Compound-Specific Stable Isotope Analysis (CSIA) for Evaluating Degradation of Organic Pollutants: An Overview of Field Case Studies

Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Compound-specific stable isotope analysis (CSIA) is an advanced monitoring tool for evaluating natural and stimulated degradation of organic pollutants at contaminated field sites. CSIA enables the decipherment and quantification of degradation processes and the assignment of organic pollutant sources and polluters, respectively. Since the end of 1990s, around 200 field studies on CSIA as well as over 40 reviews on its basics have been published illustrating the wide range of application and reliability of this monitoring tool. Increasingly, multielement CSIA (ME-CSIA) is applied, which allows the differentiation of degradation pathways. For most organic pollutants, anaerobic biodegradation can be distinguished from aerobic biodegradation and abiotic transformation using ME-CSIA. CSIA is often the key monitoring tool for multiple-line-of-evidence approaches (MLEA) allowing a comprehensive evaluation of degradation processes of organic pollutants, which is required for most effective remediation strategies. Due its advantages, CSIA is recommended in numerous guidelines and directives from environmental agencies and associations. However, there is still a need for implementation of CSIA within the contaminated site management in order to increase the benefits of this method for a thorough development of conceptual site models and success control of natural and stimulated degradation of organic pollutants. This chapter provides an overview and recent developments on CSIA applied for the assessment of pollutant degradation at field sites including an extensive review of literature.



This work was financially supported by the German Federal Ministry of Education and Research (BMBF) for the projects ContaSorb (03XP0090D) and IsoAqua (02WQ1481A).


  1. Abe Y, Hunkeler D (2006) Does the Rayleigh equation apply to evaluate field isotope data in contaminant hydrogeology?. Enviro Sci Technol 40:1588–1596Google Scholar
  2. Abe Y, Zopfi J, Hunkeler D (2009a) Effect of molecule size on carbon isotope fractionation during biodegradation of chlorinated alkanes by Xanthobacter autotrophicus GJ10. Isot Environ Health Stud 45:18–26CrossRefGoogle Scholar
  3. Abe Y, Aravena R, Zopfi J, Parker B, Hunkeler D (2009b) Evaluating the fate of chlorinated ethenes in streambed sediments by combining stable isotope, geochemical and microbial methods. J Contam Hydrol 107:10–21PubMedPubMedCentralCrossRefGoogle Scholar
  4. Adamson DT, Newell CJ (2014) Frequently asked questions about monitored natural attenuation in groundwater. ESTCP project ER-201211. Environmental Security and Technology Certification Program, ArlingtonGoogle Scholar
  5. Aelion CM, Höhener P, Hunkler D, Aravena R (2010) Environmental isotopes in biodegradation and bioremediation. CRC Press, Boca RatonGoogle Scholar
  6. Aeppli C, Berg M, Cirpka OA, Holliger C, Schwarzenbach RP, Hofstetter TB (2009) Influence of mass-transfer limitations on carbon isotope fractionation during microbial dechlorination of trichloroethene. Environ Sci Technol 43:8813–8820PubMedPubMedCentralCrossRefGoogle Scholar
  7. Aeppli C, Hofstetter TB, Amaral HIF, Kipfer R, Schwarzenbach RP, Berg M (2010) Quantifying in situ transformation rates of chlorinated ethenes by combining compound-specific stable isotope analysis, groundwater dating, and carbon isotope mass balances. Environ Sci Technol 44:3705–3711PubMedPubMedCentralCrossRefGoogle Scholar
  8. Aeppli C, Amaral HIF, Wermeille C, Wenger C, Kipfer R, Berg M (2011) Beurteilung des Abbauverhaltens von CKWs an Altlastenstandorten mittels Einzelstoff-Isotopenanalyse (CSIA) und Grundwasserdatierung Teil 2: Fallstudien. altlasten spektrum 4:161–171Google Scholar
