Genetic Features and Regulation of n-Alkane Metabolism in Yeasts

  • Ryouichi FukudaEmail author
  • Akinori Ohta
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


The yeasts Candida tropicalis, Candida maltosa, and Yarrowia lipolytica have an excellent ability to use n-alkanes as the sole carbon and energy source. Here, we summarize the current knowledge of the genetic features and regulation of n-alkane metabolism in these yeasts. The transcription of genes encoding the CYP52-family cytochromes P450 that catalyze the initial hydroxylation of n-alkanes has been shown to be activated when these yeasts are cultured in the presence of n-alkanes. In Y. lipolytica, the transcription of ALK1, the gene encoding P450, is activated by a complex composed of two basic helix-loop-helix transcription activators Yas1p and Yas2p through a promoter element ARE1. This transcription is regulated by an Opi1-family transcriptional repressor Yas3p. In the absence of n-alkanes, Yas3p binds to Yas2p in the nucleus thereby repressing the transcription of ALK1. However, in the presence of n-alkanes, Yas3p is sequestered to the endoplasmic reticulum to derepress the transcription of the gene.


  1. Barth G, Gaillardin C (1996) Yarrowia lipolytica. In: Wolf K (ed) Non-conventional yeast in biotechnology. A handbook. Springer, Berlin, pp 313–388CrossRefGoogle Scholar
  2. Barth G, Gaillardin C (1997) Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol Rev 19:219–237CrossRefGoogle Scholar
  3. Bethea EK, Carver BJ, Montedonico AE, Reynolds TB (2010) The inositol regulon controls viability in Candida glabrata. Microbiology 156:452–462CrossRefGoogle Scholar
  4. Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S et al (2009) Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459:657–662CrossRefGoogle Scholar
  5. Chen YL, de Bernardis F, Yu SJ, Sandini S, Kauffman S et al (2015) Candida albicans OPI1 regulates filamentous growth and virulence in vaginal infections, but not inositol biosynthesis. PLoS One 10:e0116974CrossRefGoogle Scholar
  6. Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM (2014) Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 38:254–299CrossRefGoogle Scholar
  7. Craft DL, Madduri KM, Eshoo M, Wilson CR (2003) Identification and characterization of the CYP52 family of Candida tropicalis ATCC 20336, important for the conversion of fatty acids and alkanes to α,ω-dicarboxylic acids. Appl Environ Microbiol 69:5983–5991CrossRefGoogle Scholar
  8. Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S et al (2004) Genome evolution in yeasts. Nature 430:35–44CrossRefGoogle Scholar
  9. Endoh-Yamagami S, Hirakawa K, Morioka D, Fukuda R, Ohta A (2007) Basic helix-loop-helix transcription factor heterocomplex of Yas1p and Yas2p regulates cytochrome P450 expression in response to alkanes in the yeast Yarrowia lipolytica. Eukaryot Cell 6:734–743CrossRefGoogle Scholar
  10. Federovitch CM, Ron D, Hampton RY (2005) The dynamic ER: experimental approaches and current questions. Curr Opin Cell Biol 17:409–414CrossRefGoogle Scholar
  11. Fickers P, Benetti PH, Waché Y, Marty A, Mauersberger S et al (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5:527–543CrossRefGoogle Scholar
  12. Fukuda R (2013) Metabolism of hydrophobic carbon sources and regulation of it in n-alkane-assimilating yeast Yarrowia lipolytica. Biosci Biotechnol Biochem 77:1149–1154CrossRefGoogle Scholar
  13. Fukuda R, Ohta A (2013) Utilization of hydrophobic substrate by Yarrowia lipolytica. In: Barth G (ed) Yarrowia lipolytica genetics, genomics, and physiology. Springer, Heidelberg, pp 111–119CrossRefGoogle Scholar
  14. Gurvitz A, Rottensteiner H (2006) The biochemistry of oleate induction: transcriptional upregulation and peroxisome proliferation. Biochim Biophys Acta 1763:1392–1402CrossRefGoogle Scholar
  15. Henry SA, Kohlwein SD, Carman GM (2012) Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics 190:317–349CrossRefGoogle Scholar
  16. Heyken WT, Repenning A, Kumme J, Schuller HJ (2005) Constitutive expression of yeast phospholipid biosynthetic genes by variants of Ino2 activator defective for interaction with Opi1 repressor. Mol Microbiol 56:696–707CrossRefGoogle Scholar
  17. Hirakawa K, Kobayashi S, Inoue T, Endoh-Yamagami S, Fukuda R, Ohta A (2009) Yas3p, an Opi1 family transcription factor, regulates cytochrome P450 expression in response to n-alkanes in Yarrowia lipolytica. J Biol Chem 284:7126–7137CrossRefGoogle Scholar
