Advertisement

Current View of the Mechanisms Controlling the Transcription of the TOL Plasmid Aromatic Degradation Pathways

  • Patricia Domínguez-Cuevas
  • Silvia MarquésEmail author
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

The TOL plasmid-encoded pathway for the degradation of toluene and derivatives is an archetype in bacterial transcription regulation. Six promoters belonging to different classes and several chromosome- and plasmid-encoded proteins are involved in maintaining optimal expression levels and synchronization with the global cell metabolism. The TOL-encoded regulators are the enhancer-binding protein XylR, which controls the σ54-dependent promoters of the upper pathway Pu and of xylS gene PS1, and the AraC family regulator XylS, which controls the σ3238-dependent meta-cleavage pathway promoter Pm. Both regulators respond to the presence of a specific effector and activate transcription through different mechanisms. Much effort has been devoted to the elucidation of these processes. In this review, recent results are described and discussed in the light of the latest findings and models for homologous family proteins and their interrelationships with the cell metabolism.

Notes

Acknowledgments

This work was supported by the European Regional Development Fund FEDER and grant from the Spanish Ministry of Economy and Competitiveness (BIO2014-54361-R).

References

  1. Abril MA, Buck M, Ramos JL (1991) Activation of the Pseudomonas TOL plasmid upper pathway operon. Identification of binding sites for the positive regulator XylR and for integration host factor protein. J Biol Chem 266:15832–15838PubMedPubMedCentralGoogle Scholar
  2. Aranda-Olmedo I, Ramos JL, Marqués S (2005) Integration of signals through Crc and PtsN in catabolite repression of Pseudomonas putida TOL plasmid pWW0. Appl Environ Microbiol 71:4191–4198CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aranda-Olmedo I, Marín P, Ramos JL, Marqués S (2006) Role of the ptsN gene product in catabolite repression of the Pseudomonas putida TOL toluene degradation pathway in chemostat cultures. Appl Environ Microbiol 72:7418–7421PubMedPubMedCentralCrossRefGoogle Scholar
  4. Assinder SJ, Williams PA (1990) The TOL plasmids: determinants of the catabolism of toluene and the xylenes. Adv Microb Physiol 31:1–69PubMedCrossRefPubMedCentralGoogle Scholar
  5. Balzer S, Kucharova V, Megerle J, Lale R, Brautaset T, Valla S (2013) A comparative analysis of the properties of regulated promoter systems commonly used for recombinant gene expression in Escherichia coli. Microb Cell Factories 12:26CrossRefGoogle Scholar
  6. Bertoni G, Marqués S, De Lorenzo V (1998) Activation of the toluene-responsive regulator XylR causes a transcriptional switch between sigma54 and sigma70 promoters at the divergent Pr/Ps region of the TOL plasmid. Mol Microbiol 27:651–659PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bordes P, Wigneshweraraj SR, Schumacher J, Zhang X, Chaney M, Buck M (2003) The ATP hydrolyzing transcription activator phage shock protein F of Escherichia coli: identifying a surface that binds sigma 54. Proc Natl Acad Sci USA 100:2278–2283PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bose D, Joly N, Pape T, Rappas M, Schumacher J, Buck M, Zhang X (2008) Dissecting the ATP hydrolysis pathway of bacterial enhancer-binding proteins. Biochem Soc Trans 36:83–88PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bush M, Dixon R (2012) The role of bacterial enhancer binding proteins as specialized activators of sigma54-dependent transcription. Microbiol Mol Biol Rev 76:497–529PubMedPubMedCentralCrossRefGoogle Scholar
  10. Carmona M, De Lorenzo V (1999) Involvement of the FtsH (HflB) protease in the activity of sigma 54 promoters. Mol Microbiol 31:261–270PubMedCrossRefPubMedCentralGoogle Scholar
  11. Carmona M, Rodríguez MJ, Martínez-Costa O, De Lorenzo V (2000) In vivo and in vitro effects of (p)ppGpp on the sigma(54) promoter Pu of the TOL plasmid of Pseudomonas putida. J Bacteriol 182:4711–4718PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cases I, De Lorenzo V (2005) Promoters in the environment: transcriptional regulation in its natural context. Nat Rev Microbiol 3:105–118PubMedCrossRefPubMedCentralGoogle Scholar