  9. Alberti L, Marchesi M, Trefiletti P, Aravena R (2017) Compound-specific isotope analysis (CSIA) application for source apportionment and natural attenuation assessment of chlorinated benzenes. Water 9:872CrossRefGoogle Scholar
  10. Alvarez-Zaldívar P, Payraudeau S, Meite F, Masbou J, Imfeld G (2018) Pesticide degradation and export losses at the catchment scale: insights from compound-specific isotope analysis (CSIA). Water Res 139:198–207PubMedPubMedCentralCrossRefGoogle Scholar
  11. Amaral HIF, Fernandes J, Berg M, Schwarzenbach RP, Kipfer R (2009) Assessing TNT and DNT groundwater contamination by compound-specific isotope analysis and H-3-He-3 groundwater dating: a case study in Portugal. Chemosphere 77:805–812PubMedPubMedCentralCrossRefGoogle Scholar
  12. Amaral HIF, Aeppli C, Kipfer R, Berg M (2011) Assessing the transformation of chlorinated ethenes in aquifers with limited potential for natural attenuation: added values of compound-specific carbon isotope analysis and groundwater dating. Chemosphere 85:774–781PubMedPubMedCentralCrossRefGoogle Scholar
  13. Aranami K, Rowland SJ, Readman JW (2006) Discriminating biogenic and anthropogenic chlorinated organic compounds using multi-isotope analyses of individual compounds. In: Povinec PP, Sanchez-Cabeza JA (eds) Radionuclides in the environment, vol 8. Elsevier, Amsterdam, pp 24–38Google Scholar
  14. ASTM (2015) Standard guide for remediation of ground water by Natural Attenuation at petroleum release sites. E1943 – 98Google Scholar
  15. Atashgahi S, Lu Y, Zheng Y, Saccenti E, Suarez-Diez M, Ramiro-Garcia J, Eisenmann H, Elsner M, Stams AJM, Springael D, Dejonghe W, Smidt H (2017) Geochemical and microbial community determinants of reductive dechlorination at a site biostimulated with glycerol. Environ Microbiol 19:968–981PubMedPubMedCentralCrossRefGoogle Scholar
  16. Audí-Miró C, Cretnik S, Torrentó C, Rosell M, Shouakar-Stash O, Otero N, Palau J, Elsner M, Soler A (2015) C, Cl and H compound-specific isotope analysis to assess natural versus Fe(0) barrier-induced degradation of chlorinated ethenes at a contaminated site. J Hazard Mater 299:747–754PubMedPubMedCentralCrossRefGoogle Scholar
  17. Badea SL, Danet AF (2015) Enantioselective stable isotope analysis (ESIA) – a new concept to evaluate the environmental fate of chiral organic contaminants. Sci Total Environ 514:459–466PubMedPubMedCentralCrossRefGoogle Scholar
  18. Badea SL, Vogt C, Gehre M, Fischer A, Danet AF, Richnow H-H (2011) Development of an enantiomer-specific stable carbon isotope analysis (ESIA) method for assessing the fate of α-hexachlorocyclohexane in the environment. Rapid Commun Mass Spectrom 25:1363–1372PubMedPubMedCentralCrossRefGoogle Scholar
  19. Badin A, Schirmer M, Wermeille C, Hunkeler D (2015) Perchlorethen-Quellendifferenzierung mittels Kohlenstoff-Chlor-Isotopenanalyse: Felduntersuchungen zur Beurteilung der Variabilität der Isotopensignatur. Grundwasser 20:263–270CrossRefGoogle Scholar
  20. Badin A, Broholm MM, Jacobsen CS, Palau J, Dennis P, Hunkeler D (2016) Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools. J Contam Hydrol 192:1–19PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bakkour R, Bolotin J, Sellergren B, Hofstetter TB (2018) Molecularly imprinted polymers for compound-specific isotope analysis of polar organic micropollutants in aquatic environments. Anal Chem 90:7292–7301PubMedPubMedCentralCrossRefGoogle Scholar