  18. Iida T, Ohta A, Takagi M (1998) Cloning and characterization of an n-alkane-inducible cytochrome P450 gene essential for n-decane assimilation by Yarrowia lipolytica. Yeast 14:1387–1397CrossRefGoogle Scholar
  19. Iida T, Sumita T, Ohta A, Takagi M (2000) The cytochrome P450ALK multigene family of an n-alkane-assimilating yeast, Yarrowia lipolytica: cloning and characterization of genes coding for new CYP52 family members. Yeast 16:1077–1087CrossRefGoogle Scholar
  20. Iwama R, Kobayashi S, Ohta A, Horiuchi H, Fukuda R (2014) Fatty aldehyde dehydrogenase multigene family involved in the assimilation of n-alkanes in Yarrowia lipolytica. J Biol Chem 289:33275–33286CrossRefGoogle Scholar
  21. Iwama R, Kobayashi S, Ohta A, Horiuchi H, Fukuda R (2015) Alcohol dehydrogenases and an alcohol oxidase involved in the assimilation of exogenous fatty alcohols in Yarrowia lipolytica. FEMS Yeast Res 15:fov014CrossRefGoogle Scholar
  22. Iwama R, Kobayashi S, Ishimaru C, Ohta A, Horiuchi H, Fukuda R (2016) Functional roles and substrate specificities of twelve cytochromes P450 belonging to CYP52 family in n-alkane assimilating yeast Yarrowia lipolytica. Fungal Genet Biol 91:43–54CrossRefGoogle Scholar
  23. Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S et al (2004) The diploid genome sequence of Candida albicans. Proc Natl Acad Sci USA 101:7329–7334CrossRefGoogle Scholar
  24. Kayikci Ö, Nielsen J (2015) Glucose repression in Saccharomyces cerevisiae. FEMS Yeast Res 15:fov068CrossRefGoogle Scholar
  25. Kobayashi S, Hirakawa K, Fukuda R, Ohta A (2008) Disruption of the SCS2 ortholog in the alkane-assimilating yeast Yarrowia lipolytica impairs its growth on n-decane, but does not impair inositol prototrophy. Biosci Biotechnol Biochem 72:2219–2223CrossRefGoogle Scholar
  26. Kobayashi S, Hirakawa K, Horiuchi H, Fukuda R, Ohta A (2013) Phosphatidic acid and phosphoinositides facilitate liposome association of Yas3p and potentiate derepression of ARE1 (alkane-responsive element one)-mediated transcription control. Fungal Genet Biol 61:100–110CrossRefGoogle Scholar
  27. Kobayashi S, Tezaki S, Horiuchi H, Fukuda R, Ohta A (2015) Acidic phospholipid-independent interaction of Yas3p, an Opi1-family transcriptional repressor of Yarrowia lipolytica, with the endoplasmic reticulum. Yeast 32:691–701CrossRefGoogle Scholar
  28. Lebeault JM, Lode ET, Coon MJ (1971) Fatty acid and hydrocarbon hydroxylation in yeast: role of cytochrome P-450 in Candida tropicalis. Biochem Biophys Res Commun 42:413–419CrossRefGoogle Scholar
  29. Loewen CJ, Gaspar ML, Jesch SA, Delon C, Ktistakis NT et al (2004) Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science 304:1644–1647CrossRefGoogle Scholar
  30. Massey SE, Moura G, Beltrão P, Almeida R, Garey JR et al (2003) Comparative evolutionary genomics unveils the molecular mechanism of reassignment of the CTG codon in Candida spp. Genome Res 13:544–557CrossRefGoogle Scholar
  31. Mauersberger S, Kärgel E, Matyashova RNM, Mueller HG (1987) Subcellular organization of alkane oxidation in the yeast Candida maltosa. J Basic Microbiol 27:565–582CrossRefGoogle Scholar
  32. Mauersberger S, Ohkuma M, Schunck WH, Takagi M (1996) Candida maltosa. In: Wolf K (ed) Nonconventional yeasts in biotechnology. Springer, Berlin, pp 411–580CrossRefGoogle Scholar
  33. Mori K, Iwama R, Kobayashi S, Horiuchi H, Fukuda R, Ohta A (2013) Transcriptional repression by glycerol of genes involved in the assimilation of n-alkanes and fatty acids in yeast Yarrowia lipolytica. FEMS Yeast Res 13:233–240CrossRefGoogle Scholar
  34. Murre C, Bain G, van Dijk MA, Engel I, Furnari BA et al (1994) Structure and function of helix-loop-helix proteins. Biochim Biophys Acta 1218:129–135CrossRefGoogle Scholar
  35. Nelson DR (2009) The cytochrome p450 homepage. Hum Genomics 4:59–65PubMedPubMedCentralGoogle Scholar
  36. Nicaud JM (2012) Yarrowia lipolytica. Yeast 29:409–418CrossRefGoogle Scholar
  37. Ohkuma M, Tanimoto T, Yano K, Takagi M (1991) CYP52 (cytochrome P450alk) multigene family in Candida maltosa: molecular cloning and nucleotide sequence of the two tandemly arranged genes. DNA Cell Biol 10:271–282CrossRefGoogle Scholar
