA, Coen P, Kieran PM, Malone DM, O’Connor KE (2005) Aromatic and aliphatic hydrocarbon consumption and transformation by the styrene degrading strain Pseudomonas putida CA-3. FEMS Microbiol Lett 249:267–273PubMedCrossRefGoogle Scholar
  49. Duque E, Rodríguez-Herva JJ, de la Torre J, Domínguez-Cuevas P, Muñoz-Rojas J, Ramos JL (2007) The RpoT regulon of Pseudomonas putida DOT-T1E and its role in stress endurance against solvents. J Bacteriol 189:207–219PubMedCrossRefGoogle Scholar
  50. Durante-Rodríguez G, Gómez-Álvarez H, Nogales J, Carmona M, Díaz E (2017). One-component systems that regulate the expression of degradation pathways for aromatic compounds. In: Krell T (ed) Cellular ecophysiology of microbe. Handbook of hydrocarbon and lipid microbiology. Springer International Publishing AG.  https://doi.org/10.1007/978-3-319-20796-4_5-1Google Scholar
  51. Eaton RW (1997) p-cymene catabolic pathway in Pseudomonas putida F1: cloning and characterization of DNA encoding conversion of p-cymene to p-cumate. J Bacteriol 179:3171–3180PubMedPubMedCentralCrossRefGoogle Scholar
  52. El-Said Mohamed M, García JL, Martínez I, del Cerro C, Nogales J, Díaz E (2015) Genome sequence of Pseudomonas azelaica strain Aramco J. Genome Announc 3:e00037–e00015PubMedPubMedCentralCrossRefGoogle Scholar
  53. Erb RW, Eichner CA, Wagner-Döbler I, Timmis KN (1997) Bioprotection of microbial communities from toxic phenol mixtures by a genetically designed pseudomonad. Nat Biotech 15:378–382CrossRefGoogle Scholar
  54. Eren E, Vijayaraghavan J, Liu J, Cheneke BR, Touw DS, Lepore BW, Indic M, Movileanu L, van den Berg B (2012) Substrate specificity within a family of outer membrane carboxylate channels. PLoS Biol 10:e1001242PubMedPubMedCentralCrossRefGoogle Scholar
  55. Espinosa-Urgel M, Serrano L, Ramos JL, Fernández-Escamilla AM (2015) Engineering biological approaches for detection of toxic compounds: a new microbial biosensor based on the Pseudomonas putida TtgR repressor. Mol Biotechnol 57:558–564PubMedCrossRefPubMedCentralGoogle Scholar
  56. Fernández C, Díaz E, García JL (2014) Insights on the regulation of the phenylacetate degradation pathway from Escherichia coli. Environ Microbiol Rep 6:239–250PubMedCrossRefPubMedCentralGoogle Scholar
  57. Fernández M, Niqui-Arroyo JL, Conde S, Ramos JL, Duque E (2012) Enhanced tolerance to naphthalene and enhanced rhizoremediation performance for Pseudomonas putida KT2440 via the NAH7 catabolic plasmid. Appl Environ Microbiol 78:5104–5110PubMedPubMedCentralCrossRefGoogle Scholar
  58. Fetzner S (2015) Quorum quenching enzymes. J Biotechnol 201:2–14PubMedCrossRefGoogle Scholar
  59. Fujihara H, Yoshida H, Matsunaga T, Goto M, Furukawa K (2006) Cross-regulation of biphenyl- and salicylate-catabolic genes by two regulatory systems in Pseudomonas pseudoalcaligenes KF707. J Bacteriol 188:4690–4697PubMedPubMedCentralCrossRefGoogle Scholar
  60. Gaillard M, Vallaeys T, Vorhölter FJ, Minoia M, Werlen C, Sentchilo V, Pühler A, van der Meer JR (2006) The clc element of Pseudomonas sp. strain B13, a genomic island with various catabolic properties. J Bacteriol 188:1999–2013PubMedPubMedCentralCrossRefGoogle Scholar
  61. Galán B, Díaz E, García JL (2000) Enhancing desulphurization by engineering a flavin reductase-encoding gene cassette in recombinant biocatalysts. Environ Microbiol 2:687–694PubMedCrossRefPubMedCentralGoogle Scholar
  62. Galvão TC, de Lorenzo V (2006) Transcriptional regulators à la carte: engineering new effector specificities in bacterial regulatory proteins. Curr Opin Biotechnol 17:34–42PubMedCrossRefPubMedCentralGoogle Scholar
  63. Gao X, Tan CL, Yeo CC, Poh CL (2005) Molecular and biochemical characterization of the xlnd-encoded 3-hydroxybenzoate 6-hydroxylase involved in the degradation of 2,5-xylenol via the gentisate pathway in Pseudomonas alcaligenes NCIMB 9867. J Bacteriol 187:7696–7702PubMedPubMedCentralCrossRefGoogle Scholar
  64. García JL, Díaz E (2014) Plasmids as tools for containment. Microbiol Spectr 2.  https://doi.org/10.1128/microbiolspec.PLAS-0011-2013
  65. García B, Olivera ER, Miñambres B, Fernández-Valverde M, Canedo LM, Prieto MA, García JL, Martínez M, Luengo JM (1999) Novel biodegradable aromatic plastics from a bacterial source. Genetic and biochemical studies on a route of the phenylacetyl-CoA catabolon. J Biol Chem 274:29228–29241PubMedCrossRefPubMedCentralGoogle Scholar
  66. García JL, Rozas D, del Cerro C, Nogales J, El-Said Mohamed M, Díaz E (2014) Genome sequence of Pseudomonas azelaica HBP1, which catabolizes 2-hydroxybiphenyl fungicide. Genome Announc 2:e01248–e01213PubMedPubMedCentralCrossRefGoogle Scholar
  67. Gayathri D, Shobha KJ (2015) Biodegradation of 2,4′-dichlorobiphenyl, a congener of polychlorinated biphenyl, by Pseudomonas isolates GSa and GSb. Indian J Exp Biol 53:536–542PubMedPubMedCentralGoogle Scholar
  68. George KW, Hay A (2012) Less is more: reduced catechol production permits Pseudomonas putida F1 to grow on styrene. Microbiology 158:2781–2788PubMedCrossRefPubMedCentralGoogle Scholar
  69. George KW, Kagle J, Junker L, Risen A, Hay AG (2011) Growth of Pseudomonas putida F1 on styrene requires increased catechol-2,3-dioxygenase activity, not a new hydrolase. Microbiology 157:89–98PubMedCrossRefPubMedCentralGoogle Scholar
  70. Ghosh I, Jasmine J, Mukherji S (2014) Biodegradation of pyrene by a Pseudomonas aeruginosa strain RS1 isolated from refinery sludge. Bioresour Technol 166:548–558PubMedCrossRefPubMedCentralGoogle Scholar
  71. Goff M, Ward PG, O’Connor KE (2007) Improvement of the conversion of polystyrene to polyhydroxyalkanoate through the manipulation of the microbial aspect of the process: a nitrogen feeding strategy for bacterial cells in a stirred tank reactor. J Biotechnol 132:283–286PubMedCrossRefPubMedCentralGoogle Scholar
  72. Gong T, Liu R, Che Y, Xu X, Zhao F, Yu H, Song C, Liu Y, Yang C (2016b) Engineering Pseudomonas putida KT2440 for simultaneous degradation of carbofuran and chlorpyrifos. Microb Biotechnol 9:792–800PubMedPubMedCentralCrossRefGoogle Scholar
  73. Gong T, Liu R, Zuo Z, Che Y, Yu H, Song C, Yang C (2016a) Metabolic engineering of Pseudomonas putida KT2440 for complete mineralization of methyl parathion and γ-hexachlorocyclohexane. ACS Synth Biol 5:434–442PubMedCrossRefPubMedCentralGoogle Scholar
  74. Gosset G (2009) Production of aromatic compounds in bacteria. Curr Opin Biotechnol 20:651–658PubMedCrossRefPubMedCentralGoogle Scholar
  75. Graf N, Altenbuchner J (2014) Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid. Appl Microbiol Biotechnol 98:137–149PubMedCrossRefPubMedCentralGoogle Scholar
  76. Hallier-Soulier S, Ducrocq V, Truffaut N (1999) Conjugal transfer of a TOL-like plasmid and extension of the catabolic potential of Pseudomonas putida F1. Can J Microbiol 45:898–904PubMedCrossRefPubMedCentralGoogle Scholar
