Aerobic Degradation of Gasoline Ether Oxygenates

  • Michael HymanEmail author
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Ether oxygenates including methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE), tertiary amyl ether (TAME), and diisopropyl ether (DIPE) have been, and continue to be, widely used components of gasoline. The ether bonds and branched hydrocarbon structures of these compounds make these challenging molecules for microbial biodegradation processes. The collective research over the last 20 years suggests that aerobic biodegradation of MTBE and other ether oxygenates by axenic cultures occurs through three physiologically distinct processes that can be differentiated by the fate of the tertiary alcohol intermediates such as tertiary butyl alcohol (TBA) and tertiary amyl alcohol (TAA) that are common to all of these processes. These biodegradation processes represent a continuum and, in order of increasing complexity, include co-oxidation, cometabolism, and growth-supporting metabolism. This review summarizes the main microorganisms, enzymes, and pathways involved in each of these processes and highlights research areas where there is both clear consensus and areas where results are more ambiguous and likely require further investigation. Where relevant, this review also aims to illustrate how basic microbiological research has implications for the remediation of ether oxygenate contamination by aerobic treatment processes.


  1. Alexander M (1973) Nonbiodegradable and other recalcitrant molecules. Biotechnol Bioeng 15:611–647CrossRefGoogle Scholar
  2. Aslett D, Haas J, Hyman M (2011) Identification of tertiary butyl alcohol (TBA)-utilizing organisms in BioGAC reactors using 13C-DNA stable isotope probing. Biodegradation 22:961–972PubMedCrossRefPubMedCentralGoogle Scholar
  3. Auffret M, Labbé D, Thouand G, Greer CW, Fayolle-Guichard F (2009) Degradation of mixtures of hydrocarbons, gasoline and diesel oil additives by Rhodococcus aetherivorans and Rhodococcus wratislaviensis. Appl Environ Microbiol 75:7774–7782PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bastida F, Rosell M, Franchini AG, Seifert J, Finsterbusch S, Jehmlich N, Jechalke S, von Bergen M, Richnow HH (2010) Elucidating MTBE degradation in a mixed consortium using a multidisciplinary approach. FEMS Microbiol Ecol 73:370–384PubMedPubMedCentralGoogle Scholar
  5. Belhaj A, Desnoues N, Elmerich C (2002) Alkane biodegradation in Pseudomonas aeruginosa strains isolated from a polluted zone: Identification of alkB and alkB-related genes. Res Microbiol 153:339–344PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bennett K, Sadler NC, Wright AT, Yeager C, Hyman MR (2016) Activity-based protein profiling of ammonia monooxygenase in Nitrosomonas europaea. Appl Environ Microbiol 82:2270–2279PubMedPubMedCentralCrossRefGoogle Scholar
  7. Béguin P, Chauvaux S, Miras I, François A, Fayolle F, Monot F (2003) Genes involved in the degradation of ether fuels by bacteria of the Mycobacterium/Rhodococcus group. Oil Gas Sci Technol 58:489–495CrossRefGoogle Scholar
  8. Bravo AL, Sigala JC, Borgne SL, Morales M (2015) Expression of an alkane hydroxylase (alkb) gene and methyl-tert-butyl ether co-metabolic oxidation in Pseudomonas citronellolis. Biotechnol Lett 37:807–814PubMedCrossRefPubMedCentralGoogle Scholar
  9. Chauvaux S, Chevalier F, Le Dantec C, Fayolle F, Miras I, Kunst F, Béguin P (2001) Cloning of a genetically unstable cytochrome P-450 gene cluster involved in degradation of the pollutant ethyl tert-butyl ether by Rhodococcus ruber. J Bacteriol 183:6551–6557PubMedPubMedCentralCrossRefGoogle Scholar
  10. Curry S, Ciuffetti L, Hyman M (1996) Inhibition of growth of a Graphium sp. on gaseous n-alkanes by gaseous n-alkynes and n-alkenes. Appl Environ Microbiol 62:2198–2200PubMedPubMedCentralGoogle Scholar