  22. Balaban N, Bernstein A, Gelman F, Ronen Z (2016) Microbial degradation of the brominated flame retardant TBNPA by groundwater bacteria: laboratory and field study. Chemosphere 156:367–373PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bashir S, Hitzfeld KL, Gehre M, Richnow H-H, Fischer A (2015) Evaluating degradation of hexachlorocyclohexane (HCH) isomers within a contaminated aquifer using compound-specific stable carbon isotope analysis (CSIA). Water Res 71:187–196PubMedPubMedCentralCrossRefGoogle Scholar
  24. Batlle-Aguilar J, Brouyere S, Dassargues A, Morasch B, Hunkeler D, Höhener P, Diels L, Vanbroekhoven K, Seuntjens P, Halen H (2009) Benzene dispersion and natural attenuation in an alluvial aquifer with strong interactions with surface water. J Hydrol 369:305–317CrossRefGoogle Scholar
  25. Batlle-Aguilar J, Morasch B, Hunkeler D, Brouyere S (2014) Benzene dynamics and biodegradation in alluvial aquifers affected by river fluctuations. Ground Water 52:388–398PubMedPubMedCentralCrossRefGoogle Scholar
  26. Beck P, Mann B (2010) A technical guide for demonstrating monitored natural attenuation of petroleum hydrocarbons in groundwater. CRC CARE technical report no. 15, AdelaideGoogle Scholar
  27. Beck P, Mann B (2011) Use of monitored natural attenuation in management of risk from petroleum hydrocarbons to human and environmental receptors. Pedologist 54:257–277Google Scholar
  28. Beckley L, McHugh T, Philp P (2016) Utility of compound-specific isotope analysis for vapor intrusion investigations. Ground Water Monit Remediat 36:31–40CrossRefGoogle Scholar
  29. Beller HR, Kane SR, Legler TC, McKelvie JR, Sherwood-Lollar B, Pearson F, Balser L, MacKay DM (2008) Comparative assessments of benzene, toluene, and xylene natural attenuation by quantitative polymerase chain reaction analysis of a catabolic gene, signature metabolites, and compound-specific isotope analysis. Environ Sci Technol 42:6065–6072PubMedPubMedCentralCrossRefGoogle Scholar
  30. Beneteau KM, Aravena R, Frape SK (1999) Isotopic characterization of chlorinated solvents-laboratory and field results. Org Geochem 30:739–753CrossRefGoogle Scholar
  31. BenIsrael M, Wanner P, Aravena R, Parker BL, Haack EA, Tsao DT, Dunfield KE (2019) Toluene biodegradation in the vadose zone of a poplar phytoremediation system identified using metagenomics and toluene-specific stable carbon isotope analysis. Int J Phytoremediation 21:60–69PubMedPubMedCentralCrossRefGoogle Scholar
  32. Berg M, Zwank L, Bolotin J, Aeppli C, Häner A, Möller M, Munz C, Ziegler U (2005) Einzelstoff-Isotopenanalyse zur Beurteilung des Abbauverhaltens von Methyl- tert-butylether (MTBE) an einem Altlastenstandort. altlasten spektrum 1:20–26Google Scholar
  33. Berghoff A, Berning A, Wortmann C, Möller A, Mahro B (2014) Comparative assessment of laboratory and field-based methods to monitor natural attenuation processes in the contaminated groundwater of a former coking plant site. Environ Eng Manag J 13:583–596CrossRefGoogle Scholar
  34. Bernstein A, Adar E, Ronen Z, Lowag H, Stichler W, Meckenstock RU (2010) Quantifying RDX biodegradation in groundwater using delta N-15 isotope analysis. J Contam Hydrol 111:25–35PubMedPubMedCentralCrossRefGoogle Scholar
  35. Bernstein A, Gelman F, Ronen Z (2014) Stable isotope tools for tracking in situ degradation processes of military energetic compounds. In: Sing SN (ed) Biological remediation of explosive residues. Springer, Cham, pp 259–284CrossRefGoogle Scholar
  36. Blázquez-Pallí N, Rosell M, Varias J, Bosch M, Soler A, Vicent T, Marco-Urrea E (2019) Multi-method assessment of the intrinsic biodegradation potential of an aquifer contaminated with chlorinated ethenes at an industrial area in Barcelona (Spain). Environ Pollut 244:165–173PubMedPubMedCentralCrossRefGoogle Scholar
  37. Blessing M, Jochmann MA, Schmidt TC (2008) Pitfalls in compound-specific isotope analysis of environmental samples. Anal Bioanal Chem 390:591–603PubMedPubMedCentralCrossRefGoogle Scholar