  13. Cases I, Perez-Martin J, De Lorenzo V (1999) The IIANtr (PtsN) protein of Pseudomonas putida mediates the C source inhibition of the sigma54-dependent Pu promoter of the TOL plasmid. J Biol Chem 274:15562–15568PubMedCrossRefPubMedCentralGoogle Scholar
  14. Cases I, Velázquez F, De Lorenzo V (2007) The ancestral role of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS) as exposed by comparative genomics. Res Microbiol 158:666–670PubMedCrossRefPubMedCentralGoogle Scholar
  15. Chen B, Sysoeva TA, Chowdhury S, Nixon BT (2008) Regulation and action of the bacterial enhancer-binding protein AAA+ domains. Biochem Soc Trans 36:89–93PubMedPubMedCentralCrossRefGoogle Scholar
  16. Coggan KA, Wolfgang MC (2012) Global regulatory pathways and cross-talk control pseudomonas aeruginosa environmental lifestyle and virulence phenotype. Curr Issues Mol Biol 14:47–70Google Scholar
  17. Collier DN, Hager PW, Phibbs PV Jr (1996) Catabolite repression control in the Pseudomonas. Res Microbiol 147:551–561PubMedCrossRefPubMedCentralGoogle Scholar
  18. Cowles CE, Nichols NN, Harwood CS (2000) BenR, a XylS homologue, regulates three different pathways of aromatic acid degradation in Pseudomonas putida. J Bacteriol 182:6339–6346PubMedPubMedCentralCrossRefGoogle Scholar
  19. Daniels C, Del Castillo T, Krell T, Segura A, Busch A, Lacal J, Ramos JL (2008) Cellular ecophysiology: genetics and genomics of accessing and exploiting hydrocarbons. In: Timmis KN (ed) Microbiology of hydrocarbons, oils, lipids, and derived compounds. Springer, HeidelbergGoogle Scholar
  20. Daniels C, Godoy P, Duque E, Molina-Henares MA, De La Torre J, Del Arco JM, Herrera C, Segura A, Guazzaroni ME, Ferrer M, Ramos JL (2010) Global regulation of food supply by Pseudomonas putida DOT-T1E. J Bacteriol 192:2169–2181PubMedPubMedCentralCrossRefGoogle Scholar
  21. De Las Heras A, De Lorenzo V (2011) Cooperative amino acid changes shift the response of the sigma 54-dependent regulator XylR from natural m-xylene towards xenobiotic 2,4-dinitrotoluene. Mol Microbiol 79:1248–1259PubMedCrossRefPubMedCentralGoogle Scholar
  22. De Las Heras A, Fraile S, De Lorenzo V (2012) Increasing signal specificity of the TOL network of Pseudomonas putida mt-2 by rewiring the connectivity of the master regulator XylR. PLoS Genet 8(10):e1002963. doi: 10.1371/journal.pgen.1002963PubMedPubMedCentralCrossRefGoogle Scholar
  23. De Las Heras A, Martinez-Garcia E, Domingo-Sananes MR, De Lorenzo V (2015) Widening functional boundaries of the sigma(54) promoter Pu of Pseudomonas putida by defeating extant physiological constraints. Mol Biosys 11:734–742CrossRefGoogle Scholar
  24. De Lorenzo V, Herrero M, Metzke M, Timmis KN (1991) An upstream XylR and IHF induced nucleoprotein complex regulates the σ54-dependent Pu promotor of TOL plasmid. EMBO J 10:1159–1167PubMedPubMedCentralCrossRefGoogle Scholar
  25. De Lorenzo V, Sekowska A, Danchin A (2015) Chemical reactivity drives spatiotemporal organisation of bacterial metabolism. FEMS Microbiol Rev 39:96–119PubMedPubMedCentralGoogle Scholar
  26. Del Castillo T, Ramos JL (2007) Simultaneous catabolite repression between glucose and toluene metabolism in Pseudomonas putida is channeled through different signaling pathways. J Bacteriol 189:6602–6610PubMedPubMedCentralCrossRefGoogle Scholar
  27. Delgado A, Ramos JL (1994) Genetic evidence for activation of the positive transcriptional regulator XylR, a member of the NtrC family of regulators, by effector binding. J Biol Chem 269:8059–8062PubMedPubMedCentralGoogle Scholar
  28. Deutscher J, Francke C, Postma PW (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70:939–1031PubMedPubMedCentralCrossRefGoogle Scholar
  29. Devos D, Garmendia J, De Lorenzo V, Valencia A (2002) Deciphering the action of aromatic effectors on the prokaryotic enhancer-binding protein XylR: a structural model of its N-terminal domain. Environ Microbiol 4:29–41PubMedCrossRefPubMedCentralGoogle Scholar