  38. Ohkuma M, Muraoka S, Tanimoto T, Fujii M, Ohta A, Takagi M (1995a) CYP52 (cytochrome P450alk) multigene family in Candida maltosa: identification and characterization of eight members. DNA Cell Biol 14:163–173CrossRefGoogle Scholar
  39. Ohkuma M, Park SM, Zimmer T, Menzel R, Vogel F et al (1995b) Proliferation of intracellular membrane structures upon homologous overproduction of cytochrome P-450 in Candida maltosa. Biochim Biophys Acta 1236:163–169CrossRefGoogle Scholar
  40. Osumi M, Miwa N, Teranishi Y, Tanaka A, Fukui S (1974) Ultrastructure of Candida yeasts grown on n-alkanes. Appearance of microbodies and its relationship to high catalase activity. Arch Microbiol 99:181–201CrossRefGoogle Scholar
  41. Rodicio R, López ML, Cuadrado S, Cid AF, Redruello B et al (2008) Differential control of isocitrate lyase gene transcription by non-fermentable carbon sources in the milk yeast Kluyveromyces lactis. FEBS Lett 582:549–557CrossRefGoogle Scholar
  42. Sanglard D, Chen C, Loper JC (1987) Isolation of the alkane inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis. Biochem Biophys Res Commun 144:251–257CrossRefGoogle Scholar
  43. Schunck WH, Vogel F, Gross B, Kärgel E, Mauersberger S et al (1991) Comparison of two cytochromes P-450 from Candida maltosa: primary structures, substrate specificities and effects of their expression in Saccharomyces cerevisiae on the proliferation of the endoplasmic reticulum. Eur J Cell Biol 55:336–345PubMedGoogle Scholar
  44. Seghezzi W, Sanglard D, Fiechter A (1991) Characterization of a second alkane-inducible cytochrome P450-encoding gene, CYP52A2, from Candida tropicalis. Gene 106:51–60CrossRefGoogle Scholar
  45. Seghezzi W, Meili C, Ruffiner R, Kuenzi R, Sanglard D, Fiechter A (1992) Identification and characterization of additional members of the cytochrome P450 multigene family CYP52 of Candida tropicalis. DNA Cell Biol 11:767–780CrossRefGoogle Scholar
  46. Sugiyama H, Ohkuma M, Masuda Y, Park SM, Ohta A, Takagi M (1995) In vivo evidence for non-universal usage of the codon CUG in Candida maltosa. Yeast 11:43–52CrossRefGoogle Scholar
  47. Sumita T, Iida T, Yamagami S, Horiuchi H, Takagi M, Ohta A (2002) YlALK1 encoding the cytochrome P450ALK1 in Yarrowia lipolytica is transcriptionally induced by n-alkane through two distinct cis-elements on its promoter. Biochem Biophys Res Commun 294:1071–1078CrossRefGoogle Scholar
  48. Takai H, Iwama R, Kobayashi S, Horiuchi H, Fukuda R, Ohta A (2012) Construction and characterization of a Yarrowia lipolytica mutant lacking genes encoding cytochromes P450 subfamily 52. Fungal Genet Biol 49:58–64CrossRefGoogle Scholar
  49. Tanaka A, Fukui S (1989) Metabolism of n-alkanes. In: The yeast. Academic, London, pp 261–287Google Scholar
  50. Tenagy PJS, Iwama R, Kobayashi S, Ohta A et al (2015) Involvement of acyl-CoA synthetase genes in n-alkane assimilation and fatty acid utilization in yeast Yarrowia lipolytica. FEMS Yeast Res 15:fov031CrossRefGoogle Scholar
  51. Ueda T, Suzuki T, Yokogawa T, Nishikawa K, Watanabe K (1994) Unique structure of new serine tRNAs responsible for decoding leucine codon CUG in various Candida species and their putative ancestral tRNA genes. Biochimie 76:1217–1222CrossRefGoogle Scholar
  52. Van Bogaert IN, De Mey M, Develter D, Soetaert W, Vandamme EJ (2009) Importance of the cytochrome P450 monooxygenase CYP52 family for the sophorolipid-producing yeast Candida bombicola. FEMS Yeast Res 9:87–94CrossRefGoogle Scholar
  53. Vogel F, Gengnagel C, Kärgel E, Müller HG, Schunck WH (1992) Immunocytochemical localization of alkane-inducible cytochrome P-450 and its NADPH-dependent reductase in the yeast Candida maltosa. Eur J Cell Biol 57:285–291PubMedGoogle Scholar
  54. Yamagami S, Iida T, Nagata Y, Ohta A, Takagi M (2001) Isolation and characterization of acetoacetyl-CoA thiolase gene essential for n-decane assimilation in yeast Yarrowia lipolytica. Biochem Biophys Res Commun 282:832–838CrossRefGoogle Scholar
  55. Yamagami S, Morioka D, Fukuda R, Ohta A (2004) A basic helix-loop-helix transcription factor essential for cytochrome P450 induction in response to alkanes in yeast Yarrowia lipolytica. J Biol Chem 279:22183–22189CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyThe University of TokyoTokyoJapan
  2. 2.Department of Biological Chemistry, College of Bioscience and BiotechnologyChubu UniversityKasugaiJapan

Personalised recommendations