  11. de Klerk H, van der Linden AS (1974) Bacterial degradation of cyclohexane. Participation of a co-oxidation reaction. Antonie Van Leeuwenhoek 40:7–15PubMedCrossRefPubMedCentralGoogle Scholar
  12. Deeb RA, Hu H-Y, Hanson JR, Scow KM, Alvarez-Cohen L (2001) Substrate interactions in BTEX and MTBE mixtures by an MTBE-degrading isolate. Environ Sci Technol 35:312–317PubMedCrossRefPubMedCentralGoogle Scholar
  13. Degnan PH, Taga ME, Goodman AL (2014) Vitamin B12 as a modulator of gut microbial ecology. Cell Metab 20:769–778PubMedPubMedCentralCrossRefGoogle Scholar
  14. Ensign SA (1996) Aliphatic and chlorinated alkenes and epoxides as inducers of alkene monooxygenase and epoxidase activities in Xanthobacter strain Py2. Appl Environ Microbiol 62:61–66PubMedPubMedCentralGoogle Scholar
  15. Fan F, Germann MW, Gadda G (2006) Mechanistic studies of choline oxidase with betaine aldehyde and its isosteric analogue, 3-3dimethylbutyraldehyde. Biochemistry 45:1979–1986PubMedCrossRefPubMedCentralGoogle Scholar
  16. Fayolle F, Hernandez G, Roux FL, Vandecasteele J-P (1998) Isolation of two aerobic bacterial strains that degrade efficiently ethyl t-butyl ether (ETBE). Biotechnol Lett 20:283–286CrossRefGoogle Scholar
  17. Ferreira NL, Maciel H, Mathis H, Monot F, Fayolle-Guichard F, Greer CW (2006a) Isolation and characterization of a new Mycobacterium austroafricanum strain, IFP 2015, growing on MTBE. Appl Microbiol Biotechnol 70:358–365CrossRefGoogle Scholar
  18. Ferreira NL, Labbé D, Monot F, Fayolle-Guichard F, Greer CW (2006b) Genes involved in the methyl tert-butyl ether (MTBE) metabolic pathway of Mycobacterium austroafricanum IFP 2012. Microbiology 152:1361–1374CrossRefGoogle Scholar
  19. Ferreira NL, Mathis H, Labbé D, Monot F, Greer CW, Fayolle-Guichard F (2007) N-alkane assimilation and tert-butyl alcohol (TBA) oxidation capacity in Mycobacterium austroafricanum strains. Appl Microbiol Biotechnol 75:909–919CrossRefGoogle Scholar
  20. Fournier D, Hawari J, Halasz A, Streger SH, McClay KR, Masuda H, Hatzinger PB (2009) Aerobic biodegradation of N-nitrosodimethylamine by the propanotroph Rhodococcus ruber ENV425. Appl Environ Microbiol 75:5088–5093PubMedPubMedCentralCrossRefGoogle Scholar
  21. François A, Mathis H, Godefroy D, Piveteau P, Fayolle F, Monot F (2002) Biodegradation of methyl tert-butyl ether and other fuel oxygenates by a new strain, Mycobacterium austroafricanum IFP2012. Appl Environ Microbiol 68:2754–2762PubMedPubMedCentralCrossRefGoogle Scholar
  22. François A, Garnier L, Mathis H, Fayolle F, Monot F (2003) Roles of tert-butyl formate, tert-butyl alcohol and acetone in the regulation of methyl tert-butyl ether degradation by Mycobacterium austroafricanum IFP 2012. Appl Microbiol Biotechnol 62:256–262PubMedCrossRefPubMedCentralGoogle Scholar
  23. Garnier PM, Auria R, Augur C, Revah S (1999) Cometabolic biodegradation of methyl t-butyl ether by Pseudomonas aeruginosa grown on pentane. Appl Microbiol Biotechnol 51:498–503PubMedCrossRefPubMedCentralGoogle Scholar
  24. Garnier PM, Auria R, Augur C, Revah S (2000) Cometabolic biodegradation of methyl tert-butyl ether by a soil consortium: effect of components present in gasoline. J Gen Appl Microbiol 46:79–84PubMedCrossRefPubMedCentralGoogle Scholar
  25. Gedalanga PB, Pornwongthing P, Mora R, Chiang S-Y D, Baldwin B, Ogles D, Mahendra S (2014) Identification of biomarker genes to predict biodegradation of 1,4-dioxane. Appl Environ Microbiol 80:3209–3218PubMedPubMedCentralCrossRefGoogle Scholar
  26. Goodfellow M, Jones AL, Maldonado LA, Salanitro J (2004) Rhodococcus aetherivorans sp. nov., A new species that contains methyl t-butyl ether-degrading actinomycetes. Syst Appl Microbiol 27:61–65PubMedCrossRefPubMedCentralGoogle Scholar