  30. Di Martino ML, Romilly C, Wagner EG, Colonna B, Prosseda G (2016) One gene and two proteins: a leaderless mRNA supports the translation of a shorter form of the Shigella VirF regulator. MBio 7(6):e01860–16. doi:10.1128/mBio.01860-16.Google Scholar
  31. Domínguez-Cuevas P, Marqués S (2010) Transcriptional control of the TOL plasmid pathways. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Spinger, Berlin/Heidelberg, pp 1130–1136Google Scholar
  32. Domínguez-Cuevas P, Marín P, Ramos JL, Marqués S (2005) RNA polymerase holoenzymes can share a single transcription start site for the Pm promoter. Critical nucleotides in the −7 to −18 region are needed to select between RNA polymerase with sigma38 or sigma32. J Biol Chem 280:41315–41323PubMedCrossRefPubMedCentralGoogle Scholar
  33. Domínguez-Cuevas P, González-Pastor JE, Marqués S, Ramos JL, De Lorenzo V (2006) Transcriptional tradeoff between metabolic and stress-response programs in Pseudomonas putida KT2440 cells exposed to toluene. J Biol Chem 281:11981–11991PubMedCrossRefPubMedCentralGoogle Scholar
  34. Domínguez-Cuevas P, Marín P, Busby S, Ramos JL, Marqués S (2008a) Roles of effectors in XylS-dependent transcription activation: intramolecular domain derepression and DNA binding. J Bacteriol 190:3118–3128PubMedPubMedCentralCrossRefGoogle Scholar
  35. Domínguez-Cuevas P, Marín P, Marqués S, Ramos JL (2008b) XylS-Pm promoter interactions through two helix-turn-helix motifs: identifying XylS residues important for DNA binding and activation. J Mol Biol 375:59–69PubMedCrossRefPubMedCentralGoogle Scholar
  36. Domínguez-Cuevas P, Ramos J-L, Marqués S (2010) Sequential XylS-CTD binding to the Pm promoter induces DNA bending prior to activation. J Bacteriol 192:2682–2690PubMedPubMedCentralCrossRefGoogle Scholar
  37. Duetz WA, Marqués S, Wind B, Ramos JL, Van Andel JG (1996) Catabolite repression of the toluene degradation pathway in Pseudomonas putida harboring pWW0 under various conditions of nutrient limitation in chemostat culture. Appl Environ Microbiol 62:601–606PubMedPubMedCentralGoogle Scholar
  38. Ennouri H, D’abzac P, Hakil F, Branchu P, Naitali M, Lomenech AM, Oueslati R, Desbrieres J, Sivadon P, Grimaud R (2016) The extracellular matrix of the oleolytic biofilms of Marinobacter hydrocarbonoclasticus comprises cytoplasmic proteins and T2SS effectors that promote growth on hydrocarbons and lipids. Environ Microbiol 19(1):159–173PubMedCrossRefPubMedCentralGoogle Scholar
  39. Espinosa-Urgel M, Marqués S (2016) New insights in the early extracellular events in hydrocarbon and lipid biodegradation. Environ Microbiol 19(1):15–18CrossRefGoogle Scholar
  40. Fernández S, De Lorenzo V, Pérez-Martín J (1995) Activation of the transcriptional regulator XylR of Pseudomonas putida by release of repression between functional domains. Mol Microbiol 16:205–213PubMedCrossRefPubMedCentralGoogle Scholar
  41. Gallegos MT, Marqués S, Ramos JL (1996a) Expression of the TOL plasmid xylS gene in Pseudomonas putida occurs from a alpha 70-dependent promoter or from alpha 70- and alpha 54-dependent tandem promoters according to the compound used for growth. J Bacteriol 178:2356–2361PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gallegos MT, Marqués S, Ramos JL (1996b) The TACAN4TGCA motif upstream from the −35 region in the sigma70-sigmaS-dependent Pm promoter of the TOL plasmid is the minimum DNA segment required for transcription stimulation by XylS regulators. J Bacteriol 178:6427–6434PubMedPubMedCentralCrossRefGoogle Scholar
  43. Gallegos MT, Schleif R, Bairoch A, Hofmann K, Ramos JL (1997) Arac/XylS family of transcriptional regulators. Microbiol Mol Biol Rev 61:393–410PubMedPubMedCentralGoogle Scholar
  44. Garmendia J, De Lorenzo V (2000) The role of the interdomain B linker in the activation of the XylR protein of Pseudomonas putida. Mol Microbiol 38:401–410PubMedCrossRefPubMedCentralGoogle Scholar
  45. Garmendia J, Devos D, Valencia A, De Lorenzo V (2001) A la carte transcriptional regulators: unlocking responses of the prokaryotic enhancer-binding protein XylR to non-natural effectors. Mol Microbiol 42:47–59PubMedCrossRefPubMedCentralGoogle Scholar