  77. Harayama S, Timmis KN (1992) Aerobic biodegradation of aromatic hydrocarbons by bacteria. In: Sigel H, Sigel A (eds) Metal ions in biological systems, vol 28. Marcel Dekker Inc, New York, pp 99–156Google Scholar
  78. Harwood CS, Parales RE (1996) The β-ketoadipate pathway and the biology of self-identity. Ann Rev Microbiol 50:553–590CrossRefGoogle Scholar
  79. Hernández-Sánchez V, Lang E, Wittich RM (2013) The three-species consortium of genetically improved strains Cupriavidus necator RW112, Burkholderia xenovorans RW118, and Pseudomonas pseudoalcaligenes RW120 grows with technical polychlorobiphenyl, Aroclor 1242. Front Microbiol 4:90PubMedPubMedCentralCrossRefGoogle Scholar
  80. Hernández-Sánchez V, Molina L, Ramos JL, Segura A (2016) New family of biosensors for monitoring BTX in aquatic and edaphic environments. Microb Biotechnol 9:858–867PubMedPubMedCentralCrossRefGoogle Scholar
  81. Hirose J, Yamazoe A, Hosoyama A, Kimura N, Suenaga H, Watanabe T, Fujihara H, Futagami T, Goto M, Furukawa K (2015) Draft genome sequence of the polychlorinated biphenyl-degrading bacterium Pseudomonas stutzeri KF716 (NBRC 110668). Genome Announc 3:e01215–e01215PubMedPubMedCentralGoogle Scholar
  82. Hu H, Wang W, Tang H, Xu P (2015) Characterization of pseudooxynicotine amine oxidase of Pseudomonas putida S16 that is crucial for nicotine degradation. Sci Rep 5:17770PubMedPubMedCentralCrossRefGoogle Scholar
  83. Huang H, Wu K, Khan A, Jiang Y, Ling Z, Liu P, Chen Y, Tao X, Li X (2016) A novel Pseudomonas gessardii strain LZ-E simultaneously degrades naphthalene and reduces hexavalent chromium. Bioresour Technol 207:370–378PubMedCrossRefPubMedCentralGoogle Scholar
  84. Ismail W, Gescher J (2012) Epoxy coenzyme a thioester pathways for degradation of aromatic compounds. Appl Environ Microbiol 78:5043–5051PubMedPubMedCentralCrossRefGoogle Scholar
  85. Iwaki H, Muraki T, Ishihara S, Hasegawa Y, Rankin KN, Sulea T, Boyd J, Lau PCK (2007) Characterization of a pseudomonad 2-nitrobenzoate nitroreductase and its catabolic pathway-associated 2-hydroxylaminobenzoate mutase and a chemoreceptor involved in 2-nitrobenzoate chemotaxis. J Bacteriol 189:3502–3514PubMedPubMedCentralCrossRefGoogle Scholar
  86. Jaspers MC, Sturme M, van der Meer JR (2001) Unusual location of two nearby pairs of upstream activating sequences for HbpR, the main regulatory protein for the 2-hydroxybiphenyl degradation pathway of “Pseudomonas azelaica” HBP1. Microbiology 147:2183–2194PubMedCrossRefPubMedCentralGoogle Scholar
  87. Jenal U, Reinders A, Lori C (2017) Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol 15:271–284PubMedCrossRefPubMedCentralGoogle Scholar
  88. Jeukens J, Boyle B, Tucker NP, Levesque RC (2014) Strategy for genome sequencing analysis and assembly for comparative genomics of Pseudomonas genomes. Methods Mol Biol 1149:565–577PubMedCrossRefPubMedCentralGoogle Scholar
  89. Jiménez JI, Canales Á, Jiménez-Barbero J, Ginalski K, Rychlewski L, García JL, Díaz E (2008) Deciphering the genetic determinants for aerobic nicotinic acid degradation: the nic cluster from Pseudomonas putida KT2440. Proc Nat Acad Sci USA 105:11329–11334PubMedCrossRefPubMedCentralGoogle Scholar
  90. Jiménez JI, Juárez JF, García JL, Díaz E (2011) A finely tuned regulatory circuit of the nicotinic acid degradation pathway in Pseudomonas putida. Environ Microbiol 13:1718–1732PubMedCrossRefPubMedCentralGoogle Scholar
  91. Jiménez JI, Miñambres B, García JL, Díaz E (2004) Genomic insights in the metabolism of aromatic compounds in Pseudomonas. In: Ramos JL (ed) Pseudomonas, vol 3. Kluwer Academic Plenum Pub, New York, pp 425–462CrossRefGoogle Scholar
  92. Jin J, Yao J, Zhang Q, Liu J (2016) Biodegradation of pyrene by Pseudomonas sp. JPN2 and its initial degrading mechanism study by combining the catabolic nahAc gene and structure-based analyses. J Chemosphere 164:379–386CrossRefGoogle Scholar
  93. Johnson CW, Beckham GT (2015) Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin. Metab Eng 28:240–247PubMedCrossRefPubMedCentralGoogle Scholar
  94. Johnson CW, Salvachúa D, Khanna P, Smith H, Peterson DJ, Beckham GT (2016) Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity. Metab Eng Commun 3:111–119PubMedPubMedCentralCrossRefGoogle Scholar
  95. Jun SR, Wassenaar TM, Nookaew I, Hauser L, Wanchai V, Land M, Timm CM, Lu TY, Schadt CW, Doktycz MJ, Pelletier DA, Ussery DW (2015) Diversity of Pseudomonas genomes, including Populus-associated isolates, as revealed by comparative genome analysis. Appl Environ Microbiol 82:375–383PubMedPubMedCentralCrossRefGoogle Scholar
  96. Kaczorek E, Smułek W, Zdarta A, Sawczuk A, Zgoła-Grześkowiak A (2016) Influence of saponins on the biodegradation of halogenated phenols. Ecotoxicol Environ Saf 131:127–134PubMedCrossRefPubMedCentralGoogle Scholar
  97. Kahraman H, Geckil H (2005) Degradation of benzene, toluene and xylene by Pseudomonas aeruginosa engineered with the Vitreoscilla hemoglobin gene. Eng Life Sci 5:363–369CrossRefGoogle Scholar
  98. Kallastu A, Hörak R, Kivisaar M (1998) Identification and characterization of IS1411, a new insertion sequence which causes transcriptional activation of the phenol degradation genes in Pseudomonas putida. J Bacteriol 180:5306–5312PubMedPubMedCentralGoogle Scholar
  99. Karimi B, Habibi M, Esvand M (2015) Biodegradation of naphthalene using Pseudomonas aeruginosa by up flow anoxic-aerobic continuous flow combined bioreactor. J Environ Health Sci Eng 13:26PubMedPubMedCentralCrossRefGoogle Scholar
  100. Kasahara Y, Morimoto H, Kuwano M, Kadoya R (2012) Genome-wide analytical approaches using semi-quantitative expression proteomics for aromatic hydrocarbon metabolism in Pseudomonas putida F1. J Microb Methods 91:434–442CrossRefGoogle Scholar
  101. Keane A, Lau PC, Ghoshal S (2008) Use of a whole-cell biosensor to assess the bioavailability enhancement of aromatic hydrocarbon compounds by nonionic surfactants. Biotechnol Bioeng 99:86–98PubMedCrossRefGoogle Scholar
  102. Kenny ST, Runic JN, Kaminsky W, Woods T, Babu RP, O’Connor KE (2012) Development of a bioprocess to convert PET derived terephthalic acid and biodiesel derived glycerol to medium chain length polyhydroxyalkanoate. Appl Microbiol Biotechnol 95:623–633PubMedCrossRefGoogle Scholar
  103. Khan Z, Roman D, Kintz T, delas Alas M, Yap R, Doty S (2014) Degradation, phytoprotection and phytoremediation of phenanthrene by endophyte Pseudomonas putida, PD1. Environ Sci Technol 48:12221–12228PubMedCrossRefGoogle Scholar
  104. Kim J, Salvador M, Saunders E, González J, Avignone-Rossa C, Jiménez JI (2016) Properties of alternative microbial hosts used in synthetic biology: towards the design of a modular chassis. Essays Biochem 60:303–313PubMedPubMedCentralCrossRefGoogle Scholar
  105. Kim YH, Cho K, Yun S-H, Kim JY, Kwon K-H, Yoo JS, Kim SI (2006) Analysis of aromatic catabolic pathways in Pseudomonas putida KT2440 using a combined proteomic approach: 2-DE/MS and cleavable isotope-coded affinity tag analysis. Proteomics 6:1301–1318PubMedCrossRefGoogle Scholar