  27. Gray JR, Lacrampe-Coulome G, Gandhi D, Scow KM, Wilson RD, Mackay DM, Lollar BS (2002) Carbon and hydrogen isotopic fractionation during biodegradation of methyl tert-butyl ether. Environ Sci Technol 36:1931–1938PubMedCrossRefPubMedCentralGoogle Scholar
  28. Hanson JR, Ackerman CE, Scow KM (1999) Biodegradation of methyl tert-butyl ether by a bacterial pure culture. Appl Environ Microbiol 65:4788–4792PubMedPubMedCentralGoogle Scholar
  29. Hardison LK, Curry SS, Ciuffetti LM, Hyman MR (1997) Metabolism of diethyl ether and cometabolism of methyl tert-butyl ether by a filamentous fungus, a Graphium sp. Appl Environ Microbiol 63:3059–3067PubMedPubMedCentralGoogle Scholar
  30. Hatzinger PB, McClay K, Vainberg S, Tugusheva M, Condee CW, Steffan RJ (2001) Biodegradation of methyl tert-butyl ether by a pure bacterial culture. Appl Environ Microbiol 67:5601–5607PubMedPubMedCentralCrossRefGoogle Scholar
  31. Hernandez G, Francois A, Piveteau P, Fayolle F, Monot F (2007) Method for treating bacterial effluent containing at least Gordonia terrae CIP-I-2194 ether. US Patent 7,166,457 B1Google Scholar
  32. Hernandez-Perez G, Fayolle F, Vandecasteele J-P (2001) Biodegradation of ethyl t-butyl ether (ETBE), methyl t-butyl ether (MTBE) and t-amyl ether (TAME) by Gordonia terrae. Appl Microbiol Biotechnol 55:117–121PubMedCrossRefPubMedCentralGoogle Scholar
  33. Hofrichter M, Ullrich R (2014) Oxidations catalyzed by fungal peroxygenases. Curr Opin Chem Biol 19:116–125PubMedCrossRefPubMedCentralGoogle Scholar
  34. House AJ, Hyman MR (2010) Effects of gasoline components on MTBE and TBA cometabolism by Mycobacterium austroafricanum JOB5. Biodegradation 21:525–541PubMedCrossRefPubMedCentralGoogle Scholar
  35. Hristova KR, Schmidt R, Chakicherla AY, Legler TC, Wu J, Chain PS, Scow KM, Kane SR (2007) Comparative transcriptome analysis of Methylibium petroleiphilum PM1 exposed to the fuel oxygenates methyl tert-butyl ether and ethanol. Appl Environ Microbiol 73:7347–7357PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hunkeler D, Butler BJ, Aravena R, Barker JF (2001) Monitoring biodegradation of methyl tert-butyl ether (MTBE) using compound specific isotope analysis. Environ Sci Technol 35:676–681PubMedCrossRefPubMedCentralGoogle Scholar
  37. Inoue D, Tsunoda T, Sawada K, Yamamoto N, Saito Y, Sei K, Ike M (2016) 1,4-dioxane degradation potential of members of the genera Pseudonocardia and Rhodococcus. Biodegradation 27:277–286PubMedCrossRefPubMedCentralGoogle Scholar
  38. ITRC (2005) Overview of groundwater remediation technologies for MTBE and TBA. MTBE-1. Interstate Technology and Regulatory Council, MTBE and Other Fuel oxygenates Team. Available at
  39. Jechalke S, Rosell M, Martínez-Lavanchy PM, Pérez-Leiva P, Rohwerder T, Vogt C, Richnow HH (2011) Linking low-level stable isotope fractionation to expression of the cytochrome P450 monooxygenase-encoding ethB gene for elucidation of methyl tert-butyl ether biodegradation in aerated treatment pond systems. Appl Environ Microbiol 77:1086–1096PubMedCrossRefPubMedCentralGoogle Scholar
  40. Johnson EL, Hyman MR (2006) Propane and n-butane oxidation by Pseudomonas putida GPo1. Appl Environ Microbiol 72:950–952PubMedPubMedCentralCrossRefGoogle Scholar
  41. Johnson EL, Smith CA, O’Reilly KT, Hyman MR (2004) Induction of methyl tertiary butyl ether (MTBE)-oxidizing activity in Mycobacterium vaccae JOB5 by MTBE. Appl Environ Microbiol 70:1023–1030PubMedPubMedCentralCrossRefGoogle Scholar
  42. Joshi G, Schmidt R, Scow KM, Denison MS, Hristova KR (2015) gen mdpC plays a regulatory role in the methyl tert-butyl ether degradation pathway of Methylibium petroleiphilum strain PM1. FEMS Microbiol Lett 362:1–7CrossRefGoogle Scholar