  46. Garmendia J, De Las Heras A, Galvao TC, De Lorenzo V (2008) Tracing explosives in soil with transcriptional regulators of Pseudomonas putida evolved for responding to nitrotoluenes. Microb Biotechnol 1:236–246PubMedPubMedCentralCrossRefGoogle Scholar
  47. González-Pérez MM, Marqués S, Domínguez-Cuevas P, Ramos JL (2002) XylS activator and RNA polymerase binding sites at the Pm promoter overlap. FEBS Lett 519:117–122PubMedCrossRefPubMedCentralGoogle Scholar
  48. Greated A, Lambertsen L, Williams PA, Thomas CM (2002) Complete sequence of the IncP-9 TOL plasmid pWW0 from Pseudomonas putida. Environ Microbiol 4:856–871PubMedCrossRefPubMedCentralGoogle Scholar
  49. Gross CA, Chan C, Dombroski A, Gruber T, Shasrp M, Tupy J, Young B (1998) The functional and regulatory roles of sigma factors in transcription. Cold Spring Harb Symp Quant Biol 63:141–156PubMedCrossRefPubMedCentralGoogle Scholar
  50. Hengge-Aronis R (2002) Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66:373–395PubMedPubMedCentralCrossRefGoogle Scholar
  51. Herrera MC, Daddaoua A, Fernández-Escamilla A, Ramos JL (2012) Involvement of the global Crp regulator in cyclic AMP-dependent utilization of aromatic amino acids by Pseudomonas putida. J Bacteriol 194:406–412PubMedPubMedCentralCrossRefGoogle Scholar
  52. Holtel A, Abril MA, Marqués S, Timmis KN, Ramos JL (1990) Promoter upstream activator sequences are required for expression of the xylS gene and upper pathway operon on the Pseudomonas TOL plasmid. Mol Microbiol 4:1551–1556PubMedCrossRefPubMedCentralGoogle Scholar
  53. Holtel A, Timmis KN, Ramos JL (1992) Upstream binding sequences of the XylR activator protein and integration host factor in the xylS gene promoter region of the Pseudomonas TOL plasmid. Nucleic Acids Res 20:1755–1762PubMedPubMedCentralCrossRefGoogle Scholar
  54. Holtel A, Goldenberg D, Giladi H, Oppenheim AB, Timmis KN (1995) Involvement of IHF protein in expression of the Ps promoter of the Pseudomonas putida TOL plasmid. J Bacteriol 177:3312–3315PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hugouvieux-Cotte-Pattat N, Kohler T, Rekik M, Harayama S (1990) Growth-phase-dependent expression of the Pseudomonas putida TOL plasmid pWW0 catabolic genes. J Bacteriol 172:6651–6660PubMedPubMedCentralCrossRefGoogle Scholar
  56. Huo YX, Tian ZX, Rappas M, Wen J, Chen YC, You CH, Zhang X, Buck M, Wang YP, Kolb A (2006) Protein-induced DNA bending clarifies the architectural organization of the sigma54-dependent glnAp2 promoter. Mol Microbiol 59:168–180PubMedCrossRefPubMedCentralGoogle Scholar
  57. Inouye S, Nakazawa A, Nakazawa T (1987) Expression of the regulatory gene xylS on the TOL pasmid is positively controlled by the xylR gene product. Proc Natl Acad Sci USA 84:5182–5186PubMedCrossRefPubMedCentralGoogle Scholar
  58. Inouye S, Nakazawa A, Nakazawa T (1988) Nucleotide sequence of the regulatory gene xylR of the TOL plasmid from Pseudomonas putida. Gene 66:301–306PubMedCrossRefPubMedCentralGoogle Scholar
  59. Jiménez JI, Pérez-Pantoja D, Chavarréa M, Díaz E, De Lorenzo V (2014) A second chromosomal copy of the catA gene endows Pseudomonas putida mt-2 with an enzymatic safety valve for excess of catechol. Environ Microbiol 16:1767–1778PubMedCrossRefPubMedCentralGoogle Scholar
  60. Kessler B, Marqués S, Köhler T, Ramos JL, Timmis KN, De Lorenzo V (1994) Cross talk between catabolic pathways in Pseudomonas putida: XylS-dependent and -independent activation of the TOL meta operon requires the same cis-acting sequences within the Pm promoter. J Bacteriol 176:5578–5582PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kim J, Yeom J, Jeon CO, Park W (2009) Intracellular 2-keto-3-deoxy-6-phosphogluconate is the signal for carbon catabolite repression of phenylacetic acid metabolism in Pseudomonas putida KT2440. Microbiology 155:2420–2428PubMedCrossRefPubMedCentralGoogle Scholar