  106. Kivistik PA, Putrins M, Püvi K, Ilves H, Kivisaar M, Hörak R (2006) The ColRS two-component system regulates membrane functions and protects Pseudomonas putida against phenol. J Bacteriol 188:8109–8117PubMedPubMedCentralCrossRefGoogle Scholar
  107. Klemba M, Jakobs B, Wittich R-M, Pieper D (2000) Chromosomal integration of tcb chlorocatechol degradation pathway genes as a means of expanding the growth substrate range of bacteria to include haloaromatics. Appl Environ Microbiol 66:3255–3261PubMedPubMedCentralCrossRefGoogle Scholar
  108. Knoten CA, Hudson LL, Coleman JP, Farrow JM 3rd, Pesci EC (2011) KynR, a Lrp/AsnC-type transcriptional regulator, directly controls the kynurenine pathway in Pseudomonas aeruginosa. J Bacteriol 193:6567–6575PubMedPubMedCentralCrossRefGoogle Scholar
  109. Koehorst JJ, van Dam JC, van Heck RG, Saccenti E, Martins dos Santos VAP, Suarez-Diez M, Schaap PJ (2016) Comparison of 432 Pseudomonas strains through integration of genomic, functional, metabolic and expression data. Sci Rep 6:38699PubMedPubMedCentralCrossRefGoogle Scholar
  110. Köhler KA, Rückert C, Schatschneider S, Vorhölter FJ, Szczepanowski R, Blank LM, Niehaus K, Goesmann A, Pühler A, Kalinowski J, Schmid A (2013) Complete genome sequence of Pseudomonas sp. strain VLB120 a solvent tolerant, styrene degrading bacterium, isolated from forest soil. J Biotechnol 168:729–730PubMedCrossRefGoogle Scholar
  111. Kuepper J, Dickler J, Biggel M, Behnken S, Jäger G, Wierckx N, Blank LM (2015) Metabolic engineering of Pseudomonas putida KT2440 to produce anthranilate from glucose. Front Microbiol 6:1310PubMedPubMedCentralCrossRefGoogle Scholar
  112. Kuiper I, Bloemberg GV, Lugtenberg BJJ (2001) Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol Plant Microb Interact 14:1197–1205CrossRefGoogle Scholar
  113. Kurbatov L, Albrecht D, Herrmann H, Petruschka L (2006) Analysis of the proteome of Pseudomonas putida KT2440 grown on different sources of carbon and energy. Environ Microbiol 8:466–478PubMedCrossRefGoogle Scholar
  114. Kurnasov O, Jablonski L, Polanuyer B, Dorrestein P, Begley T, Osterman A (2003) Aerobic tryptophan degradation pathway in bacteria: novel kynurenine formamidase. FEMS Lett 227:219–227CrossRefGoogle Scholar
  115. Leahy JG, Batchelor PJ, Morcomb SM (2003) Evolution of the soluble diiron monooxygenases. FEMS Microbiol Rev 27:449–479CrossRefPubMedPubMedCentralGoogle Scholar
  116. Lee JH, Wendisch VF (2016) Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass. J Biotechnol pii S0168-1656(16):31616–31619Google Scholar
  117. Lee JY, Jung KH, Choi SH, Kim HS (1995) Combination of the tod and the tol pathways in redesigning a metabolic route of Pseudomonas putida for the mineralization of a benzene, toluene, and p-xylene mixture. Appl Environ Microbiol 61:2211–2217PubMedPubMedCentralGoogle Scholar
  118. Li SS, Hu X, Zhao H, Li YX, Zhang L, Gong LJ, Guo J, Zhao HB (2015) Quantitative analysis of cellular proteome alterations of Pseudomonas putida to naphthalene-induced stress. Biotechnol Lett 37:1645–1654PubMedCrossRefGoogle Scholar
  119. Liang L, Song X, Kong J, Shen C, Huang T, Hu Z (2014) Anaerobic biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a facultative anaerobe Pseudomonas sp. JP1. Biodegradation 25:825–833PubMedCrossRefGoogle Scholar
  120. Lieder S, Nikel PI, de Lorenzo V, Takors R (2015) Genome reduction boosts heterologous gene expression in Pseudomonas putida. Microb Cell Factories 14:23CrossRefGoogle Scholar
  121. Linger JG, Vardon DR, Guarnieri MT, Karp EM, Hunsinger GB, Franden MA, Johnson CW, Chupka G, Strathmann TJ, Pienkos PT, Beckham GT (2014) Lignin valorization through integrated biological funneling and chemical catalysis. Proc Natl Acad Sci USA 111:12013–12018PubMedCrossRefGoogle Scholar
  122. Liu K, Xu Y, Zhou NY (2015c) Identification of a specific maleate hydratase in the direct hydrolysis route of the gentisate pathway. Appl Environ Microbiol 81:5753–5760PubMedPubMedCentralCrossRefGoogle Scholar
  123. Liu M, Durfee T, Cabrera JE, Zhao K, Jin DJ, Blattner FR (2005) Global transcriptional programs reveal a carbon source foraging strategy by Escherichia coli. J Biol Chem 280:15921–15927PubMedCrossRefGoogle Scholar
  124. Liu S, Su T, Zhang C, Zhang WM, Zhu D, Su J, Wei T, Wang K, Huang Y, Guo L, Xu S, Zhou NY, Gu L (2015b) Crystal structure of PnpCD, a two-subunit hydroquinone 1,2-dioxygenase, reveals a novel structural class of Fe2+−dependent dioxygenases. J Biol Chem 290:24547–24560PubMedPubMedCentralCrossRefGoogle Scholar
  125. Liu Y, Gong AJ, Qiu LN, Li JR, Li FK (2015a) Biodegradation of decabromodiphenyl ether (BDE-209) by crude enzyme extract from Pseudomonas aeruginosa. Int J Environ Res Public Health 12:11829–11647PubMedPubMedCentralCrossRefGoogle Scholar
  126. Loeschcke A, Thies S (2015) Pseudomonas putida – a versatile host for the production of natural products. Appl Microbiol Biotechnol 99:6197–6214PubMedPubMedCentralCrossRefGoogle Scholar
  127. Lorenzo P, Alonso S, Velasco A, Díaz E, García JL, Perera J (2004) Design of catabolic cassettes for styrene biodegradation. Antonie Van Leeuwenhoek 84:17–24CrossRefGoogle Scholar
  128. Luengo JM, García B, Sandoval A, Naharro G, Olivera ER (2003) Bioplastics from microorganisms. Curr Opin Microbiol 6:251–260PubMedCrossRefGoogle Scholar
  129. Luengo JM, García JL, Olivera ER (2001) The phenylacetyl-CoA catabolon: a complex catabolic unit with broad biotechnological applications. Mol Microbiol 39:1434–1442PubMedCrossRefGoogle Scholar
  130. Luu RA, Kootstra JD, Nesteryuk V, Brunton CN, Parales JV, Ditty JL, Parales RE (2015) Integration of chemotaxis, transport and catabolism in Pseudomonas putida and identification of the aromatic acid chemoreceptor PcaY. Mol Microbiol 96:134–147PubMedCrossRefGoogle Scholar
  131. Mangwani N, Kumari S, Das S (2015) Involvement of quorum sensing genes in biofilm development and degradation of polycyclic aromatic hydrocarbons by a marine bacterium Pseudomonas aeruginosa N6P6. Appl Microbiol Biotechnol 99:10283–10297PubMedCrossRefPubMedCentralGoogle Scholar
  132. Marín M, Pérez-Pantoja D, Donoso R, Wray V, González B, Pieper DH (2010) Modified 3-oxoadipate pathway for the biodegradation of methylaromatics in Pseudomonas reinekei MT1. J Bacteriol 192:1543–1552PubMedPubMedCentralCrossRefGoogle Scholar
  133. Marín M, Plumeier I, Pieper DH (2012) Degradation of 2,3-dihydroxybenzoate by a novel meta-cleavage pathway. J Bacteriol 194:3851–3860PubMedPubMedCentralCrossRefGoogle Scholar
  134. Martínez I, Mohamed M-S, Rozas D, García JL, Díaz E (2016) Engineering synthetic bacterial consortia for enhanced desulfurization and revalorization of oil sulfur compounds. Metab Eng 35:46–54PubMedCrossRefPubMedCentralGoogle Scholar