  38. Blessing M, Schmidt TC, Dinkel R, Haderlein SB (2009) Delineation of multiple chlorinated ethene sources in an industrialized area – a forensic field study using compound-specific isotope analysis. Environ Sci Technol 43:2701–2707PubMedPubMedCentralCrossRefGoogle Scholar
  39. Blum P, Hunkeler D, Weede M, Beyer C, Grathwohl P, Morasch B (2009) Quantification of biodegradation for o-xylene and naphthalene using first order decay models, Michaelis-Menten kinetics and stable carbon isotopes. J Contam Hydrol 105:118–130PubMedPubMedCentralCrossRefGoogle Scholar
  40. Bombach P, Richnow H-H, Kästner M, Fischer A (2010) Current approaches for the assessment of in situ biodegradation. Anal Bioanal Chem 86:839–852Google Scholar
  41. Bombach P, Nägele N, Rosell M, Richnow H-H, Fischer A (2015) Evaluation of ethyl tert-butyl ether biodegradation in a contaminated aquifer by compound-specific isotope analysis and in situ microcosms. J Hazard Mater 286:100–106PubMedPubMedCentralCrossRefGoogle Scholar
  42. Bosch C, Andersson A, Kruså M, Bandh C, Hovorková I, Klánová J, Knowles TD, Pancost RD, Evershed RP, Gustafsson Ö (2015) Source apportionment of polycyclic aromatic hydrocarbons in central european soils with compound-specific triple isotopes (δ(13)C, Δ(14)C, and δ(2)H). Environ Sci Technol 49:7657–7665PubMedPubMedCentralCrossRefGoogle Scholar
  43. Bouchard D, Höhener P, Hunkeler D (2008a) Carbon isotope fractionation during volatilization of petroleum hydrocarbons and diffusion across a porous medium: a column experiment. Environ Sci Technol 42:7801–7806PubMedPubMedCentralCrossRefGoogle Scholar
  44. Bouchard D, Hunkeler D, Gaganis P, Aravena R, Höhener P, Broholm MM, Kjeldsen P (2008b) Carbon isotope fractionation during diffusion and biodegradation of petroleum hydrocarbons in the unsaturated zone: field experiment at Vaerlose airbase, Denmark, and modeling. Environ Sci Technol 42:596–601PubMedPubMedCentralCrossRefGoogle Scholar
  45. Bouchard D, Cornaton F, Höhener P, Hunkeler D (2011) Analytical modelling of stable isotope fractionation of volatile organic compounds in the unsaturated zone. J Contam Hydrol 119:44–54PubMedPubMedCentralCrossRefGoogle Scholar
  46. Bouchard D, Hunkeler D, Madsen EL, Buscheck T, Daniels EJ, Kolhatkar R, DeRito CM, Aravena R, Thomson NR (2018a) Application of diagnostic tools to evaluate remediation performance at petroleum hydrocarbon-impacted sites. Ground Water Monit Remediat 38:88–98CrossRefGoogle Scholar
  47. Bouchard D, Marchesi M, Madsen EL, DeRito CM, Thomson NR, Aravena R, Barker JF, Buscheck T, Kolhatkar R, Daniels EJ, Hunkeler D (2018b) Diagnostic tools to assess mass removal processes during pulsed air sparging of a petroleum hydrocarbon source zone. Ground Water Monit Remediat 38:29–44CrossRefGoogle Scholar
  48. Braeckevelt M, Rokadia H, Mirschel G, Weber S, Imfeld G, Stelzer N, Kuschk P, Kästner M, Richnow H-H (2007a) Biodegradation of chlorobenzene in a constructed wetland treating contaminated groundwater. Water Sci Technol 56:57–62PubMedPubMedCentralCrossRefGoogle Scholar
  49. Braeckevelt M, Rokadia H, Imfeld G, Stelzer N, Paschke H, Kuschk P, Kästner M, Richnow H-H, Weber S (2007b) Assessment of in situ biodegradation of monochlorobenzene in contaminated groundwater treated in a constructed wetland. Environ Pollut 148:428–437PubMedPubMedCentralCrossRefGoogle Scholar
  50. Braeckevelt M, Fischer A, Kästner M (2012) Field applicability of compound-specific isotope analysis (CSIA) for characterization and quantification of in situ degradation in contaminated aquifers. Anal Bioanal Chem 94:1401–1421Google Scholar
