Advertisement

Energetic and Other Quantitative Aspects of Microbial Hydrocarbon Utilization: An Introduction

  • F. WiddelEmail author
  • F. Musat
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Hydrocarbons represent “energy-rich” growth substrates for aerobic microorganisms and in principle allow high growth yields. In contrast, the energy gain with hydrocarbons in many anaerobic microorganisms is very low. The maximum gain of energy per mol of hydrocarbon degraded in the catabolism is predicted from calculated ΔG values. Some anaerobic degradation reactions of hydrocarbons with very low-energy gain as well as anaerobic activation reactions of hydrocarbons deserve particular attention from a bioenergetic point of view.

References

  1. Anderson RT, Lovley DR (2000) Hexadecane decay by methanogenesis. Nature 404:722–723CrossRefGoogle Scholar
  2. Atkins PW, de Paula J (2006) Physical chemistry, 8th edn. Oxford University Press, OxfordGoogle Scholar
  3. Boll M, Estelmann S, Heider J (2018) Anaerobic Degradation of Hydrocarbons: Mechanisms of Hydrocarbon Activation in the Absence of Oxygen. In: Boll M (ed) Anaerobic Utilization of Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology. Springer, ChamCrossRefGoogle Scholar
  4. Bonin P, Gilewicz M, Bertrand JC (1992) Effects of oxygen on Pseudomonas nautica grown on n-alkane with or without nitrate. Arch Microbiol 157:538–545Google Scholar
  5. Bordel S, Muñoz R, Díaz L, Villaverde S (2007) New insights on toluene biodegradation by Pseudomonas putida F1: influence of pollutant concentration and excreted metabolites. Appl Microbiol Biotechnol 74:857–866CrossRefGoogle Scholar
  6. Brewer PG, Goyet C, Friedrich G (1997) Direct observation of the oceanic CO2 increase revisited. Proc Natl Acad Sci USA 94:8308–8313CrossRefGoogle Scholar
  7. Chakraborty R, Coates JD (2004) Anaerobic degradation of monoaromatic hydrocarbons. Appl Microbiol Biotechnol 64:437–446CrossRefGoogle Scholar
  8. D’Ans J, Lax E (1983) Taschenbuch für Chemiker und Physiker, Bd 2, 2. Aufl. Springer, BerlinCrossRefGoogle Scholar
  9. Dean JA (2004) Lange’s handbook of chemistry, 16th edn. McGraw-Hill, New YorkGoogle Scholar
  10. Dinkla IJT, Gabor E, Janssen DB (2001) Effects of iron limitation on the degradation of toluene by Pseudomonas strains carrying the TOL (pWWO) plasmid. Appl Environ Microbiol 67:3406–3412CrossRefGoogle Scholar
  11. Dolfing J, Larter SR, Head IM (2008) Thermodynamic constraints on methanogenic crude oil biodegradation. ISME J 2:442–452CrossRefGoogle Scholar
  12. Einsele A (1983) Biomass from higher n-alkanes. In: Rehm H-J, Reed G (eds) Biotechnology, vol 3. Verlag Chemie, Weinheim, pp 43–81Google Scholar
  13. Erickson LE (1981) Energetic yields associated with hydrocarbon fermentations. Biotechnol Bioeng 23:793–803CrossRefGoogle Scholar
  14. Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH, Op den Camp HJ, Jetten MS, Strous M (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol 10:3164–3173CrossRefGoogle Scholar
  15. Ferrer A, Erickson LE (1979) Evaluation of data consistency and estimation of yield parameters in hydrocarbon fermentations. Biotechnol Bioeng 21:2203–2233CrossRefGoogle Scholar
  16. Garrels RM, Christ CL (1965) Solutions, minerals and equilibria. Harper & Row, New YorkGoogle Scholar
  17. Harms H, Wick LY, Smith KEC (2017) Matrix:Hydrophobic Compound Interactions. In: Krell T (ed) Cellular Ecophysiology of Microbe. Handbook of Hydrocarbon and Lipid Microbiology. Springer, ChamGoogle Scholar
  18. Heijnen JJ, Van Dijken JP (1992) In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms. Biotechnol Bioeng 39:833–858CrossRefGoogle Scholar
  19. Himo F (2002) Catalytic mechanism of benzylsuccinate synthase, a theoretical study. J Phys Chem B 106:7688–7692CrossRefGoogle Scholar
  20. Himo F (2005) C−C bond formation and cleavage in radical enzymes, a theoretical perspective. Biochim Biophys Acta 1707:24–33CrossRefGoogle Scholar
  21. Jackson BE, McInerney MJ (2002) Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature 415:454–456CrossRefGoogle Scholar
  22. Jones DM, Head IM, Gray ND, Adams JJ, Rowan AK, Aitken CM, Bennett B, Huang H, Brown A, Bowler BF, Oldenburg T, Erdmann M, Larter SR (2008) Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451:176–180CrossRefGoogle Scholar
  23. Krüger M, Meyerdierks A, Glöckner FO, Amann R, Widdel F, Kube M, Reinhardt R, Kahnt J, Thauer RK, Shima S (2003) A conspicuous nickel protein in microbial mats that oxidise methane anaerobically. Nature 426:878–881CrossRefGoogle Scholar
  24. Leak DJ, Dalton H (1985) Growth yields of methanotrophs. Appl Microbiol Biotechnol 23:477–481CrossRefGoogle Scholar