  135. Maruyama K, Shibayama T, Ichikawa A, Sakou Y, Yamada S, Sugisaki H (2004) Cloning and characterization of the genes encoding enzymes for the protocatechuate meta-degradation pathway of Pseudomonas ochraceae NGJ1. Biosci Biotechnol Biochem 68:1434–1441PubMedCrossRefPubMedCentralGoogle Scholar
  136. Masai E, Katayama Y, Fukuda M (2007) Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci Biotechnol Biochem 71:1–15PubMedCrossRefPubMedCentralGoogle Scholar
  137. Mazurkewich S, Brott AS, Kimber MS, Seah SY (2016) Structural and kinetic characterization of the 4-carboxy-2-hydroxymuconate hydratase from the gallate and protocatechuate 4,5-cleavage pathways of Pseudomonas putida KT2440. J Biol Chem 291:7669–7686PubMedPubMedCentralCrossRefGoogle Scholar
  138. McKenna R, Pugh S, Thompson B, Nielsen DR (2013) Microbial production of the aromatic building-blocks (S)-styrene oxide and (R)-1,2-phenylethanediol from renewable resources. Biotechnol J 8:1465–1475PubMedCrossRefPubMedCentralGoogle Scholar
  139. Meijnen JP, Verhoef S, Briedjlal AA, de Winde JH, Ruijssenaars HJ (2011) Improved p-hydroxybenzoate production by engineered Pseudomonas putida S12 by using a mixed-substrate feeding strategy. Appl Microbiol Biotechnol 90:885–893PubMedPubMedCentralCrossRefGoogle Scholar
  140. Miyakoshi M, Shintani M, Terabayashi T, Kai S, Yamane H, Nojiri H (2007) Transcriptome analysis of Pseudomonas putida KT2440 harboring the completely sequenced IncP-7 plasmid pCAR1. J Bacteriol 189:6849–6860PubMedPubMedCentralCrossRefGoogle Scholar
  141. Miyazaki R, Bertelli C, Benaglio P, Canton J, De Coi N, Gharib WH, Gjoksi B, Goesmann A, Greub G, Harshman K, Linke B, Mikulic J, Mueller L, Nicolas D, Robinson-Rechavi M, Rivolta C, Roggo C, Roy S, Sentchilo V, Siebenthal AV, Falquet L, van der Meer JR (2015) Comparative genome analysis of Pseudomonas knackmussii B13, the first bacterium known to degrade chloroaromatic compounds. Environ Microbiol 17:91–104PubMedCrossRefGoogle Scholar
  142. Mohan K, Phale PS (2017) Carbon source-dependent inducible metabolism of veratryl alcohol and ferulic acid in Pseudomonas putida CSV86. Appl Environ Microbiol 83.  https://doi.org/10.1128/AEM.03326-16. pii: e03326-16
  143. Mohn WW, Garmendia J, Galvao TC, de Lorenzo V (2006) Surveying biotransformations with à la carte genetic traps: translating dehydrochlorination of lindane (gamma-hexachlorocyclohexane) into lacZ-based phenotypes. Environ Microbiol 8:546–555PubMedCrossRefPubMedCentralGoogle Scholar
  144. Molina-Santiago C, Cordero BF, Daddaoua A, Udaondo Z, Manzano J, Valdivia M, Segura A, Ramos JL, Duque E (2016) Pseudomonas putida as a platform for the synthesis of aromatic compounds. Microbiology 162:1535–1543PubMedCrossRefPubMedCentralGoogle Scholar
  145. Molina-Santiago C, Udaondo Z, Gómez-Lozano M, Molin S, Ramos JL (2017) Global transcriptional response of solvent-sensitive and solvent-tolerant Pseudomonas putida strains exposed to toluene. Environ Microbiol 19:645–658PubMedCrossRefPubMedCentralGoogle Scholar
  146. Moonen MJH, Kamerbeek NM, Westphal AH, Boeren SA, Janssen DB, Fraaije MW, van Berkel WJH (2008a) Elucidation of the 4-hydroxyacetophenone catabolic pathway in Pseudomonas fluorescens ACB. J Bacteriol 190:5190–5198PubMedPubMedCentralCrossRefGoogle Scholar
  147. Moonen MJH, Synowsky SA, van den Berg WAM, Westphal AH, Heck AJR, van den Heuvel RHH, Fraaije MW, van Berkel WJH (2008b) Hydroquinone dioxygenase from Pseudomonas fluorescens ACB: a novel member of the family of nonheme-iron(II)-dependent dioxygenases. J Bacteriol 190:5199–5209PubMedPubMedCentralCrossRefGoogle Scholar
  148. Moscoso F, Deive FJ, Longo MA, Sanromán MA (2012) Technoeconomic assessment of phenanthrene degradation by Pseudomonas stutzeri CECT 930 in a batch bioreactor. Bioresour Technol 104:81–89PubMedCrossRefPubMedCentralGoogle Scholar
  149. Munthali MT, Timmis KN, Díaz E (1996) Use of colicin E3 for biological containment of microorganisms. Appl Environ Microbiol 62:1805–1807PubMedPubMedCentralGoogle Scholar
  150. Nie M, Yin X, Ren C, Wang Y, Xu F, Shen Q (2010) Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3. Biotechnol Adv 28:635–643PubMedPubMedCentralCrossRefGoogle Scholar
  151. Nigam A, Phale PS, Wangikar PP (2012) Assessment of the metabolic capacity and adaptability of aromatic hydrocarbon degrading strain Pseudomonas putida CSV86 in aerobic chemostat culture. Bioresour Technol 114:484–491PubMedCrossRefPubMedCentralGoogle Scholar
  152. Nijkamp K, van Luijk N, de Bont JA, Wery J (2005) The solvent-tolerant Pseudomonas putida S12 as host for the production of cinnamic acid from glucose. Appl Microbiol Biotechnol 69:170–177PubMedCrossRefPubMedCentralGoogle Scholar
  153. Nikaido H, Takatsuka Y (2009) Mechanisms of RND multidrug efflux pumps. Biochem Biophys Acta- Proteins and Proteomics 1794:769–781CrossRefGoogle Scholar
  154. Nikel PI, Chavarría M, Danchin A, de Lorenzo V (2016a) From dirt to industrial applications: Pseudomonas putida as a synthetic biology chassis for hosting harsh biochemical reactions. Curr Opin Chem Biol 34:20–29PubMedCrossRefPubMedCentralGoogle Scholar
  155. Nikel PI, Martínez-García E, de Lorenzo V (2014a) Biotechnological domestication of pseudomonads using synthetic biology. Nat Rev Microbiol 12:368–379PubMedCrossRefPubMedCentralGoogle Scholar
  156. Nikel PI, Pérez-Pantoja D, de Lorenzo V (2016b) Pyridine nucleotide transhydrogenases enable redox balance of Pseudomonas putida during biodegradation of aromatic compounds. Environ Microbiol 18:3565–3582PubMedCrossRefPubMedCentralGoogle Scholar
  157. Nikel PI, Silva-Rocha R, Benedetti I, de Lorenzo V (2014b) The private life of environmental bacteria: pollutant biodegradation at the single cell level. Environ Microbiol 16:628–642PubMedCrossRefPubMedCentralGoogle Scholar
  158. Nikodinovic J, Kenny ST, Babu RP, Woods T, Blau WJ, O’Connor KE (2008) The conversion of BTEX compounds by single and defined mixed cultures to medium-chain-length polyhydroxyalkanoate. Appl Microbiol Biotechnol 80:665–673PubMedCrossRefPubMedCentralGoogle Scholar
  159. Nogales J, Agudo L (2016) A practical protocol for integration of transcriptomics data into genome-scale metabolic reconstructions. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and lipid microbiology protocols: synthetic and systems biology – tools. Springer, Berlin/Heidelberg, pp 135–152Google Scholar
  160. Nogales J, Canales A, Jiménez-Barbero J, García JL, Díaz E (2005) Molecular characterization of the gallate dioxygenase from Pseudomonas putida KT2440. The prototype of a new subgroup of extradiol dioxygenases J Biol Chem 280:35382–35390PubMedPubMedCentralGoogle Scholar
  161. Nogales J, Canales A, Jiménez-Barbero J, Serra B, Pingarrón JM, García JL, Díaz E (2011) Unravelling the gallic acid degradation pathway in bacteria: the gal cluster from Pseudomonas putida. Mol Microbiol 79:359–374PubMedCrossRefPubMedCentralGoogle Scholar