  62. Kim J, Pérez-Pantoja D, Silva-Rocha R, Oliveros JC, De Lorenzo V (2016) High-resolution analysis of the m-xylene/toluene biodegradation subtranscriptome of Pseudomonas putida mt-2. Environ Microbiol 18:3327–3341PubMedCrossRefPubMedCentralGoogle Scholar
  63. Koutinas M, Lam M-C, Kiparissides A, Silva-Rocha R, Godinho M, Livingston AG, Pistikopoulos EN, De Lorenzo V, Dos Santos VAPM, Mantalaris A (2010) The regulatory logic of m-xylene biodegradation by Pseudomonas putida mt-2 exposed by dynamic modelling of the principal node Ps/Pr of the TOL plasmid. Environ Microbiol 12:1705–1718PubMedCrossRefPubMedCentralGoogle Scholar
  64. Kwon HJ, Bennik MH, Demple B, Ellenberger T (2000) Crystal structure of the Escherichia coli Rob transcription factor in complex with DNA. Nat Struct Biol 7:424–430PubMedCrossRefPubMedCentralGoogle Scholar
  65. Lee SY, De La Torre A, Yan D, Kustu S, Nixon BT, Wemmer DE (2003) Regulation of the transcriptional activator NtrC1: structural studies of the regulatory and AAA+ ATPase domains. Genes Dev 17:2552–2563PubMedPubMedCentralCrossRefGoogle Scholar
  66. Madhushani A, Del Peso-Santos T, Moreno R, Rojo F, Shingler V (2015) Transcriptional and translational control through the 5′-leader region of the dmpR master regulatory gene of phenol metabolism. Environ Microbiol 17:119–133CrossRefGoogle Scholar
  67. Marqués S, Ramos JL (1993) Transcriptional control of the Pseudomonas putida TOL plasmid catabolic pathways. Mol Microbiol 9:923–929PubMedCrossRefPubMedCentralGoogle Scholar
  68. Marqués S, Holtel A, Timmis KN, Ramos JL (1994) Transcriptional induction kinetics from the promoters of the catabolic pathways of TOL plasmid pWW0 of Pseudomonas putida for metabolism of aromatics. J Bacteriol 176:2517–2524PubMedPubMedCentralCrossRefGoogle Scholar
  69. Marqués S, Gallegos MT, Ramos JL (1995) Role of sigma S in transcription from the positively controlled Pm promoter of the TOL plasmid of Pseudomonas putida. Mol Microbiol 18:851–857PubMedCrossRefPubMedCentralGoogle Scholar
  70. Marqués S, Gallegos MT, Manzanera M, Holtel A, Timmis KN, Ramos JL (1998) Activation and repression of transcription at the double tandem divergent promoters for the xylR and xylS genes of the TOL plasmid of Pseudomonas putida. J Bacteriol 180:2889–2894PubMedPubMedCentralGoogle Scholar
  71. Marqués S, Manzanera M, González-Pérez MM, Gallegos MT, Ramos JL (1999) The XylS-dependent Pm promoter is transcribed in vivo by RNA polymerase with sigma 32 or sigma 38 depending on the growth phase. Mol Microbiol 31:1105–1113PubMedCrossRefPubMedCentralGoogle Scholar
  72. Marqués S, Aranda-Olmedo I, Ramos JL (2006) Controlling bacterial physiology for optimal expression of gene reporter constructs. Curr Opin Biotechnol 17:50–56PubMedCrossRefPubMedCentralGoogle Scholar
  73. Martinez-Laguna Y, Calva E, Puente JL (1999) Autoactivation and environmental regulation of bfpT expression, the gene coding for the transcriptional activator of bfpA in enteropathogenic Escherichia coli. Mol Microbiol 33:153–166PubMedCrossRefPubMedCentralGoogle Scholar
  74. Michán C, Zhou L, Gallegos MT, Timmis KN, Ramos JL (1992) Identification of critical amino-terminal regions of XylS. The positive regulator encoded by the TOL plasmid. J Biol Chem 267:22897–22901PubMedPubMedCentralGoogle Scholar
  75. Milanesio P, Arce-Rodríguez A, Muñoz A, Calles B, De Lorenzo V (2011) Regulatory exaptation of the catabolite repression protein (Crp)-cAMP system in Pseudomonas putida. Environ Microbiol 13:324–339PubMedCrossRefPubMedCentralGoogle Scholar
  76. Moreno R, Ruiz-Manzano A, Yuste L, Rojo F (2007) The Pseudomonas putida Crc global regulator is an RNA binding protein that inhibits translation of the AlkS transcriptional regulator. Mol Microbiol 64:665–675CrossRefGoogle Scholar
  77. Moreno R, Fonseca P, Rojo F (2010) The Crc global regulator inhibits the Pseudomonas putida pWW0 toluene/xylene assimilation pathway by repressing the translation of regulatory and structural genes. J Biol Chem 285:24412–24419PubMedPubMedCentralCrossRefGoogle Scholar