  51. Brand WA, Coplen TB (2012) Stable isotope deltas: tiny, yet robust signatures in nature. Isot Environ Health Stud 48:393–409CrossRefGoogle Scholar
  52. Broholm MM, Hunkeler D, Tuxen N, Jeannottat S, Scheutz C (2014) Stable carbon isotope analysis to distinguish biotic and abiotic degradation of 1,1,1-trichloroethane in groundwater sediments. Chemosphere 108:265–273PubMedPubMedCentralCrossRefGoogle Scholar
  53. Buchner D, Schweikhart M, Behrens S, Schöndorf T, Laskov C, Haderlein SB (2019) Sanierung eines PCE-Schadens in einem makroskopisch oxischen Grundwasserleiter durch Stimulation anaerober dehalogenierender Bakterien. Grundwasser 24:51–63CrossRefGoogle Scholar
  54. Buczynska AJ, Geypens B, Van Grieken R, De Wael K (2013) Stable carbon isotopic ratio measurement of polycyclic aromatic hydrocarbons as a tool for source identification and apportionment – a review of analytical methodologies. Talanta 105:435–450PubMedPubMedCentralCrossRefGoogle Scholar
  55. Bugna GC, Chanton JP, Kelley CA, Stauffer TB, MacIntyre WG, Libelo EL (2004) A field test of δ13C as a tracer of aerobic hydrocarbon degradation. Org Geochem 35:123–135Google Scholar
  56. Bugna GC, Chanton JP, Stauffer TB, MacIntyre WG, Libelo EL (2005) Partitioning microbial respiration between jet fuel and native organic matter in an organic-rich long time-contaminated aquifer. Chemosphere 60:177–187Google Scholar
  57. Carreon-Diazconti C, Santamaria J, Berkompas J, Field JA, Brusseau ML (2009) Assessment of in situ reductive dechlorination using compound-specific stable isotopes, functional gene PCR, and geochemical data. Environ Sci Technol 43:4301–4307PubMedPubMedCentralCrossRefGoogle Scholar
  58. Centler F, Heße F, Thullner M (2013) Estimating pathway-specific contributions to biodegradation in aquifers based on dual isotope analysis: theoretical analysis and reactive transport simulations. J Contam Hydrol 152:97–116PubMedPubMedCentralCrossRefGoogle Scholar
  59. Chapman SW, Parker BL, Cherry JA, Aravena R, Hunkeler D (2007) Groundwater-surface water interaction and its role on TCE groundwater plume attenuation. J Contam Hydrol 91:203–232PubMedPubMedCentralCrossRefGoogle Scholar
  60. Chartrand MMG, Morrill PL, Lacrampe-Couloume G, Sherwood-Lollar B (2005) Stable isotope evidence for biodegradation of chlorinated ethenes at a fractured bedrock site. Environ Sci Technol 39:4848–4856PubMedPubMedCentralCrossRefGoogle Scholar
  61. Chartrand MMG, Passeport E, Rose C, Lacrampe-Couloume G, Bidleman TF, Jantunen LM, Sherwood-Lollar B (2015) Compound specific isotope analysis of hexachlorocyclohexane isomers: a method for source fingerprinting and field investigation of in situ biodegradation. Rapid Commun Mass Spectrom 29:505–514PubMedPubMedCentralCrossRefGoogle Scholar
  62. Cichocka D, Imfeld G, Richnow H-H, Nijenhuis I (2008) Variability in microbial carbon isotope fractionation of tetra- and trichloroethene upon reductive dechlorination. Chemosphere 71:639–648PubMedPubMedCentralCrossRefGoogle Scholar
  63. Cincinelli A, Pieri F, Zhang Y, Seed M, Jones KC (2012) Compound specific isotope analysis (CSIA) for chlorine and bromine: a review of techniques and applications to elucidate environmental sources and processes. Environ Pollut 169:112–127PubMedPubMedCentralCrossRefGoogle Scholar
  64. Cirpka OA, Olsson A, Ju Q, Rahman MA, Grathwohl P (2006) Determination of transverse dispersion coefficients from reactive plume lengths. Ground Water 44:212–221PubMedPubMedCentralCrossRefGoogle Scholar
  65. Clark JA, Stotler RL, Frape SK, Illman WA (2017) Compound-specific isotope analyses to assess TCE biodegradation in a fractured dolomitic aquifer. Ground Water 55:88–99PubMedPubMedCentralCrossRefGoogle Scholar