  162. Nogales J, Gudmundsson S, Duque E, Ramos JL, Palsson BO (2017) Expanding the computable reactome in Pseudomonas putida reveals metabolic cycles providing robustness. bioRxiv.  https://doi.org/10.1101/139121
  163. Nogales J, Macchi R, Franchi F, Barzaghi D, Fernández C, García JL, Bertoni G, Díaz E (2007) Characterization of the last step of the aerobic phenylacetic acid degradation pathway. Microbiology 153:357–365PubMedCrossRefPubMedCentralGoogle Scholar
  164. Nogales J, Palsson BO, Thiele I (2008) A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory. BMC Syst Biol.  https://doi.org/10.1186/1752-0509-2-79PubMedPubMedCentralCrossRefGoogle Scholar
  165. Oberhardt MA, Puchalka J, Fryer KE, Martins dos Santos VAP, Papin JA (2008) Genome-scale metabolic network analysis of the opportunistic pathogen Pseudomonas aeruginosa PAO1. J Bacteriol 190:2790–2803PubMedPubMedCentralCrossRefGoogle Scholar
  166. Oberhardt MA, Puchałka J, Martins dos Santos VAP, Papin JA (2011) Reconciliation of genome-scale metabolic reconstructions for comparative systems analysis. PLoS Comput Biol 7:e1001116PubMedPubMedCentralCrossRefGoogle Scholar
  167. O’Brien EJ, Monk JM, Palsson BO (2015) Using genome-scale models to predict biological capabilities. Cell 161:971–987PubMedPubMedCentralCrossRefGoogle Scholar
  168. Okamura-Abe Y, Abe T, Nishimura K, Kawata Y, Sato-Izawa K, Otsuka Y, Nakamura M, Kajita S, Masai E, Sonoki T, Katayama Y (2016) Beta-ketoadipic acid and muconolactone production from a lignin-related aromatic compound through the protocatechuate 3,4-metabolic pathway. J Biosci Bioeng 121:652–658PubMedCrossRefGoogle Scholar
  169. O’Leary ND, O’Connor KE, Ward P, Goff M, ADW D (2005) Genetic characterization of accumulation of polyhydroxyalkanoate from styrene in Pseudomonas putida CA-3. Appl Environ Microbiol 71:4380–4387PubMedPubMedCentralCrossRefGoogle Scholar
  170. Olivera ER, Carnicero D, García B, Miñambres B, Moreno MA, Cañedo L, DiRusso CC, Naharro G, Luengo JM (2001) Two different pathways are involved in the β-oxidation of n-alkanoic and n-phenylalkanoic acids in Pseudomonas putida U: genetic studies and biotechnological applications. Mol Microbiol 39:863–874PubMedCrossRefPubMedCentralGoogle Scholar
  171. Olivera ER, Miñambres B, García B, Muñiz C, Moreno MA, Ferrández A, Díaz E, García JL, Luengo JM (1998) Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon. Proc Natl Acad Sci USA 95:6419–6424PubMedCrossRefGoogle Scholar
  172. Ouyang SP, Liu Q, Sun SY, Chen JC, Chen GQ (2007) Genetic engineering of Pseudomonas putida KT2442 for biotransformation of aromatic compounds to chiral cis-diols. J Biotechnol 132:246–250PubMedCrossRefGoogle Scholar
  173. Paliwal V, Raju SC, Modak A, Phale PS, Purohit HJ (2014) Pseudomonas putida CSV86: a candidate genome for genetic bioaugmentation. PLoS One 9:e84000PubMedPubMedCentralCrossRefGoogle Scholar
  174. Parales RE, Ju K-S, Rollefson JB, Ditty JL (2008) Bioavailability, chemotaxis, and transport of organic pollutants. In: Díaz E (ed) Microbial biodegradation. Genomics and molecular biology. Caister Academic Press, Norkfolk, pp 145–187Google Scholar
  175. Park SH, Oh KH, Kim CK (2001) Adaptive and cross-protective responses of Pseudomonas sp. DJ-12 to several aromatics and other stress shocks. Curr Microbiol 43:176–181PubMedCrossRefPubMedCentralGoogle Scholar
  176. Pérez-Pantoja D, Kim J, Silva-Rocha R, de Lorenzo V (2015) The differential response of the Pben promoter of Pseudomonas putida mt-2 to BenR and XylS prevents metabolic conflicts in m-xylene biodegradation. Environ Microbiol 17:64–75PubMedCrossRefPubMedCentralGoogle Scholar
  177. Phoenix P, Keane A, Patel A, Bergeron H, Ghoshal S, Lau PCK (2003) Characterization of a new solvent-responsive gene locus in Pseudomonas putida F1 and its functionalization as a versatile biosensor. Environ Microbiol 5:1309–1327PubMedCrossRefPubMedCentralGoogle Scholar
  178. Pillai BVS, Swarup S (2002) Elucidation of the flavonoid catabolism pathway in Pseudomonas putida PML2 by comparative metabolic profiling. Appl Environ Microbiol 68:143–151PubMedPubMedCentralCrossRefGoogle Scholar
  179. Poblete-Castro I, Becker J, Dohnt K, Martins dos Santos VAP, Wittmann C (2012) Industrial biotechnology of Pseudomonas putida and related species. Appl Microbiol Biotechnol 93:2279–2290PubMedCrossRefPubMedCentralGoogle Scholar
  180. Powlowski J, Shingler V (1994) Genetics and biochemistry of phenol degradation by Pseudomonas sp. CF600. Biodegradation 5:219–236PubMedPubMedCentralCrossRefGoogle Scholar
  181. Priefert H, Rabenhorst J, Steinbüchel A (2001) Biotechnological production of vanillin. Appl Microbiol Biotechnol 56:296–314PubMedPubMedCentralCrossRefGoogle Scholar
  182. Prieto MA, de Eugenio LI, Galán B, Luengo JM, Witholt B (2007) Synthesis and degradation of polyhydroxyalkanoates. In: Ramos JL, Filloux A (eds) Pseudomonas, vol 5. Springer, Dordrecht, pp 397–428CrossRefGoogle Scholar
  183. Prieto MA, Díaz E, García JL (1996) Molecular characterization of the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli W: engineering a mobile aromatic degradative cluster. J Bacteriol 178:111–120PubMedPubMedCentralCrossRefGoogle Scholar
  184. Puchalka J, Oberhardt MA, Godinho M, Bielecka A, Regenhardt D, Timmis KN, Papin JA, Martins dos Santos VAP (2008) Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology. PLoS Comput Biol 4:e1000210.  https://doi.org/10.1371/journal.pcbi.1000210CrossRefPubMedPubMedCentralGoogle Scholar
  185. Raheb J, Hajipour MJ, Saadati M, Rasekh B, Memari B (2009) The enhancement of biodesulfurization activity in a novel indigenous engineered Pseudomonas putida. Iran Biomed J 13:207–213PubMedPubMedCentralGoogle Scholar
  186. Raman G, Sakthivel N, Park S (2015) Draft genome sequence of a novel nicotine-degrading bacterium, Pseudomonas plecoglossicida TND35. Genome Announc 3:e01162–e01114PubMedPubMedCentralCrossRefGoogle Scholar
  187. Ramos JL, Duque E, Huertas MJ, Haïdour A (1995) Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J Bacteriol 177:3911–3916PubMedPubMedCentralCrossRefGoogle Scholar
  188. Ramos-González MI, Godoy P, Alaminos M, Ben-Bassat A, Ramos JL (2001) Physiological characterization of Pseudomonas putida DOT-T1E tolerance to p-hydroxybenzoate. Appl Environ Microbiol 67:4338–4341PubMedPubMedCentralCrossRefGoogle Scholar
  189. Ramos JL, Sol Cuenca M, Molina-Santiago C, Segura A, Duque E, Gómez-García MR, Udaondo Z, Roca A (2015) Mechanisms of solvent resistance mediated by interplay of cellular factors in Pseudomonas putida. FEMS Microbiol Rev 39:555–566PubMedCrossRefPubMedCentralGoogle Scholar
  190. Ravi K, García-Hidalgo J, Gorwa-Grauslund MF, Lidén G (2017) Conversion of lignin model compounds by Pseudomonas putida KT2440 and isolates from compost. App Microbiol Biotechnol.  https://doi.org/10.1007/s00253-017-8211-yPubMedPubMedCentralCrossRefGoogle Scholar