  25. McMillen DF, Golden DM (1982) Hydrocarbon bond dissociation energies. Annu Rev Phys Chem 33:493–532CrossRefGoogle Scholar
  26. Nauhaus K, Boetius A, Krüger M, Widdel F (2002) In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gashydrate area. Environ Microbiol 4:296–305CrossRefGoogle Scholar
  27. Nauhaus K, Albrecht M, Elvert M, Boetius A, Widdel F (2007) In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulphate. Environ Microbiol 9:187–196CrossRefGoogle Scholar
  28. Pfennig N, Biebl H (1976) Desulfuromonas acetoxidans gen. nov. and sp. nov., an new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol 110:3–12CrossRefGoogle Scholar
  29. Pirt SJ (1965) The maintenance energy of bacteria in growing cultures. Proc R Soc Lond 163B:224–231Google Scholar
  30. Rabus R, Widdel F (1995) Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol 163:96–103CrossRefGoogle Scholar
  31. Rabus R, Nordhaus R, Ludwig W, Widdel F (1993) Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl Environ Microbiol 59:1444–1451PubMedPubMedCentralGoogle Scholar
  32. Rabus R, Wilkes H, Behrends A, Armstroff A, Fischer T, Pierik AJ, Widdel F (2001) Anaerobic initial reaction of n-alkanes: evidence for (1-methylpentyl)succinate as initial product and for involvement of an organic radical in the metabolism of n-hexane in a denitrifying bacterium. J Bacteriol 183:1707–1715CrossRefGoogle Scholar
  33. Reardon KF, Mosteller DC, Bull Rogers JD (2000) Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F1. Biotechnol Bioeng 69:385–400CrossRefGoogle Scholar
  34. Ron E, Rosenberg E (2010) Bioremediation/Biomitigation: Introduction. In: Timmis KN (ed) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, HeidelbergGoogle Scholar
  35. Russell JB (2007) The energy spilling reactions of bacteria and other organisms. J Mol Microbiol Biotechnol 13:1–11CrossRefGoogle Scholar
  36. Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280PubMedPubMedCentralGoogle Scholar
  37. Schink B (2002) Anaerobic digestion: concepts, limits and perspectives. Water Sci Technol 45:1–8CrossRefGoogle Scholar
  38. Shima S, Thauer RK (2005) Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea. Curr Opin Microbiol 8:643–648CrossRefGoogle Scholar
  39. So CM, Young LY (1999) Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. Appl Environ Microbiol 65:2969–2976PubMedPubMedCentralGoogle Scholar
  40. Stouthamer AH (1988) Bioenergetics and yields with electron acceptors other than oxygen. In: Erickson LE, Fung DY-C (eds) Handbook of anaerobic fermentations. Marcel Dekker, New York, pp 345–437Google Scholar
  41. Stumm W, Morgan JJ (1981) Aquatic chemistry, 2nd edn. John Wiley & Sons, New YorkGoogle Scholar
  42. Tan NC, van Doesburg W, Langenhoff AA, Stams AJ (2006) Benzene degradation coupled with chlorate reduction in a soil column study. Biodegradation 17:113–119CrossRefGoogle Scholar
  43. Tempest DW, Neijssel OM (1984) The Status of YATP and maintenance energy as biologically interpretable phenomena. Annu Rev Microbiol 38:459–486CrossRefGoogle Scholar
  44. Thauer RK, Shima S (2008) Methane as a fuel for anaerobic microorganisms. Annu NY Acad Sci 1125:158–170CrossRefGoogle Scholar
  45. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180PubMedPubMedCentralGoogle Scholar
  46. Tissot BP, Welte DH (1984) Petroleum formation and occurrence. Springer, BerlinCrossRefGoogle Scholar
  47. van Dijken JP, Harder W (1975) Growth yields of microorganisms on methanol and methane. A theoretical study. Biotechnol Bioeng 17:15–30CrossRefGoogle Scholar
  48. Wagner F, Kleemann T, Zahn W (1969) Microbial transformations of hydrocarbons. II. Growth constants and cell composition of microbial cells derived from n-alkanes. Biotechnol Bioeng 11:393–408CrossRefGoogle Scholar
  49. Widdel F, Musat F, Knittel K, Galushko A (2007) Anaerobic degradation of hydrocarbons with sulphate as electron acceptor. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria. Cambridge University Press, Cambridge, pp 265–303CrossRefGoogle Scholar
  50. Wilhelm E, Battino R, Wilcock RJ (1977) Low-pressure solubility of gases in liquid water. Chem Rev 77:219–262CrossRefGoogle Scholar
  51. Wodzinski RS, Johnson MJ (1968) Yields of bacterial cells from hydrocarbons. Appl Microbiol 16:1886–1891PubMedPubMedCentralGoogle Scholar
  52. Yamamoto S, Alcauskas JB, Crozier TE (1976) Solubility of methane in distilled water and seawater. J Chem Eng Data 21:78–80CrossRefGoogle Scholar
  53. Zengler K, Richnow HH, Roselló-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266–269CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Max Planck Institute for Marine MicrobiologyBremenGermany
  2. 2.UFZ – Helmholtz Centre for Environmental ResearchLeipzigGermany

Personalised recommendations