Genetics and Ecology of Isoprene Degradation

  • Andrew T. CrombieEmail author
  • Nasmille L. Mejia-Florez
  • Terry J. McGenity
  • J. Colin Murrell
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Approximately 550 million tonnes of the monoterpene, isoprene, are emitted to the atmosphere annually, principally from terrestrial plants. In contrast to methane, which is emitted in similar quantities, little is known about the biodegradation of isoprene. However, 30 years ago, bacteria capable of living on isoprene as a sole source of carbon and energy were described, although they were not investigated in detail. Recently there has been renewed interest in the potential of bacteria living in soils, marine sediments, and on the leaves of plants to degrade isoprene. Isolates capable of isoprene metabolism use a multicomponent soluble monooxygenase, which contains a diiron center at the active site, to oxidize isoprene to the epoxide, and all isolates described to date depend on glutathione for subsequent metabolic steps. The diversity of isoprene degraders has been investigated in terrestrial and marine environments using DNA-stable isotope probing (DNA-SIP), together with the use of gene probes targeting the monooxygenase active-site subunit. Gaps in our knowledge and future research directions are described.



The authors acknowledge funding from the Earth and Life Systems Alliance (ELSA) at the Norwich Research Park, a Natural Environment Research Council (NERC) grant to JCM (NE/J009725/1) and TJM (NE/J009555/1), an ERC Advanced Grant to JCM (694578 – IsoMet), and Colciencias (Government of Colombia) and Newton Fund support for a studentship to NLMF.