  191. Reardon KF, Mosteller DC, Bull Rogers JD (2000) Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F1. Biotechnol Bioeng 69:385–400CrossRefGoogle Scholar
  192. Reineke W (1998) Development of hybrid strains for the mineralization of chloroaromatics by patchwork assembly. Annu Rev Microbiol 52:287–331PubMedCrossRefPubMedCentralGoogle Scholar
  193. Rodríguez-Herva JJ, García V, Hurtado A, Segura A, Ramos JL (2007) The ttgGHI solvent efflux pump operon of Pseudomonas putida DOT-T1E is located on a large self-transmissible plasmid. Environ Microbiol 9:1550–1561PubMedCrossRefPubMedCentralGoogle Scholar
  194. Rojas A, Duque E, Schmid A, Hurtado A, Ramos JL, Segura A (2004) Biotransformation in double-phase systems: physiological responses of Pseudomonas putida DOT-T1E to a double phase made of aliphatic alcohols and biosynthesis of substituted catechols. Appl Environ Microbiol 70:3637–3643PubMedPubMedCentralCrossRefGoogle Scholar
  195. Ronchel MC, Ramos JL (2001) Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation. Appl Environ Microbiol 67:2649–2656PubMedPubMedCentralCrossRefGoogle Scholar
  196. Rosenberg SL, Hegeman GD (1971) Genetics of the mandelate pathway in Pseudomonas aeruginosa. J Bacteriol 108:1257–1269PubMedPubMedCentralGoogle Scholar
  197. Samuel MS, Sivaramakrishna A, Mehta A (2014) Bioremediation of p-nitrophenol by Pseudomonas putida 1274 strain. J Environ Health Sci Eng 12:53PubMedPubMedCentralCrossRefGoogle Scholar
  198. Santos PM, Benndorf D, Sá-Correia I (2004) Insights into Pseudomonas putida KT2440 response to phenol-induced stress by quantitative proteomics. Proteomics 4:2640–2652PubMedCrossRefPubMedCentralGoogle Scholar
  199. Santos PM, Roma V, Benndorf D, von Bergen M, Harms H, Sá-Correia I (2007) Mechanistic insights into the global response to phenol in the phenol-biodegrading strain Pseudomonas sp. M1 revealed by quantitative proteomics. OMICS 11:233–251PubMedCrossRefPubMedCentralGoogle Scholar
  200. Santos PM, Sá-Correia I (2007) Characterization of the unique organization and co-regulation of a gene cluster required for phenol and benzene catabolism in Pseudomonas sp. M1. J Biotechnol 131:371–378PubMedCrossRefPubMedCentralGoogle Scholar
  201. Sarand I, Österberg S, Holmqvist S, Holmfeldt P, Skärfstad E, Parales RE, Shingler V (2008) Metabolism-dependent taxis towards (methyl)phenols is coupled through the most abundant of three polar localized Aer-like proteins of Pseudomonas putida. Environ Microbiol 10:1320–1334PubMedCrossRefGoogle Scholar
  202. Schmidt E, Mandt C, Janssen DB, Pieper DH, Reineke W (2013) Degradation of chloroaromatics: structure and catalytic activities of wild-type chlorocatechol 2,3-dioxygenases and modified ones. Environ Microbiol 15:183–190PubMedCrossRefGoogle Scholar
  203. Schmutzler K, Kupitz K, Schmid A, Buehler K (2016) Hyperadherence of Pseudomonas taiwanensis VLB120ΔC increases productivity of (S)-styrene oxide formation. Microb Biotechnol. 10.1111/1751-7915.12378Google Scholar
  204. Segura A, Godoy P, van Dillewijn P, Hurtado A, Arroyo N, Santacruz S, Ramos JL (2005) Proteomic analysis reveals the participation of energy- and stress-related proteins in the response of Pseudomonas putida DOT-T1E to toluene. J Bacteriol 187:5937–5945PubMedPubMedCentralCrossRefGoogle Scholar
  205. Segura A, Molina L, Ramos JL (2014) Plasmid-mediated tolerance toward environmental pollutants. Microbiol Spectr 2(6).  https://doi.org/10.1128/microbiolspec.PLAS-0013-2013
  206. Sharma A, Sangwan N, Negi V, Kohli P, Khurana JP, Rao DL, Lal R (2015) Pan-genome dynamics of Pseudomonas gene complements enriched across hexachlorocyclohexane dumpsite. BMC Genomics 16:313PubMedPubMedCentralCrossRefGoogle Scholar
  207. Shen W, Liu W, Zhang J, Tao J, Deng H, Cao H, Cui Z (2010) Cloning and characterization of a gene cluster involved in the catabolism of p-nitrophenol from Pseudomonas putida DLL-E4. Bioresour Technol 101:7516–7522PubMedCrossRefGoogle Scholar
  208. Shingler V, Moore T (1994) Sensing of aromatic compounds by the DmpR transcriptional activator of phenol-catabolizing Pseudomonas sp. strain CF600. J Bacteriol 176:1555–1560PubMedPubMedCentralCrossRefGoogle Scholar
  209. Shintani M, Hosoyama A, Ohji S, Tsuchikane K, Takarada H, Yamazoe A, Fujita N, Nojiri H (2013) Complete genome sequence of the carbazole degrader Pseudomonas resinovorans strain CA10 (NBRC 106553). Genome Announc 1:e00488–e00413PubMedPubMedCentralCrossRefGoogle Scholar
  210. Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222PubMedPubMedCentralGoogle Scholar
  211. Silby MW, Winstanley C, Godfrey SA, Levy SB, Jackson RW (2011) Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 35:652–680PubMedCrossRefGoogle Scholar
  212. Simon O, Klaiber I, Huber A, Pfannstiel J (2014) Comprehensive proteome analysis of the response of Pseudomonas putida KT2440 to the flavor compound vanillin. J Proteome 109:212–227CrossRefGoogle Scholar
  213. Singh R, Mailloux RJ, Puiseux-Dao S, Appanna VD (2007) Oxidative stress evokes a metabolic adaptation that favors increased NADPH synthesis and decreased NADH production in Pseudomonas fluorescens. J Bacteriol 189:6665–6675PubMedPubMedCentralCrossRefGoogle Scholar
  214. Sohn SB, Kim TY, Park JM, Lee SY (2010) In silico genome-scale metabolic analysis of Pseudomonas putida KT2440 for polyhydroxyalkanoate synthesis, degradation of aromatics and anaerobic survival. Biotechnol J 5:739–750PubMedCrossRefGoogle Scholar
  215. Song B, Ward BB (2005) Genetic diversity of benzoyl coenzyme a reductase genes detected in denitrifying isolates and estuarine sediment communities. Appl Environ Microbiol 71:2036–2045PubMedPubMedCentralCrossRefGoogle Scholar
  216. Spain JC (1995) Biodegradation of nitroaromatic compounds. Annu Rev Microbiol 49:523–555PubMedCrossRefGoogle Scholar
  217. Sudarsan S, Blank LM, Dietrich A, Vielhauer O, Takors R, Schmid A, Reuss M (2016) Dynamics of benzoate metabolism in Pseudomonas putida KT2440. Metab Eng Commun 3:97–110PubMedPubMedCentralCrossRefGoogle Scholar
  218. Sudarsan S, Dethlefsen S, Blank LM, Siemann-Herzberg M, Schmid A (2014) The functional structure of central carbon metabolism in Pseudomonas putida KT2440. Appl Environ Microbiol 80:5292–5303PubMedPubMedCentralCrossRefGoogle Scholar
  219. Suenaga H, Yamazoe A, Hosoyama A, Kimura N, Hirose J, Watanabe T, Fujihara H, Futagami T, Goto M, Furukawa K (2017) Complete genome sequence of the polychlorinated biphenyl-degrading bacterium Pseudomonas putida KF715 (NBRC 110667) isolated from biphenyl-contaminated soil. Genome Announc 5:e01624–e01616PubMedPubMedCentralCrossRefGoogle Scholar
  220. Sun K, Liu J, Gao Y, Jin L, Gu Y, Wang W (2014) Isolation, plant colonization potential, and phenanthrene degradation performance of the endophytic bacterium Pseudomonas sp. Ph6-gfp. Sci Rep 4:5462PubMedPubMedCentralCrossRefGoogle Scholar