  78. Moreno R, Hernández-Arranz S, La Rosa R, Yuste L, Madhushani A, Shingler V, Rojo F (2015) The Crc and Hfq proteins of Pseudomonas putida cooperate in catabolite repression and formation of ribonucleic acid complexes with specific target motifs. Environ Microbiol 17:105–118CrossRefGoogle Scholar
  79. Morin N, Tirling C, Ivison SM, Kaur AP, Nataro JP, Steiner TS (2010) Autoactivation of the AggR regulator of enteroaggregative Escherichia coli in vitro and in vivo. FEMS Immunol Med Microbiol 58:344–355PubMedCrossRefPubMedCentralGoogle Scholar
  80. Neuwald AF, Aravind L, Spouge JL, Koonin EV (1999) AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9:27–43PubMedPubMedCentralGoogle Scholar
  81. Pérez-Martín J, De Lorenzo V (1995a) The amino-terminal domain of the prokaryotic enhancer-binding protein XylR is a specific intramolecular repressor. Proc Natl Acad Sci USA 92:9392–9396PubMedCrossRefPubMedCentralGoogle Scholar
  82. Pérez-Martín J, De Lorenzo V (1995b) The sigma 54-dependent promoter Ps of the TOL plasmid of Pseudomonas putida requires HU for transcriptional activation in vivo by XylR. J Bacteriol 177:3758–3763PubMedPubMedCentralCrossRefGoogle Scholar
  83. Pérez-Martín J, De Lorenzo V (1996a) In vitro activities of an N-terminal truncated form of XylR, a sigma 54-dependent transcriptional activator of Pseudomonas putida. J Mol Biol 258:575–587PubMedCrossRefPubMedCentralGoogle Scholar
  84. Pérez-Martín J, De Lorenzo V (1996b) ATP binding to the sigma 54-dependent activator XylR triggers a protein multimerization cycle catalyzed by UAS DNA. Cell 86:331–339PubMedCrossRefPubMedCentralGoogle Scholar
  85. Pérez-Pantoja D, Kim J, Silva-Rocha R, De Lorenzo V (2015) The differential response of the Pben promoter of Pseudomonas putida mt-2 to BenR and XylS prevents metabolic conflicts in m-xylene biodegradation. Environ Microbiol 17:64–75PubMedCrossRefPubMedCentralGoogle Scholar
  86. Pflüger K, De Lorenzo V (2008) Evidence of in vivo cross talk between the nitrogen-related and fructose-related branches of the carbohydrate phosphotransferase system of Pseudomonas putida. J Bacteriol 190:3374–3380PubMedPubMedCentralCrossRefGoogle Scholar
  87. Porter ME, Mitchell P, Roe AJ, Free A, Smith DG, Gally DL (2004) Direct and indirect transcriptional activation of virulence genes by an AraC-like protein, PerA from enteropathogenic Escherichia coli. Mol Microbiol 54:1117–1133PubMedCrossRefPubMedCentralGoogle Scholar
  88. Ramos JL, Stolz A, Reineke W, Timmis KN (1986) Altered effector specificities in regulators of gene expression: TOL plasmid xylS mutants and their use to engineer expansion of the range of aromatics degraded by bacteria. Proc Natl Acad Sci USA 83:8467–8471PubMedCrossRefPubMedCentralGoogle Scholar
  89. Ramos JL, Michán C, Rojo F, Dwyer D, Timmis K (1990) Signal-regulator interactions. Genetic analysis of the effector binding site of xylS, the benzoate-activated positive regulator of Pseudomonas TOL plasmid meta-cleavage pathway operon. J Mol Biol 211:373–382PubMedCrossRefPubMedCentralGoogle Scholar
  90. Ramos JL, Marqués S, Timmis KN (1997) Transcriptional control of the Pseudomonas TOL plasmid catabolic operons is achieved through an interplay of host factors and plasmid- encoded regulators. Annu Rev Microbiol 51:341–373PubMedCrossRefPubMedCentralGoogle Scholar
  91. Rappas M, Schumacher J, Beuron F, Niwa H, Bordes P, Wigneshweraraj S, Keetch CA, Robinson CV, Buck M, Zhang X (2005) Structural insights into the activity of enhancer-binding proteins. Science 307:1972–1975PubMedPubMedCentralCrossRefGoogle Scholar
  92. Ray S, Gunzburg M, Wilce M, Panjikar S, Anand R (2016) Structural basis of selective aromatic pollutant sensing by the effector binding domain of MopR, an NtrC family transcriptional regulator. ACS Chem Biol 11:2357–2365PubMedCrossRefPubMedCentralGoogle Scholar
  93. Rescalli E, Saini S, Bartocci C, Rychlewski L, De Lorenzo V, Bertoni G (2004) Novel physiological modulation of the Pu promoter of TOL plasmid: negative regulatory role of the TurA protein of Pseudomonas putida in the response to suboptimal growth temperatures. J Biol Chem 279:7777–7784PubMedCrossRefPubMedCentralGoogle Scholar