  43. Joshi G, Schmidt R, Km S, Denison MS, Hristova KR (2016) Effect of benzene and ethylbenzene on the transcription of methyl tert-butyl ether degradation genes of Methylibium petroleiphilum PM1. Microbiology 162:1563–1571PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kane SR, Chakicherla AY, Chain PSG, Schmidt R, Shin MW, Legler TC, Scow KM, Larimer FW, Lucas SM, Richardson PM, Hristova KR (2007) Whole-genome analysis of the methyl-tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1. J Bacteriol 189:1931–1945PubMedCrossRefPubMedCentralGoogle Scholar
  45. Katapodis AG, Wimalesena K, Lee J, May SW (1984) Mechanistic studies on non-heme iron monooxygenase catalysis: Epoxidation, aldehyde formation, and demethylation by the ω-hydroxylation system of Pseudomonas oleovorans. J Am Chem Soc 110:7928–7935CrossRefGoogle Scholar
  46. Kharoune M, Kharoune L, Lebault JM, Pauss A (2001) Isolation and characterization of two aerobic bacterial strains that completely degrade ethyl tert-butyl ether (ETBE). Appl Microbiol Biotechnol 55:348–353PubMedCrossRefPubMedCentralGoogle Scholar
  47. Kim Y-H, Engesser K-H, Kim S-J (2007) Physiological, numerical and molecular characterization of alkyl ether-utilizing rhodococci. Environ Microbiol 9:1497–1510PubMedCrossRefPubMedCentralGoogle Scholar
  48. Kinne M, Poraj-Kobielska M, Ralph SA, Ullrich R, Hofrichter M, Hammel KE (2009) Oxidative cleavage of diverse ethers by an extracellular fungal peroxygenase. J Biol Chem 284:29343–29349PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kohlweyer U, Thiemer B, Schräder T, Andreesen JR (2000) Tetrahydrofuran degradation by a newly isolated culture of Pseudonocardia sp. strain K1. FEMS Microbiol Lett 186:301–306PubMedCrossRefPubMedCentralGoogle Scholar
  50. Kottegoda S, Waligora E, Hyman MR (2015) Metabolism of 2-methylpropane (isobutylene) by the aerobic bacterium Mycobacterium sp. strain ELW1. Appl Environ Microbiol 81:1966–1976PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kuder T, Wilson JT, Kaiser P, Kolhatkar R, Philp P, Allen J (2005) Enrichment of stable carbon and hydrogen isotopes during anaerobic biodegradation of MTBE: microcosm and field evidence. Environ Sci Technol 39:213–220PubMedCrossRefPubMedCentralGoogle Scholar
  52. Kurteva-Yaneva N, Zahn M, Weichler M-T, Starke R, Harms H, Müller RH, Sträter N, Rohwerder T (2015) Structural basis of the stereospecificity of bacterial B12-dependent 2-hydroxyisobutyryl-CoA mutase. J Biol Chem 290:9727–9737PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kusano M, Sakai Y, Kato N, Yoshomoto H, Sone H, Tani Y (1998) Hemiacetal dehydrogenase activity in alcohol dehydrogenases in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 62:1956–1961PubMedCrossRefPubMedCentralGoogle Scholar
  54. Le Digabel Y, Demanéche S, Benoit Y, Vogel TM, Fayolle-Guichard F (2013) Ethyl tert-butyl ether (ETBE) biodegradation by a syntrophic association of Rhodococcus sp. IFP 2042 and Bradyrhizobium sp. IFP 2049 isolated from a polluted aquifer. Appl Microbiol Biotechnol 97:10531–10539PubMedCrossRefPubMedCentralGoogle Scholar
  55. Le Digabel Y, Demanéche S, Benoit Y, Fayolle-Guichard F, Vogel TM (2014) Ethyl tert-butyl ether (ETBE)-degrading microbial communities in enrichments from polluted environments. J Hazard Mater 279:502–510PubMedCrossRefPubMedCentralGoogle Scholar
  56. Lechner U, Brodkorb D, Geyer R, Hause G, Härtig C, Auling G, Fayolle-Guichard F, Piveteau P, Müller RH, Rohwerder T (2007) Aquincola tertiaricarbonis gen. nov., sp. nov., a tertiary butyl moiety-degrading bacterium. Int J Syst Evol Microbiol 57:1295–1303PubMedCrossRefPubMedCentralGoogle Scholar
  57. Liu CY, Speitel GE, Georgiou G (2001) Kinetics of methyl t-butyl ether cometabolism at low concentrations by pure cultures of butane-degrading bacteria. Appl Environ Microbiol 67:2197–2201PubMedPubMedCentralCrossRefGoogle Scholar