  1. Acuña Alvarez L, Exton DA, Timmis KN, Suggett DJ, McGenity TJ (2009) Characterization of marine isoprene-degrading communities. Environ Microbiol 11:3280–3291CrossRefGoogle Scholar
  2. Bäck J, Aaltonen H, Hellén H, Kajos MK, Patokoski J, Taipale R et al (2010) Variable emissions of microbial volatile organic compounds (MVOCs) from root-associated fungi isolated from Scots pine. Atmos Environ 44:3651–3659CrossRefGoogle Scholar
  3. Carlton AG, Wiedinmyer C, Kroll JH (2009) A review of Secondary Organic Aerosol (SOA) formation from isoprene. Atmos Chem Phys 9:4987–5005CrossRefGoogle Scholar
  4. Chen Y, Ding Y, Yang L, Yu J, Liu G, Wang X et al (2014) Integrated omics study delineates the dynamics of lipid droplets in Rhodococcus opacus PD630. Nucleic Acids Res 42:1052–1064CrossRefGoogle Scholar
  5. Cleveland CC, Yavitt JB (1997) Consumption of atmospheric isoprene in soil. Geophys Res Lett 24:2379–2382CrossRefGoogle Scholar
  6. Cleveland CC, Yavitt JB (1998) Microbial consumption of atmospheric isoprene in a temperate forest soil. Appl Environ Microbiol 64:172–177PubMedPubMedCentralGoogle Scholar
  7. Crombie AT, Khawand ME, Rhodius VA, Fengler KA, Miller MC, Whited GM et al (2015) Regulation of plasmid-encoded isoprene metabolism in Rhodococcus, a representative of an important link in the global isoprene cycle. Environ Microbiol 17:3314–3329CrossRefGoogle Scholar
  8. Dumont MG, Murrell JC (2005a) Stable isotope probing – linking microbial identity to function. Nat Rev Microbiol 3:499–504CrossRefGoogle Scholar
  9. Dumont MG, Murrell JC (2005b) Community-level analysis: key genes of aerobic methane oxidation. Methods Enzymol 397:413–427CrossRefGoogle Scholar
  10. El Khawand M, Crombie AT, Johnston A, Vavlline DV, McAuliffe JC, Latone JA et al (2016) Isolation of isoprene degrading bacteria from soils, development of isoA gene probes and identification of the active isoprene-degrading soil community using DNA-stable isotope probing. Environ Microbiol 18:2743–2753CrossRefGoogle Scholar
  11. Ewers J, Freier-Schroder D, Knackmuss HJ (1990) Selection of trichloroethene (TCE) degrading bacteria that resist inactivation by TCE. Arch Microbiol 154:410–413CrossRefGoogle Scholar
  12. Exton DA, Suggett DJ, McGenity TJ, Steinke M (2013) Chlorophyll-normalized isoprene production in laboratory cultures of marine microalgae and implications for global models. Limnol Oceanogr 58:1301–1311CrossRefGoogle Scholar
  13. Exton DA, McGenity TJ, Steinke M, Smith DJ, Suggett DJ (2015) Uncovering the volatile nature of tropical coastal marine ecosystems in a changing world. Glob Chang Biol 21:1383–1394CrossRefGoogle Scholar
  14. Fall R, Copley SD (2000) Bacterial sources and sinks of isoprene, a reactive atmospheric hydrocarbon. Environ Microbiol 2:123–130CrossRefGoogle Scholar
  15. Fares S, Brilli F, Noguès I, Velikova V, Tsonev T, Dagli S, Loreto F (2008) Isoprene emission and primary metabolism in Phragmites australis grown under different phosphorus levels. Plant Biol 10:38–43CrossRefGoogle Scholar
  16. Fini A, Brunetti C, Loreto F, Centritto M, Ferrini F, Tattini M (2017) Isoprene responses and functions in plants challenged by environmental pressures associated to climate change. Front Plant Sci 8:1281Google Scholar
  17. Gelmont D, Stein RA, Mead JF (1981) Isoprene – the main hydrocarbon in human breath. Biochem Biophys Res Commun 99:1456–1460CrossRefGoogle Scholar
  18. Gray CM, Helmig D, Fierer N (2015) Bacteria and fungi associated with isoprene consumption in soil. Elem Sci Anth 3:000053CrossRefGoogle Scholar
  19. Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos Chem Phys 6:3181–3210CrossRefGoogle Scholar
  20. Guenther AB, Jiang X, Heald CL, Sakulyanontvittaya T, Duhl T, Emmons LK, Wang X (2012) The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci Model Dev 5:1471–1492CrossRefGoogle Scholar