  66. Coffin RB, Miyares PH, Kelley CA, Cifuentes LA, Reynolds CM (2001) Stable carbon and nitrogen isotope analysis of TNT: two-dimensional source identification. Environ Toxicol Chem 20:2676–2680PubMedPubMedCentralCrossRefGoogle Scholar
  67. Coplen TB (2011) Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom 25:2538–2560PubMedPubMedCentralCrossRefGoogle Scholar
  68. Courbet C, Rivire AS, Jeannottat S, Rinaldi S, Hunkeler D, Bendjoudi H, de Marsily G (2011) Complementing approaches to demonstrate chlorinated solvent biodegradation in a complex pollution plume: mass balance, PCR and compound-specific stable isotope analysis. J Contam Hydrol 126:315–329PubMedPubMedCentralCrossRefGoogle Scholar
  69. Damagaard I, Bjerg P, Baelum J, Scheutz C, Hunkeler D, Jacobsen C, Tuxen N, Broholm M (2013) Identification of chlorinated solvents degradation zones in clay till by high resolution chemical, microbial, and compound specific isotope analysis. J Contam Hydrol 146:37–50CrossRefGoogle Scholar
  70. Day M, Aravena R, Hunkeler D, Gulliver T (2002) Application of carbon isotopes to document biodegradation of t-butyl alcohol under field conditions. Contam Soil Sediment Water July/Aug.: 88–92Google Scholar
  71. Day M, Gulliver T (2003) Rate of natural attenuation of tert-butyl alcohol at a chemical plant. Soil Sediment Contam 12:119–138CrossRefGoogle Scholar
  72. De Biase C, Reger D, Schmidt A, Jechalke S, Reiche N, Martinez-Lavanchy PM, Rosell M, Van Afferden M, Maier U, Oswald SE, Thullner M (2011) Treatment of volatile organic contaminants in a vertical flow filter: relevance of different removal processes. Ecol Eng 37:1292–1303CrossRefGoogle Scholar
  73. Döberl G, Dörrie T, Müller-Grabherr D, Weisgram M (2016) Quickscan Erkundungs- und Monitoringtechnologien – Quickscan über erfolgversprechende Verfahren zur Erkundung von kontaminierten Standorten. REP-0570, Umweltbundesamt, WienGoogle Scholar
  74. Doğan-Subaşı E, Elsner M, Qiu S, Cretnik S, Atashgahi S, Shouakar-Stash O, Boon N, Dejonghe W, Bastiaens L (2017) Contrasting dual (C, Cl) isotope fractionation offers potential to distinguish reductive chloroethene transformation from breakdown by permanganate. Sci Total Environ 596-597:169–177PubMedPubMedCentralCrossRefGoogle Scholar
  75. EA-UK (2010) Verification of remediation of land contamination. Report: SC030114/R1, BristolGoogle Scholar
  76. Eberts SM, Braun C, Jones S (2008) Compound-specific isotope analysis: questioning the origins of a trichloroethene plume. Environ Forensic 9:85–95CrossRefGoogle Scholar
  77. Eckert D, Rolle M, Cirpka OA (2012) Numerical simulation of isotope fractionation in steady-state bioreactive transport controlled by transverse mixing. J Contam Hydrol 140-141:95–106PubMedPubMedCentralCrossRefGoogle Scholar
  78. Eckert D, Qiu S, Elsner M, Cirpka OA (2013) Model complexity needed for quantitative analysis of high resolution isotope and concentration data from a toluene-pulse experiment. Environ Sci Technol 47:6900–6907PubMedPubMedCentralCrossRefGoogle Scholar
  79. Ehrl BN, Kundu K, Gharasoo M, Marozava S, Elsner M (2019) Rate-limiting mass transfer in micropollutant degradation revealed by isotope fractionation in chemostat. Environ Sci Technol 53:1197–1205Google Scholar
  80. Eisenmann H, Fischer A (2018a) Natural Attenuation – Monitoringverfahren und Sanierungskonzepte – ein Fortschrittbericht (Teil 1). altlasten spektrum 2:45–57Google Scholar
  81. Eisenmann H, Fischer A (2018b) Natural Attenuation – Monitoringverfahren und Sanierungskonzepte – ein Fortschrittbericht (Teil 2). altlasten spektrum 3:85–95Google Scholar
  82. Elsayed OF, Maillard E, Vuilleumier S, Nijenhuis I, Richnow H-H, Imfeld G (2014) Using compound-specific isotope analysis to assess the degradation of chloroacetanilide herbicides in lab-scale wetlands. Chemosphere 99:89–95PubMedPubMedCentralCrossRefGoogle Scholar