  58. Magaña-Reyes M, Morales M, Revah S (2005) Methyl tert-butyl ether and tert-butyl alcohol degradation by Fusarium solani. Biotechnol Lett 27:1797–1801PubMedCrossRefPubMedCentralGoogle Scholar
  59. Malandain C, Fayolle-Guichard F, Vogel TM (2010) Cytochrome P450-mediated degradation of fuel oxygenates by environmental isolates. FEMS Microbiol Ecol 72:289–296PubMedCrossRefPubMedCentralGoogle Scholar
  60. Malone VF, Chastain AJ, Ohlsson JT, Poneleit LS, Nemecek-Marshall M, Fall R (1999) Characterization of a Pseudomonas putida allylic alcohol dehydrogenase induced by growth on 2-methyl-3-buten-2-ol. Appl Environ Microbiol 65:2622–2630PubMedPubMedCentralGoogle Scholar
  61. Masuda H, McClay K, Steffan RJ, Zylstra GJ (2012a) Biodegradation of tetrahydrofuran and 1,4-dioxane by soluble diiron monooxygenase in Pseudonocardia sp. strain ENV478. J Mol Microbiol Biotechnol 22:312–316PubMedCrossRefPubMedCentralGoogle Scholar
  62. Masuda H, McClay K, Steffan RJ, Zylstra GJ (2012b) Characterization of three propane-inducible oxygenases in Mycobacterium sp. strain ENV421. Lett Appl Microbiol 55:175–181PubMedCrossRefPubMedCentralGoogle Scholar
  63. McKelvie JR, Hyman MR, Elsner M, Smith C, Aslett DM, Lacrampe-Couloume G, Sherwood-Lolar (2009) Isotopic fractionation of methyl tert-butyl ether suggests different initial reactions mechanism during aerobic biodegradation. Environ Sci Technol 43:2793–2799PubMedCrossRefPubMedCentralGoogle Scholar
  64. Mo K, Lora CO, Wanken AE, Javanmardian M, Yang M, Kulpa CF (1997) Biodegradation of methyl t-butyl ether pure bacterial cultures. Appl Microbiol Biotechnol 47:69–72PubMedCrossRefPubMedCentralGoogle Scholar
  65. Morales M, Velázquez E, Jan J, Revah S, González U, Razo-Flores E (2004) Methyl tert-butyl ether biodegradation by microbial consortia obtained from soil samples of gasoline-polluted sites in Mexico. Biotechnol Lett 26:269–275PubMedCrossRefPubMedCentralGoogle Scholar
  66. Morales M, Nava V, Velásquez E, Razo-Flores E, Revah S (2009) Mineralization of methyl tert-butyl ether and other gasoline oxygenates by Pseudomonads using short chain n-alkanes as growth source. Biodegradation 20:271–280PubMedCrossRefPubMedCentralGoogle Scholar
  67. Müller RH, Rohwerder T, Harms H (2007) Carbon conversion efficiency and limits or productive degradation of methyl tert-butyl ether and related compounds. Appl Environ Microbiol 73:1783–1791PubMedPubMedCentralCrossRefGoogle Scholar
  68. Müller RH, Rohwerder T, Harms H (2008) Degradation of fuel oxygenates and their main intermediates by Aquincola tertiaricarbonis L108. Microbiology 154:1414–1421PubMedCrossRefPubMedCentralGoogle Scholar
  69. Nagy I, Compernolle F, Ghys K, Vanderleyden J, De Mot R (1995a) A single cytochrome P-450 system is involved in degradation of the herbicides EPTC (S-ethyl dithiocarbamate) and atrazine by Rhodococcus sp. strain NI86/21. Appl Environ Microbiol 61:2056–2060PubMedPubMedCentralGoogle Scholar
  70. Nagy I, Schoofs G, Compernolle F, Proost P, Vanderleyden J, De Mot R (1995b) Degradation of the thiocarbamate herbicide EPTC (S-ethyl dipropylcarbamothioate) and biosafening by Rhodococcus sp. strain NI86/21 involve an inducible cytochrome P-450 system and aldehyde dehydrogenase. J Bacteriol 177:676–687PubMedPubMedCentralCrossRefGoogle Scholar
  71. Nakatsu CH, Hristova K, Hanada S, Meng X-Y, Hanson JR, Scow KM, Kamagata Y (2006) Methylibium petroleiphilum gen nov., sp. nov., a novel methyl tert-butyl ether-degrading methylotroph of the Betaproteobacteria. Int J Syst Evol Microbiol 56:983–989PubMedCrossRefPubMedCentralGoogle Scholar