  21. Hewitt CN, MacKenzie AR, Di Carlo P, Di Marco CF, Dorsey JR, Evans M et al (2009) Nitrogen management is essential to prevent tropical oil palm plantations from causing ground-level ozone pollution. Proc Natl Acad Sci 106:18447–18451CrossRefGoogle Scholar
  22. Holmes AJ, Coleman NV (2008) Evolutionary ecology and multidisciplinary approaches to prospecting for monooxygenases as biocatalysts. Antonie Van Leeuwenhoek 94:75–84CrossRefGoogle Scholar
  23. Johnston A, Crombie AT, El Khawand M, Sims L, Whited G, McGenity TJ, Murrell JC (2017) Identification and characterisation of isoprene-degrading bacteria in an estuarine environment. Environ Microbiol 19:3526–3537CrossRefGoogle Scholar
  24. Kotani T, Yamamoto T, Yurimoto H, Sakai Y, Kato N (2003) Propane monooxygenase and NAD+-dependent secondary alcohol dehydrogenase in propane metabolism by Gordonia sp. strain TY-5. J Bacteriol 185:7120–7128CrossRefGoogle Scholar
  25. Krishnakumar AM, Sliwa D, Endrizzi JA, Boyd ES, Ensign SA, Peters JW (2008) Getting a handle on the role of coenzyme M in alkene metabolism. Microbiol Mol Biol Rev 72:445–456CrossRefGoogle Scholar
  26. Kuzma J, Nemecek-Marshall M, Pollock W, Fall R (1995) Bacteria produce the volatile hydrocarbon isoprene. Curr Microbiol 30:97–103CrossRefGoogle Scholar
  27. Leahy JG, Batchelor PJ, Morcomb SM (2003) Evolution of the soluble diiron monooxygenases. FEMS Microbiol Rev 27:449–479CrossRefGoogle Scholar
  28. Loivamäki M, Mumm R, Dicke M, Schnitzler J-P (2008) Isoprene interferes with the attraction of bodyguards by herbaceous plants. Proc Natl Acad Sci 105:17430–17435CrossRefGoogle Scholar
  29. Loreto F, Ciccioli P, Brancaleoni E, Valentini R, De Lillis M, Csiky O, Seufert G (1998) A hypothesis on the evolution of isoprenoid emission by oaks based on the correlation between emission type and Quercus taxonomy. Oecologia 115:302–305CrossRefGoogle Scholar
  30. Luo G, Yu F (2010) A numerical evaluation of global oceanic emissions of α-pinene and isoprene. Atmos Chem Phys 10:2007–2015CrossRefGoogle Scholar
  31. Lv X, Xie W, Lu W, Guo F, Gu J, Yu H, Ye L (2014) Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy. J Biotechnol 186:128–136CrossRefGoogle Scholar
  32. MacEachran DP, Sinskey AJ (2013) The Rhodococcus opacus TadD protein mediates triacylglycerol metabolism by regulating intracellular NAD(P)H pools. Microb Cell Factories 12:104CrossRefGoogle Scholar
  33. Magel E, Mayrhofer S, Müller A, Zimmer I, Hampp R, Schnitzler JP (2006) Photosynthesis and substrate supply for isoprene biosynthesis in poplar leaves. Atmos Environ 40:138–151CrossRefGoogle Scholar
  34. Marienhagen J, Bott M (2013) Metabolic engineering of microorganisms for the synthesis of plant natural products. J Biotechnol 163:166–178CrossRefGoogle Scholar
  35. McDonald IR, Bodrossy L, Chen Y, Murrell JC (2008) Molecular ecology techniques for the study of aerobic methanotrophs. Appl Environ Microbiol 74:1305–1315CrossRefGoogle Scholar
  36. McGenity TJ, Crombie AT, Murrell JC (2017) Microbial cycling of isoprene, the most abundantly produced biological volatile organic compound on earth. ISME J (in press)Google Scholar
  37. Morais ARC, Dworakowska S, Reis A, Gouveia L, Matos CT, Bogdał D, Bogel-Łukasik R (2015) Chemical and biological-based isoprene production: green metrics. Catal Today 239:38–43CrossRefGoogle Scholar
  38. Murphy G (2017) Isoprene degradation in the terrestrial environment. PhD thesis, Department of Biological Sciences, University of Essex, ColchesterGoogle Scholar
  39. Murrell JC, Whiteley AS (2011) Stable isotope probing and related technologies. American Society of Microbiology, Washington, DCCrossRefGoogle Scholar
  40. Pacifico F, Harrison SP, Jones CD, Sitch S (2009) Isoprene emissions and climate. Atmos Environ 43:6121–6135CrossRefGoogle Scholar
  41. Palmer PI, Shaw SL (2005) Quantifying global marine isoprene fluxes using MODIS chlorophyll observations. Geophys Res Lett 32:L09805Google Scholar
  42. Pegoraro E, Abrell L, Van Haren J, Barron-Gafford G, Grieve KA, Malhi Y et al (2005) The effect of elevated atmospheric CO2 and drought on sources and sinks of isoprene in a temperate and tropical rainforest mesocosm. Glob Chang Biol 11:1234–1246CrossRefGoogle Scholar