  221. Taira K, Hirose J, Hayashida S, Furukawa K (1992) Analysis of bph operon from the polychlorinated biphenyl-degrading strain of Pseudomonas pseudoalcaligenes KF707. J Biol Chem 267:4844–4853PubMedGoogle Scholar
  222. Takenaka S, Murakami S, Kim YJ, Aoki K (2000) Complete nucleotide sequence and functional analysis of the genes for 2-aminophenol metabolism from Pseudomonas sp. AP-3. Arch Microbiol 174:265–272CrossRefGoogle Scholar
  223. Tang H, Wang L, Wang W, Yu H, Zhang K, Yao Y, Xu P (2013) Systematic unraveling of the unsolved pathway of nicotine degradation in Pseudomonas. PLoS Genet 9:e1003923PubMedPubMedCentralCrossRefGoogle Scholar
  224. Tang H, Yao Y, Wang L, Yu H, Ren Y, Wu G, Xu P (2012) Genomic analysis of Pseudomonas putida: genes in a genome island are crucial for nicotine degradation. Sci Rep 2:377PubMedPubMedCentralCrossRefGoogle Scholar
  225. Tang H, Yu H, Li Q, Wang X, Gai Z, Yin G, Su F, Tao F, Ma C, Xu P (2011) Genome sequence of Pseudomonas putida strain B6-2, a superdegrader of polycyclic aromatic hydrocarbons and dioxin-like compounds. J Bacteriol 193:6789–6790PubMedPubMedCentralCrossRefGoogle Scholar
  226. Teufel R, Friedrich T, Fuchs G (2012) An oxygenase that forms and deoxygenates toxic epoxide. Nature 483:359–362PubMedCrossRefGoogle Scholar
  227. Teufel R, Gantert C, Voss M, Eisenreich W, Haehnel W, Fuchs G (2011) Studies on the mechanism of ring hydrolysis in phenylacetate degradation: a metabolic branching point. J Biol Chem 286:11021–11034PubMedPubMedCentralCrossRefGoogle Scholar
  228. Teufel R, Mascaraque V, Ismail W, Voss M, Perera J, Eisenreich W, Haehnel W, Fuchs G (2010) Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proc Natl Acad Sci USA 107:14390–14395PubMedCrossRefGoogle Scholar
  229. Tikariha H, Pal RR, Qureshi A, Kapley A, Purohit HJ (2016) In silico analysis for prediction of degradative capacity of Pseudomonas putida SF1. Gene 591:382–392PubMedCrossRefGoogle Scholar
  230. Tobin KM, O’Connor KE (2005) Polyhydroxyalkanoate accumulating diversity of Pseudomonas species utilising aromatic hydrocarbons. FEMS Microbiol Lett 253:111–118PubMedCrossRefGoogle Scholar
  231. Trautwein K, Kuhner S, Wöhlbrand L, Halder T, Kuchta K, Steinbüchel A, Rabus R (2008) Solvent stress response of the denitrifying bacterium “Aromatoleum aromaticum” strain EbN1. Appl Environ Microbiol 74:2267–2274PubMedPubMedCentralCrossRefGoogle Scholar
  232. Triscari-Barberi T, Simone D, Calabrese FM, Attimonelli M, Hahn KR, Amoako KK, Turner RJ, Fedi S, Zannoni D (2012) Genome sequence of the polychlorinated-biphenyl degrader Pseudomonas pseudoalcaligenes KF707. J Bacteriol 194:4426–4427PubMedPubMedCentralCrossRefGoogle Scholar
  233. Tsoi TV, Plotnikova EG, Cole JR, Guerin WF, Bagdasarian M, Tiedje JM (1999) Cloning, expression, and nucleotide sequence of the Pseudomonas aeruginosa 142 ohb genes coding for oxygenolytic ortho dehalogenation of halobenzoates. Appl Environ Microbiol 65:2151–2162PubMedPubMedCentralGoogle Scholar
  234. Udaondo Z, Molina L, Daniels C, Gómez MJ, Molina-Henares MA, Matilla MA, Roca A, Fernández M, Duque E, Segura A, Ramos JL (2013) Metabolic potential of the organic-solvent tolerant Pseudomonas putida DOT-T1E deduced from its annotated genome. Microb Biotechnol 6:598–611PubMedPubMedCentralCrossRefGoogle Scholar
  235. Udaondo Z, Molina L, Segura A, Duque E, Ramos JL (2016) Analysis of the core genome and pangenome of Pseudomonas putida. Environ Microbiol 18:3268–3283PubMedCrossRefGoogle Scholar
  236. Van der Meer JR (2008) A genomic view on the evolution of catabolic pathways and bacterial adaptation to xenobiotic compounds. In: Díaz E (ed) Microbial biodegradation. Genomics and molecular biology. Caister Academic Press, Norkfolk, pp 219–267Google Scholar
  237. Van der Meer JR, Belkin S (2010) Where microbiology meets microengineering: design and applications of reporter bacteria. Nat Rev Microbiol 8:511–522PubMedCrossRefPubMedCentralGoogle Scholar
  238. Van Dillewijn P, Caballero A, Paz JA, Gonzalez-Pérez MM, Oliva JM, Ramos JL (2007) Bioremediation of 2,4,6-trinitrotoluene under field conditions. Environ Sci Technol 41:1378–1383PubMedCrossRefGoogle Scholar
  239. van Duuren JB, Puchałka J, Mars AE, Bücker R, Eggink G, Wittmann C, Martins dos Santos VAP (2013) Reconciling in vivo and in silico key biological parameters of Pseudomonas putida KT2440 during growth on glucose under carbon-limited condition. BMC Biotechnol 13:93PubMedPubMedCentralCrossRefGoogle Scholar
  240. van Duuren JB, Wijte D, Leprince A, Karge B, Puchałka J, Wery J, Martins VAP, Eggink G, Mars AE (2011) Generation of a catR deficient mutant of P. putida KT2440 that produces cis,cis-muconate from benzoate at high rate and yield. J Biotechnol 156:163–172PubMedCrossRefGoogle Scholar
  241. Vardon DR, Franden MA, Johnson CW, Karp EM, Guarnieri MT, Linger JG, Salm MJ, Strathmann TJ, Beckham GT (2015) Adipic acid production from lignin. Energy Environ Sci 8:617–628CrossRefGoogle Scholar
  242. Vargas-Tah A, Gosset G (2015) Production of cinnamic and p-hydroxycinnamic acids in engineered microbes. Front Bioeng Biotechnol 3:116PubMedPubMedCentralCrossRefGoogle Scholar
  243. Velázquez F, de Lorenzo V, Valls M (2006) The m-xylene biodegradation capacity of Pseudomonas putida mt-2 is submitted to adaptation to abiotic stresses: evidence from expression profiling of xyl genes. Environ Microbiol 8:591–602PubMedCrossRefGoogle Scholar
  244. Verhoef S, Gao N, Ruijssenaars HJ, de Winde JH (2014) Crude glycerol as feedstock for the sustainable production of p-hydroxybenzoate by Pseudomonas putida S12. New Biotechnol 31:114–119CrossRefGoogle Scholar
  245. Vilchez-Vargas R, Junca H, Pieper DH (2010) Metabolic networks, microbial ecology and ‘omics’ technologies: towards understanding in situ biodegradation processes. Environ Microbiol 12:3089–3104PubMedCrossRefGoogle Scholar
  246. Villacieros M, Whelan C, Mackova M, Molgaard J, Sánchez-Contreras M, Lloret J, Aguirre de Cárcer D, Oruezábal RI, Bolaños L, Macek T, Karlson U, Dowling DN, Martín M, Rivilla R (2005) Polychlorinated biphenyl rhizoremediation by Pseudomonas fluorescens F113 derivatives, using a Sinorhizobium meliloti nod system to drive bph gene expression. Appl Environ Microbiol 71:2687–2694PubMedPubMedCentralCrossRefGoogle Scholar
  247. Volkers RJM, de Jong AL, Hulst AG, van Baar BLM, de Bont JAM, Wery J (2006) Chemostat-based proteomic analysis of toluene-affected Pseudomonas putida S12. Environ Microbiol 8:1674–1679PubMedCrossRefGoogle Scholar
  248. Volkers RJM, Ballerstedt H, Ruijssenaars H, de Bont JAM, de Winde JH, Wery J (2009) TrgI, toluene repressed gene I, a novel gene involved in toluene-tolerance in Pseudomonas putida S12. Extremophiles 13:283–297PubMedCrossRefGoogle Scholar