  72. Owens CR, Karceski JK, Mattes TE (2009) Gaseous alkene biotransformation and enantioselective epoxyalkane formation by Nocardioides sp. strain JS614. Appl Microbiol Biotechnol 84:685–692PubMedCrossRefPubMedCentralGoogle Scholar
  73. Peter S, Kinne M, Wang X, Ullrich R, Kayser G, Groves JT, Hofrichter M (2011) Selective hydroxylation of alkanes by an extracellular fungal peroxygenase. FEBS J 278:3567–3675CrossRefGoogle Scholar
  74. Piveteau P, Fayolle F, Vandecasteele J-P, Monot F (2001) Biodegradation of tert-butyl alcohol and related xenobiotics by a methylotrophic bacterial isolate. Appl Microbiol Biotechnol 55:369–373PubMedCrossRefPubMedCentralGoogle Scholar
  75. Przybylski D, Rohwerder T, Dilbner C, Maskow T, Harms H, Müller RH (2015) Exploiting mixtures of H2, CO2, and O2 for improved production of methacrylate precursor 2-hydroxyisobutyric acid by engineered Cupriavidus necator strains. Appl Microbiol Biotechnol 99:2131–2145PubMedCrossRefPubMedCentralGoogle Scholar
  76. Rohde M-T, Tischer S, Harms H, Rohwerder T (2016) Production of 2-hydroxyisobutyric acid from methanol by Methylobacterium extorquens AM1 expressing (R)-3-hydroxybutyryl-CoA isomerizing enzymes. Appl Environ Microbiol. Scholar
  77. Rohwerder T, Müller RH (2010) Biosynthesis of 2-hydroxyisobutyric acid (2-HIBA) from renewable carbon. Microb Cell Factories 9:13CrossRefGoogle Scholar
  78. Rohwerder T, Breuer U, Benndorf D, Lechner U, Müller RH (2006) The alkyl tert-butyl ether intermediate 2-hydroxyisobutyrate is degraded by a novel cobalamin-dependent mutase pathway. Appl Environ Microbiol 72:4128–4135PubMedPubMedCentralCrossRefGoogle Scholar
  79. Rosell M, Barceló D, Rohwerder T, Breuer U, Gehre M, Richnow HH (2007) Variations in 13C/12C and D/H enrichment factors of aerobic bacterial fuel oxygenate degradation. Environ Sci Technol 41:2036–2043PubMedCrossRefPubMedCentralGoogle Scholar
  80. Rosell M, Finsterbusch S, Jechalke S, Hübschmann T, Vogt C, Richnow HH (2010) Evaluation of the effects of low oxygen concentration on stable isotope fractionation during aerobic MTBE biodegradation. Environ Sci Technol 44:319–315CrossRefGoogle Scholar
  81. Rosell M, Gonzales-Olmos R, Rohwerder T, Rusevova K, Georgi A, Kopinke F-D, Richnow HH (2012) Critical evaluation of the 2D-CSIA scheme for distinguishing fuel oxygenate degradation reaction mechanisms. Environ Sci Technol 46:4757–4766PubMedCrossRefPubMedCentralGoogle Scholar
  82. Salanitro JP, Diaz LA, Williams MP, Wisniewski HL (1994) Isolation of a bacterial culture that degrades methyl t-butyl ether. Appl Environ Microbiol 60:2593–2596PubMedPubMedCentralGoogle Scholar
  83. Sales CM, Grostern A, Parales JV, Parales RE, Alvarez-Cohen L (2013) Oxidation of the cyclic ethers 1,4-dioxane and tetrahydrofuran by a monooxygenase in two Pseudonocardia species. Appl Environ Microbiol 79:7702–7708PubMedPubMedCentralCrossRefGoogle Scholar
  84. Schäfer F, Breuer U, Benndorf D, von Bergen M, Harms H, Müller RH (2007) Growth of Aquincola tertiaricarbonis L108 on tert-butyl alcohol leads to the induction of a phthalate dioxygenase-related protein and its associated oxidoreductase subunit. Eng Life Sci 7:512–519CrossRefGoogle Scholar
  85. Schäfer F, Muzica L, Schuster J, Treuter N, Rosell M, Harms H, Müller RH, Rohwerder T (2011) Formation of alkenes via degradation of tert-alkyl ethers and alcohols by Aquincola tertiaricarbonis L108 and Methylibium spp. Appl Environ Microbiol 77:5981–5987PubMedPubMedCentralCrossRefGoogle Scholar
  86. Schäfer F, Schuster J, Wuurz B, Härtig C, Harms H, Müller RH, Rohwerder T (2012) Synthesis of short-chain diols and unsaturated alcohols from secondary alcohol substrates by the Rieske nonheme mononuclear iron oxygenase MdpJ. Appl Environ Microbiol 78:6280–6284PubMedPubMedCentralCrossRefGoogle Scholar