  94. Rhee S, Martin RG, Rosner JL, Davies DR (1998) A novel DNA-binding motif in MarA: the first structure for an AraC family transcriptional activator. Proc Natl Acad Sci USA 95:10413–10418PubMedCrossRefPubMedCentralGoogle Scholar
  95. Rodgers ME, Holder ND, Dirla S, Schleif R (2009) Functional modes of the regulatory arm of AraC. Proteins 74:81–91PubMedPubMedCentralCrossRefGoogle Scholar
  96. Rojo F (2010) Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment. FEMS Microbiol Rev 34:658–684CrossRefGoogle Scholar
  97. Ruíz R, Ramos JL (2002) Residues 137 and 153 at the N terminus of the XylS protein influence the effector profile of this transcriptional regulator and the sigma factor used by RNA polymerase to stimulate transcription from its cognate promoter. J Biol Chem 277:7282–7286PubMedCrossRefPubMedCentralGoogle Scholar
  98. Ruíz R, Marqués S, Ramos JL (2003) Leucines 193 and 194 at the N-terminal domain of the XylS protein, the positive transcriptional regulator of the TOL meta-cleavage pathway, are involved in dimerization. J Bacteriol 185:3036–3041PubMedPubMedCentralCrossRefGoogle Scholar
  99. Ruíz R, Aranda-Olmedo MI, Domínguez-Cuevas P, Ramos-González MI, Marqués S (2004) Transcriptional regulation of the toluene catabolic pathways. In: Ramos JL (ed) Pseudomonas. Kluwer Academic/Plenum Publishers, London, pp 509–537Google Scholar
  100. Sallai L, Tucker PA (2005) Crystal structure of the central and C-terminal domain of the sigma(54)-activator ZraR. J Struct Biol 151:160–170PubMedCrossRefPubMedCentralGoogle Scholar
  101. Salto R, Delgado A, Michan C, Marques S, Ramos JL (1998) Modulation of the function of the signal receptor domain of XylR, a member of a family of prokaryotic enhancer-like positive regulators. J Bacteriol 180:600–604PubMedPubMedCentralGoogle Scholar
  102. Santiago AE, Ruiz-Perez F, Jo NY, Vijayakumar V, Gong MQ, Nataro JP (2014) A large family of antivirulence regulators modulates the effects of transcriptional activators in Gram-negative pathogenic bacteria. PLoS Pathog 10:e1004153PubMedPubMedCentralCrossRefGoogle Scholar
  103. Santiago AE, Yan MB, Tran M, Wright N, Luzader DH, Kendall MM, Ruiz-Perez F, Nataro JP (2016) A large family of anti-activators accompanying XylS/AraC family regulatory proteins. Mol Microbiol 101:314–332PubMedPubMedCentralCrossRefGoogle Scholar
  104. Schumacher J, Joly N, Rappas M, Zhang X, Buck M (2006) Structures and organisation of AAA+ enhancer binding proteins in transcriptional activation. J Struct Biol 156:190–199PubMedCrossRefPubMedCentralGoogle Scholar
  105. Seedorff J, Schleif R (2011) Active role of the interdomain linker of AraC. J Bacteriol 193:5737–5746PubMedPubMedCentralCrossRefGoogle Scholar
  106. Shingler V, Pavel H (1995) Direct regulation of the ATPase activity of the transcriptional activator DmpR by aromatic compounds. Mol Microbiol 17:505–513PubMedCrossRefPubMedCentralGoogle Scholar
  107. Silva-Rocha R, De Lorenzo V (2012) Broadening the signal specificity of prokaryotic promoters by modifying cis-regulatory elements associated with a single transcription factor. Mol Biosys 8:1950–1957CrossRefGoogle Scholar
  108. Silva-Rocha R, De Jong H, Tamames J, De Lorenzo V (2011) The logic layout of the TOL network of Pseudomonas putida pWW0 plasmid stems from a metabolic amplifier motif (MAM) that optimizes biodegradation of m-xylene. BMC Syst Biol 5:591PubMedPubMedCentralCrossRefGoogle Scholar
  109. Silva-Rocha R, Perez-Pantoja D, De Lorenzo V (2013) Decoding the genetic networks of environmental bacteria: regulatory moonlighting of the TOL system of Pseudomonas putida mt-2. ISME J 7:229–232PubMedCrossRefPubMedCentralGoogle Scholar
  110. Sonnleitner E, Blasi U (2014) Regulation of Hfq by the RNA CrcZ in Pseudomonas aeruginosa carbon catabolite repression. PLoS Genet 10:e1004440PubMedPubMedCentralCrossRefGoogle Scholar
  111. Studholme DJ, Dixon R (2003) Domain architectures of sigma54-dependent transcriptional activators. J Bacteriol 185:1757–1767PubMedPubMedCentralCrossRefGoogle Scholar