  83. Elsner M (2010) Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants: principles, prospects and limitations. J Environ Monit 12:2005–2031PubMedPubMedCentralCrossRefGoogle Scholar
  84. Elsner M, Imfeld G (2016) Compound-specific isotope analysis (CSIA) of micropollutants in the environment – current developments and future challenges. Curr Opin Biotechnol 41:60–72PubMedPubMedCentralCrossRefGoogle Scholar
  85. Elsner M, Zwank L, Hunkeler D, Schwarzenbach RP (2005) A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants. Environ Sci Technol 39:6896–6916PubMedPubMedCentralCrossRefGoogle Scholar
  86. Elsner M, Lacrampe-Couloume G, Mancini S, Burns L, Sherwood-Lollar B (2010) Carbon isotope analysis to evaluate nanoscale Fe(O) treatment at a chlorohydrocarbon contaminated site. Ground Water Monit Remediat 30:79–95CrossRefGoogle Scholar
  87. Elsner M, Jochmann MA, Hofstetter TB, Hunkeler D, Bernstein A, Schmidt TC, Schimmelmann A (2012) Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Anal Bioanal Chem 403:2471–2491PubMedPubMedCentralCrossRefGoogle Scholar
  88. Elsner M, Griebler C, Lueders T, Meckenstock RU (2014) Assessing microbial activity and degradation pathways by measuring naturally occurring stable isotopes in organic compounds. In: Skovhus TL, Caffrey SM, Hubert CRJ (eds) Applications of molecular microbiological methods. Caister Academic Press, Norfolk, pp 141–152Google Scholar
  89. Fabbri D, Vassura I, Sun C-G, Snape CE, McRae C, Fallick AE (2003) Source apportionment of polycyclic aromatic hydrocarbons in a coastal lagoon by molecular and isotopic characterization. Mar Chem 84:123–135CrossRefGoogle Scholar
  90. Fayolle-Guichard F, Durand J, Cheucle M, Rosell M, Michelland RJ, Tracol JP, Le Roux F, Grundman G, Atteia O, Richnow H-H, Dumestre A, Benoit Y (2012) Study of an aquifer contaminated by ethyl tert-butyl ether (ETBE): site characterization and on-site bioremediation. J Hazard Mater 201:236–243PubMedPubMedCentralCrossRefGoogle Scholar
  91. Feisthauer S, Seidel M, Bombach P, Traube S, Knöller K, Wange M, Fachmann S, Richnow H-H (2012) Characterization of the relationship between microbial degradation processes at a hydrocarbon contaminated site using isotopic methods. J Contam Hydrol 133:17–29PubMedPubMedCentralCrossRefGoogle Scholar
  92. Filippini M, Amorosi A, Campo B, Herrero-Martìn S, Nijenhuis I, Parker B, Gargini A (2016) Origin of VC-only plumes from naturally enhanced dechlorination in a peat-rich hydrogeologic setting. J Contam Hydrol 192:129–139PubMedPubMedCentralCrossRefGoogle Scholar
  93. Filippini M, Nijenhuis I, Kümmel S, Chiarini V, Crosta G, Richnow H-H, Gargini A (2018) Multi-element compound specific stable isotope analysis of chlorinated aliphatic contaminants derived from chlorinated pitches. Sci Total Environ 640–641:153–162PubMedPubMedCentralCrossRefGoogle Scholar
  94. Fischer A, Vieth A, Knöller K, Wachter T, Dahmke A, Richnow H-H (2004) Charakterisierung des mikrobiellen Schadstoffabbaus mithilfe von isotopenchemischen Methoden. Grundwasser 9:159–172CrossRefGoogle Scholar
  95. Fischer A, Bauer J, Meckenstock RU, Stichler W, Griebler C, Maloszewski P, Kästner M, Richnow H-H (2006) A multitracer test proving the reliability of stable isotope fractionation analysis for assessing anaerobic degradation in a BTEX contaminated aquifer. Environ Sci Technol 40:4245–4252PubMedPubMedCentralCrossRefGoogle Scholar
  96. Fischer A, Theuerkorn K, Stelzer N, Gehre M, Thullner M, Richnow H-H (2007) Applicability of stable isotope fractionation analysis for the characterization of benzene biodegradation in a BTEX contaminated aquifer. Environ Sci Technol 41:3689–3696PubMedPubMedCentralCrossRefGoogle Scholar