  87. Schmidt R, Battaglia V, Scow K, Kane S, Hristova KR (2008) Involvement of a novel enzyme, MdpA, in methyl-tert-butyl ether degradation in Methylibium petroleiphilum PM1. Appl Environ Microbiol 74:6631–6638PubMedPubMedCentralCrossRefGoogle Scholar
  88. Schuster J, Schäfer F, Hübler N, Brandt A, Rosell M, Härtig C, Harms H, Müller RH, Rohwerder T (2012) Bacterial degradation of tert-amyl alcohol proceeds via hemiterpene 2-methyl-3-buten-2-ol by employing the tertiary alcohol desaturase function of the Rieske nonheme mononuclear iron oxygenase MdpJ. J Bacteriol 194:972–981PubMedPubMedCentralCrossRefGoogle Scholar
  89. Schuster J, Purswani J, Breuer U, Pozo C, Harms H, Müller RH, Rohwerder T (2013) Constitutive expression of the cytochrome P450 ethABCD monooxygenase system enables degradation of synthetic dialkyl ethers in Aquincola tertiaricarbonis L108. Appl Environ Microbiol 79:2321–2327PubMedPubMedCentralCrossRefGoogle Scholar
  90. Sharp JO, Sales CM, Alvarez-Cohen L (2010) Functional characterization of propane-enhanced N-nitrosodimethylamine degradation by two actinomycetales. Biotechnol Bioeng 107:924–932PubMedCrossRefPubMedCentralGoogle Scholar
  91. Skinner KM, Martinez-Prado A, Hyman MR, Williamson KJ, Ciuffetti LM (2008) Pathway, inhibition and regulation of methyl tertiary butyl ether oxidation in a filamentous fungus, Graphium sp. Appl Microbiol Biotechnol 77:1359–1365PubMedCrossRefPubMedCentralGoogle Scholar
  92. Skinner K, Cuifetti L, Hyman M (2009) Metabolism and cometabolism of cyclic ethers by a filamentous fungus, a Graphium sp. Appl Environ Microbiol 75:5514–5522PubMedPubMedCentralCrossRefGoogle Scholar
  93. Smith CA, Hyman MR (2004) Oxidation of methyl tert-butyl ether by alkane hydroxylase in dicyclopropylketone-induced and n-octane-grown Pseudomonas putida GPo1. Appl Environ Microbiol 70:4544–4550PubMedPubMedCentralCrossRefGoogle Scholar
  94. Smith CA, Hyman MR (2010) Oxidation of gasoline oxygenates by closely related non-haem-iron alkane hydroxylases in Pseudomonas mendocina KR1 and other n-octane-utilizing Pseudomonas strains. Environ Microbiol Rep 2:426–432PubMedCrossRefPubMedCentralGoogle Scholar
  95. Smith CA, O’Reilly KT, Hyman MR (2003a) Characterization of the initial reactions during the cometabolic oxidation of methyl tert-butyl ether by propane-grown Mycobacterium vaccae JOB5. Appl Environ Microbiol 69:796–804PubMedPubMedCentralCrossRefGoogle Scholar
  96. Smith CA, O’Reilly KT, Hyman MR (2003b) Cometabolism of methyl tertiary butyl ether and gaseous n-alkanes by Pseudomonas mendocina KR-1 grown on C5-C8 n-alkanes. Appl Environ Microbiol 69:7385–7394PubMedPubMedCentralCrossRefGoogle Scholar
  97. Smits THM, Witholt B, van Beilen JB (2003) Functional characterization of genes involved in alkane oxidation by Pseudomonas aeruginosa. Antonie Van Leeuwenhoek 84:193–200PubMedCrossRefPubMedCentralGoogle Scholar
  98. Steffan RJ, McClay K, Vainberg S, Condee CW, Zhang D (1997) Biodegradation of the gasoline oxygenates methyl tert-butyl ether, ethyl tert-butyl ether, and tert-amyl methyl ether by propane-oxidizing bacteria. Appl Environ Microbiol 63:4216–4222PubMedPubMedCentralGoogle Scholar
  99. Streger SH, Vainberg S, Dong H, Hatzinger PB (2002) Enhancing transport of Hydrogenophaga flava ENV735 for bioaugmentation of aquifers contaminated with methyl tert-butyl ether. Appl Environ Microbiol 68:5571–5579PubMedPubMedCentralCrossRefGoogle Scholar
  100. Szabó Z, Gyula P, Roboka H, Bató E, Gálik B, Pach P, Pekker P, Papp I, Bihari Z (2015) Draft genome sequence of Methylibium sp. strain T29, a novel fuel oxygenate-degrading bacterial isolate from Hungary. Stand Genomic Sci. Scholar
  101. Thiemer B, Andreesen JR, Schräder T (2003) Cloning and characterization of a gene cluster involved in tetrahydrofuran degradation in Pseudonocardia sp. strain K1. Arch Microbiol 179:266–277PubMedCrossRefPubMedCentralGoogle Scholar