  112. Suh SJ, Runyen-Janecky LJ, Maleniak TC, Hager P, Macgregor CH, Zielinski-Mozny NA, Phibbs PVJ, West SE (2002) Effect of vfr mutation on global gene expression and catabolite repression control of Pseudomonas aeruginosa. Microbiology 148:1561–1569PubMedCrossRefPubMedCentralGoogle Scholar
  113. Svenningsen NB, Nicolaisen MH, Hansen HC, De Lorenzo V, Nybroe O (2016) Nitrogen regulation of the xyl genes of Pseudomonas putida mt-2 propagates into a significant effect of nitrate on m-xylene mineralization in soil. Microb Biotechnol 9:814–823PubMedPubMedCentralCrossRefGoogle Scholar
  114. Sze CC, Shingler V (1999) The alarmone (p)ppGpp mediates physiological-responsive control at the sigma 54-dependent Po promoter. Mol Microbiol 31:1217–1228PubMedCrossRefPubMedCentralGoogle Scholar
  115. Sze CC, Bernardo LM, Shingler V (2002) Integration of global regulation of two aromatic-responsive sigma(54)-dependent systems: a common phenotype by different mechanisms. J Bacteriol 184:760–770PubMedPubMedCentralCrossRefGoogle Scholar
  116. Tobes R, Ramos JL (2002) AraC-XylS database: a family of positive transcriptional regulators in bacteria. Nucleic Acids Res 30:318–321PubMedPubMedCentralCrossRefGoogle Scholar
  117. Tsipa A, Koutinas M, Pistikopoulos EN, Mantalaris A (2016) Transcriptional kinetics of the cross-talk between the ortho-cleavage and TOL pathways of toluene biodegradation in Pseudomonas putida mt-2. J Biotechnol 228:112–123PubMedCrossRefPubMedCentralGoogle Scholar
  118. Valls M, Buckle M, De Lorenzo V (2002) In vivo UV laser footprinting of the Pseudomonas putida sigma 54 Pu promoter reveals that integration host factor couples transcriptional activity to growth phase. J Biol Chem 277:2169–2175PubMedCrossRefPubMedCentralGoogle Scholar
  119. Velázquez F, Di Bartolo I, De Lorenzo V (2004) Genetic evidence that catabolites of the Entner-Doudoroff pathway signal C source repression of the sigma54 Pu promoter of Pseudomonas putida. J Bacteriol 186:8267–8275PubMedPubMedCentralCrossRefGoogle Scholar
  120. Velázquez F, Parro V, De Lorenzo V (2005) Inferring the genetic network of m-xylene metabolism through expression profiling of the xyl genes of Pseudomonas putida mt-2. Mol Microbiol 57:1557–1569PubMedCrossRefPubMedCentralGoogle Scholar
  121. Velázquez F, Fernández S, De Lorenzo V (2006) The upstream-activating sequences of the sigma54 promoter Pu of Pseudomonas putida filter transcription readthrough from upstream genes. J Biol Chem 281:11940–11948PubMedCrossRefPubMedCentralGoogle Scholar
  122. Vidangos N, Maris AE, Young A, Hong E, Pelton JG, Batchelor JD, Wemmer DE (2013) Structure, function, and tethering of DNA-binding domains in sigma(5)(4) transcriptional activators. Biopolymers 99:1082–1096PubMedPubMedCentralGoogle Scholar
  123. Vitale E, Milani A, Renzi F, Galli E, Rescalli E, De Lorenzo V, Bertoni G (2008) Transcriptional wiring of the TOL plasmid regulatory network to its host involves the submission of the sigma(54)-promoter Pu to the response regulator PprA. Mol Microbiol 69:698–713PubMedCrossRefPubMedCentralGoogle Scholar
  124. Wigneshweraraj S, Bose D, Burrows PC, Joly N, Schumacher J, Rappas M, Pape T, Zhang X, Stockley P, Severinov K, Buck M (2008) Modus operandi of the bacterial RNA polymerase containing the sigma54 promoter-specificity factor. Mol Microbiol 68:538–546PubMedCrossRefPubMedCentralGoogle Scholar
  125. Williams PA, Murray K (1974) Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. J Bacteriol 120:416–423PubMedPubMedCentralGoogle Scholar
  126. Zhang Y-T, Jiang F, Tian Z-X, Huo Y-X, Sun Y-C, Wang Y-P (2014) CRP-Cyclic AMP dependent inhibition of the xylene-responsive sigma(54)-Promoter Pu in Escherichia coli. Plos One 9: e86727. doi: 10.1371/journal.pone.0086727PubMedPubMedCentralCrossRefGoogle Scholar
  127. Zwick F, Lale R, Valla S (2013) Regulation of the expression level of transcription factor XylS reveals new functional insight into its induction mechanism at the Pm promoter. BMC Microbiol 13:262PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of BiologyUniversity of CopenhagenCopenhagenDenmark
  2. 2.Department of Environmental ProtectionCSIC, Estación Experimental del ZaidínGranadaSpain

Personalised recommendations