  43. Pegoraro E, Rey ANA, Abrell L, Van Haren J, Lin G (2006) Drought effect on isoprene production and consumption in Biosphere 2 tropical rainforest. Glob Chang Biol 12:456–469CrossRefGoogle Scholar
  44. Rohmer M. 1999. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16:565–74CrossRefGoogle Scholar
  45. Sanderson MG, Jones CD, Collins WJ, Johnson CE, Derwent RG (2003) Effect of climate change on isoprene emissions and surface ozone levels. Geophys Res Lett 30:1936. Scholar
  46. Sharkey TD, Singsaas EL, Vanderveer PJ, Geron C (1996) Field measurements of isoprene emission from trees in response to temperature and light. Tree Physiol 16:649–654CrossRefGoogle Scholar
  47. Sharkey TD, Wiberley AE, Donohue AR (2008) Isoprene emission from plants: why and how. Ann Bot 101:5–18CrossRefGoogle Scholar
  48. Shaw SL, Gantt B, Meskhidze N (2010) Production and emissions of marine isoprene and monoterpenes: a review. Adv Meteorol 2010:art. ID 408696CrossRefGoogle Scholar
  49. Shennan JL (2006) Utilisation of C2–C4 gaseous hydrocarbons and isoprene by microorganisms. J Chem Technol Biotechnol 81:237–256CrossRefGoogle Scholar
  50. Srikanta Dani KG, Silva Benavides AM, Michelozzi M, Peluso G, Torzillo G, Loreto F (2017) Relationship between isoprene emission and photosynthesis in diatoms, and its implications for global marine isoprene estimates. Mar Chem 189:17–24CrossRefGoogle Scholar
  51. Srivastva N, Shukla AK, Singh RS, Upadhyay SN, Dubey SK (2015) Characterization of bacterial isolates from rubber dump site and their use in biodegradation of isoprene in batch and continuous bioreactors. Bioresour Technol 188:84–91CrossRefGoogle Scholar
  52. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefGoogle Scholar
  53. van Ginkel CG, Welten HGJ, de Bont JAM (1987a) Oxidation of gaseous and volatile hydrocarbons by selected alkene-utilizing bacteria. Appl Environ Microbiol 53:2903–2907PubMedPubMedCentralGoogle Scholar
  54. van Ginkel CG, de Jong E, Tilanus JWR, de Bont JAM (1987b) Microbial oxidation of isoprene, a biogenic foliage volatile and of 1,3-butadiene, an anthropogenic gas. FEMS Microbiol Lett 45:275–279CrossRefGoogle Scholar
  55. van Hylckama Vlieg JET, Kingma J, van den Wijngaard AJ, Janssen DB (1998) A glutathione S-transferase with activity towards cis-1,2-dichloroepoxyethane is involved in isoprene utilization by Rhodococcus sp. strain AD45. Appl Environ Microbiol 64:2800–2805PubMedPubMedCentralGoogle Scholar
  56. van Hylckama Vlieg JET, Kingma J, Kruizinga W, Janssen DB (1999) Purification of a glutathione S-transferase and a glutathione conjugate-specific dehydrogenase involved in isoprene metabolism in Rhodococcus sp. strain AD45. J Bacteriol 181:2094–2101PubMedPubMedCentralGoogle Scholar
  57. van Hylckama Vlieg JET, Leemhuis H, Spelberg JHL, Janssen DB (2000) Characterization of the gene cluster involved in isoprene metabolism in Rhodococcus sp. strain AD45. J Bacteriol 182:1956–1963CrossRefGoogle Scholar
  58. Wang Y, Huang WE, Cui L, Wagner M (2016) Single cell stable isotope probing in microbiology using Raman microspectroscopy. Curr Opin Biotechnol 41:34–42CrossRefGoogle Scholar
  59. Zeinali N, Altarawneh M, Li D, Al-Nu’airat J, Dlugogorski BZ (2016) New mechanistic insights: why do plants produce isoprene? ACS Omega 1:220–225CrossRefGoogle Scholar

Copyright information

© Crown 2019

Authors and Affiliations

  • Andrew T. Crombie
    • 1
    Email author
  • Nasmille L. Mejia-Florez
    • 2
  • Terry J. McGenity
    • 3
  • J. Colin Murrell
    • 4
  1. 1.School of Biological SciencesUniversity of East AngliaNorwichUK
  2. 2.School of Environmental SciencesUniversity of East AngliaNorwichUK
  3. 3.School of Biological SciencesUniversity of EssexColchesterUK
  4. 4.School of Environmental Sciences, University of East AngliaNorwich Research ParkNorwichUK

Personalised recommendations