  249. Volkers RJM, Snoek LB, Ruijssenaars HJ, de Winde JH (2015) Dynamic response of Pseudomonas putida S12 to sudden addition of toluene and the potential role of the solvent tolerance gene trgI. PLoS One 10:e0132416PubMedPubMedCentralCrossRefGoogle Scholar
  250. Wackett LP (2003) Pseudomonas putida, a versatile biocatalyst. Nat Biotech 21:136–138CrossRefGoogle Scholar
  251. Wang W, Xu P, Tang H (2015) Sustainable production of valuable compound 3-succinoyl-pyridine by genetically engineering Pseudomonas putida using the tobacco waste. Sci Rep 5:16411PubMedPubMedCentralCrossRefGoogle Scholar
  252. Ward PG, de Roo G, O’Connor KE (2005) Accumulation of polyhydroxyalkanoate from styrene and phenylacetic acid by Pseudomonas putida CA-3. Appl Environ Microbiol 71:2046–2052PubMedPubMedCentralCrossRefGoogle Scholar
  253. Ward PG, Goff M, Donner M, Kaminsky W, O’Connor KE (2006) A two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic. Environ Sci Technol 40:2433–2437PubMedCrossRefPubMedCentralGoogle Scholar
  254. Ward PG, O’Connor KE (2005) Bacterial synthesis of polyhydroxyalkanoates containing aromatic and aliphatic monomers by Pseudomonas putida CA-3. Int J Biol Macromol 35:127–133PubMedCrossRefPubMedCentralGoogle Scholar
  255. Werlen C, Jaspers MCM, van der Meer JR (2004) Measurement of biologically available naphthalene in gas and aqueous phases by use of a Pseudomonas putida biosensor. Appl Environ Microbiol 70:43–51PubMedPubMedCentralCrossRefGoogle Scholar
  256. West SA, Griffin AS, Gardner A, Diggle SP (2006) Social evolution theory for microorganisms. Nat Rev Microbiol 4:597–607PubMedCrossRefPubMedCentralGoogle Scholar
  257. Wierckx NJP, Ballerstedt H, de Bont JAM, de Winde JH, Ruijssenaars HJ, Wery J (2008) Transcriptome analysis of a phenol-producing Pseudomonas putida S12 construct: genetic and physiological basis for improved production. J Bacteriol 190:2822–2830PubMedCrossRefPubMedCentralGoogle Scholar
  258. Wierckx N, Prieto MA, Pomposiello P, de Lorenzo V, O’Connor K, Blank LM (2015) Plastic waste as a novel substrate for industrial biotechnology. Microb Biotechnol 8:900–903PubMedPubMedCentralCrossRefGoogle Scholar
  259. Wijte D, van Baar BL, Heck AJ, Altelaar AF (2011) Probing the proteome response to toluene exposure in the solvent tolerant Pseudomonas putida S12. J Proteome Res 10:394–403PubMedCrossRefPubMedCentralGoogle Scholar
  260. Williams PA, Sayers JR (1994) The evolution of pathways for aromatic hydrocarbon oxidation in Pseudomonas. Biodegradation 5:195–217PubMedCrossRefPubMedCentralGoogle Scholar
  261. Winsor GL, Brinkman FS (2014) Mining the Pseudomonas genome. Methods Mol Biol 1149:417–432PubMedCrossRefPubMedCentralGoogle Scholar
  262. Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA, Brinkman FS (2016) Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res 44:D646–D653PubMedCrossRefGoogle Scholar
  263. Winsor GL, Lam DK, Fleming L, Lo R, Whiteside MD, Yu NY, Hancock RE, Brinkman FS (2011) Pseudomonas genome database: improved comparative analysis and population genomics capability for Pseudomonas genomes. Nucleic Acids Res 39:D596–D600PubMedCrossRefGoogle Scholar
  264. Winsor GL, Van Rossum T, Lo R, Khaira B, Whiteside MD, Hancock RE, Brinkman FS (2009) Pseudomonas genome database: facilitating user-friendly, comprehensive comparisons of microbial genomes. Nucleic Acids Res 37:D483–D488PubMedCrossRefPubMedCentralGoogle Scholar
  265. Wu Z, Liu Y, Liu H, Xia Y, Shen W, Hong Q, Li S, Yao H (2012) Characterization of the nitrobenzene-degrading strain Pseudomonas sp. a3 and use of its immobilized cells in the treatment of mixed aromatics wastewater. World J Microbiol Biotechnol 28:2679–2687PubMedCrossRefPubMedCentralGoogle Scholar
  266. Xia W, Du Z, Cui Q, Dong H, Wang F, He P, Tang Y (2014) Biosurfactant produced by novel Pseudomonas sp. WJ6 with biodegradation of n-alkanes and polycyclic aromatic hydrocarbons. J Hazard Mater 276:489–498PubMedCrossRefPubMedCentralGoogle Scholar
  267. Xue H, Shi H, Yu Z, He S, Liu S, Hou Y, Pan X, Wang H, Zheng P, Cui C, Viets H, Liang J, Zhang Y, Chen S, Zhang HM, Ouyang Q (2014) Design, construction, and characterization of a set of biosensors for aromatic compounds. ACS Synth Biol 3:1011–1014PubMedCrossRefPubMedCentralGoogle Scholar
  268. Yang JW, Zheng DJ, Cui BD, Yang M, Chen YZ (2016) RNA-seq transcriptome analysis of a Pseudomonas strain with diversified catalytic properties growth under different culture medium. MicrobiologyOpen 5:626–636PubMedPubMedCentralCrossRefGoogle Scholar
  269. You IS, Ghosal D, Gunsalus IC (1991) Nucleotide sequence analysis of the Pseudomonas putida PpG7 salicylate hydroxylase gene (nahG) and its 3′-flanking region. Biochemistry 30:1635–1641PubMedCrossRefPubMedCentralGoogle Scholar
  270. Young DM, Parke D, Ornston LN (2005) Opportunities for genetic investigation afforded by Acinetobacter baylyi, a nutritionally versatile bacterial species that is highly competent for natural transformation. Annu Rev Microbiol 59:519–551PubMedCrossRefPubMedCentralGoogle Scholar
  271. Yu H, Tang H, Xu P (2014) Green strategy from waste to value-added-chemical production: efficient biosynthesis of 6-hydroxy-3-succinoyl-pyridine by an engineered biocatalyst. Sci Rep 4:5397PubMedPubMedCentralCrossRefGoogle Scholar
  272. Yuan Q, Huang T, Li P, Hao T, Li F, Ma H, Wang Z, Zhao X, Chen T, Goryanin I (2017) Pathway-consensus approach to metabolic network reconstruction for Pseudomonas putida KT2440 by systematic comparison of published models. PLoS One 12:e0169437PubMedPubMedCentralCrossRefGoogle Scholar
  273. Yun SH, Park GW, Kim JY, Kwon SO, Choi CW, Leem SH, Kwon KH, Yoo JS, Lee C, Kim S, Kim SI (2011) Proteomic characterization of the Pseudomonas putida KT2440 global response to a monocyclic aromatic compound by iTRAQ analysis and 1DE-MudPIT. J Proteome 74:620–628CrossRefGoogle Scholar
  274. Zhang R, Xu X, Chen W, Huang Q (2016) Genetically engineered Pseudomonas putida X3 strain and its potential ability to bioremediate soil microcosms contaminated with methyl parathion and cadmium. Appl Microbiol Biotechnol 100:1987–1997PubMedCrossRefPubMedCentralGoogle Scholar
  275. Zhang Y, McPhedran KN, Gamal El-Din M (2015) Pseudomonads biodegradation of aromatic compounds in oil sands process-affected water. Sci Total Environ 521-522:59–67PubMedCrossRefPubMedCentralGoogle Scholar
  276. Zhao B, Yeo CC, Lee CC, Geng A, Chew FT, Poh CL (2004) Proteome analysis of gentisate-induced response in Pseudomonas alcaligenes NCIB 9867. Proteomics 4:2028–2036PubMedCrossRefGoogle Scholar
  277. Zuo Z, Gong T, Che Y, Liu R, Xu P, Jiang H, Qiao C, Song C, Yang C (2015) Engineering Pseudomonas putida KT2440 for simultaneous degradation of organophosphates and pyrethroids and its application in bioremediation of soil. Biodegradation 26:223–233PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Environmental BiologyCentro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadridSpain

Personalised recommendations