  102. Tomasi I, Artaud I, Bertheau Y, Mansuy D (1995) Metabolism of polychlorinated phenols by Pseudomonas cepacia AC1100: determination of the first two steps and specific inhibitory effect of methimazole. J Bacteriol 177:307–311PubMedPubMedCentralCrossRefGoogle Scholar
  103. Trippe KM, Wolpert TJ, Hyman MR, Ciuffetti LM (2014) RNAi silencing of a cytochrome P450 monooxygenase disrupts the ability of the filamentous fungus, Graphium sp., to grow on short-chain gaseous alkanes and ethers. Biodegradation 25:137–151PubMedCrossRefPubMedCentralGoogle Scholar
  104. Vainberg S, McClay K, Masuda H, Root D, Condee C, Zylstra GJ, Steffan RJ (2006) Biodegradation of ether pollutants by Pseudonocardia sp. ENV478. Appl Environ Microbiol 72:5218–5224PubMedPubMedCentralCrossRefGoogle Scholar
  105. van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane oxidation. Appl Microbiol Biotechnol 74:13–21CrossRefGoogle Scholar
  106. van Beilen JB, Kingma J, Witholt B (1994) Substrate specificity of the alkane hydroxylase system in Pseudomonas oleovorans GPo1. Enzym Microb Technol 16:904–911CrossRefGoogle Scholar
  107. van Beilen JB, Li Z, Duetz WA, Smits THM, Witholt B (2003) Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci Technol 58:427–440CrossRefGoogle Scholar
  108. van Beilen JB, Smits THM, Roos FF, Brunner T, Balada SB, Röthlisberger M, Witholt B (2005) Identification of an amino acid position that determines the substrate range of integral membrane alkane hydroxylase. J Bacteriol 187:85–91PubMedPubMedCentralCrossRefGoogle Scholar
  109. Vomberg A, Klinner U (2000) Distribution of alkB genes within n-alkane-degrading bacteria. J Appl Microbiol 89:339–348PubMedCrossRefPubMedCentralGoogle Scholar
  110. Wang F, Zhou J, Li Z, Dong W, Hou Y, Cui Z (2015) Involvement of the cytochrome P450 system EthBAD in the N-deethoxymethylation of acetochlor by Rhodococcus sp. strain T3-1. Appl Environ Microbiol 81:2182–2188PubMedPubMedCentralCrossRefGoogle Scholar
  111. Weichler M-T, Kurteva-Yaneva N, Przybylski D, Schuster J, Müller RH, Rohwerder T (2015) Thermophilic coenzyme B12-dependent acyl coenzyme A (CoA) mutase from Kyrpidia tusciae DSM 2912 preferentially catalyzes isomerization of (R)-3-hydroxybutyryl-CoA and 2-hydroxyisobutyryl-CoA. Appl Environ Microbiol 81:4564–4572PubMedPubMedCentralCrossRefGoogle Scholar
  112. White GF, Russell NJ, Tidswell EC (1996) Bacterial scission of ether bonds. Microbiol Rev 60:216–232PubMedPubMedCentralGoogle Scholar
  113. Yamashita M, Tani A, Kawai F (2005) A new ether bond-splitting enzyme found in gram-positive polyethylene glycol 6000-utilizing bacterium, Pseudonocardia sp. strain K1. Appl Microbiol Biotechnol 66:174–179CrossRefGoogle Scholar
  114. Yaneva N, Schuster J, Schäfer F, Lede V, Przybylski D, Paproth T, Harms H, Müller RH, Rohwerder T (2012) Bacterial acyl-CoA mutase specifically catalyzes coenzyme B12-dependent isomerization of 2-hydroxyisobutyryl-CoA and (S)-3-hydroxybutyryl-CoA. J Biol Chem 287:15502–15511PubMedPubMedCentralCrossRefGoogle Scholar
  115. Zaitsev GM, Uotila JS, Häggblom MM (2007) Biodegradation of methyl tert-butyl ether by cold-adapted mixed and pure cultures. Appl Microbiol Biotechnol 74:1092–1102PubMedCrossRefPubMedCentralGoogle Scholar
  116. Ziegler DM (2002) An overview of the mechanism, substrate specificities, and structure of FMOs. Drug Metab Rev 34:503–511PubMedCrossRefPubMedCentralGoogle Scholar
  117. Zwank L, Berg M, Elsner M, Schmidt T, Schwarzenbach RP, Haderlein SB (2005) New evaluation scheme for two-dimensional isotope analysis to decipher biodegradation processes: application to groundwater contamination by MTBE. Environ Sci Technol 39:1018–1029PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighUSA

Personalised recommendations