  97. Fischer A, Gehre M, Breitfeld J, Richnow H-H, Vogt C (2009) Carbon and hydrogen isotope fractionation of benzene during biodegradation under sulfate-reducing conditions: a laboratory to field site approach. Rapid Commun Mass Spectrom 23:2439–2447PubMedPubMedCentralCrossRefGoogle Scholar
  98. Fischer A, Manefield M, Bombach P (2016) Application of stable isotope tools for evaluating natural and stimulated biodegradation of organic pollutants in field studies. Curr Opin Biotechnol 41:99–107PubMedPubMedCentralCrossRefGoogle Scholar
  99. Fischer A, Kuntze K, Müller L, Richnow H-H, Nikolausz M (2019) Differentiation of methanogenic pathways in biogas plants using compound-specific stable isotope analysis. In: Liebetrau J, Pfeiffer D (eds) Collection of measurement methods for biogas – methods to determine parameters for analysis purposes and parameters that describe processes in the biogas sector, Series of the funding programme „Biomass energy use”, 2nd edn., DBFZ, Leipzig, 7:252–262Google Scholar
  100. Gafni A, Rosenzweig R, Gelman F, Ronen Z (2016) Anaerobic biodegradation of MTBE in a field site above the Israeli coastal aquifer: evidence from δ13C compound-specific isotope analysis. J Chem Technol Biotechnol 91:1638–1645CrossRefGoogle Scholar
  101. Gao P, Li H, Wilson CP, Townsend TG, Xiang P, Liu Y, Ma LQ (2018) Source identification of PAHs in soils based on stable carbon isotopic signatures. Crit Rev Environ Sci Technol 48:923–948CrossRefGoogle Scholar
  102. Gauchotte-Lindsay C, Turnbull SM (2016) On-line high-precision carbon position-specific stable isotope analysis – a review. Trends Anal Chem 76:115–125CrossRefGoogle Scholar
  103. Gedalanga P, Madison A, Miao YR, Richards T, Hatton J, DiGuiseppi WH, Wilson J, Mahendra S (2016) A Multiple lines of evidence framework to evaluate intrinsic biodegradation of 1,4-dioxane. Remediat J 27:93–114CrossRefGoogle Scholar
  104. Gelman F, Binstock R (2008) Natural attenuation of MTBE and BTEX compounds in a petroleum contaminated shallow coastal aquifer. Environ Chem Lett 6:259–262CrossRefGoogle Scholar
  105. Gelman F, Halicz L (2010) High precision determination of bromine isotope ratio by GC-MC-ICPMS. Int J Mass Spectrom 289:167–169CrossRefGoogle Scholar
  106. Gilevska T, Gehre M, Richnow H-H (2014) Performance of the wet oxidation unit of the HPLC isotope ratio mass spectrometry system for halogenated compounds. Anal Chem 86:7252–7257PubMedPubMedCentralCrossRefGoogle Scholar
  107. Gilevska T, Passeport E, Shayan M, Seger E, Lutz EJ, West KA, Morgan SA, Mack EE, Sherwood-Lollar B (2019) Determination of in situ biodegradation rates via a novel high resolution isotopic approach in contaminated sediments. Water Res 149:632–639PubMedPubMedCentralCrossRefGoogle Scholar
  108. Griebler C, Safinowski M, Vieth A, Richnow H-H, Meckenstock RU (2004) Combined application of stable carbon isotope analysis and specific metabolites determination for assessing in situ degradation of aromatic hydrocarbons in a tar oil-contaminated aquifer. Environ Sci Technol 38:617–631PubMedPubMedCentralCrossRefGoogle Scholar
  109. Haderlein S, Buchner D (2015) Leitfaden zur Ermittlung und Interpretation isotopischer Fingerabdrücke. Amt für Umweltschutz, StuttgartGoogle Scholar
  110. Hammer BT, Kelley CA, Coffin RB, Cifuentes LA, Mueller JG (1998) delta C-13 values of polycyclic aromatic hydrocarbons collected from two creosote-contaminated sites. Chem Geol 152:43–58CrossRefGoogle Scholar
  111. Hamonts K, Kuhn T, Vos J, Maesen M, Kalka H, Smidt H, Springael D, Meckenstock RU, Dejonghe W (2012) Temporal variations in natural attenuation of chlorinated aliphatic hydrocarbons in eutrophic river sediments impacted by a contaminated groundwater plume. Water Res 46:1873–1888PubMedPubMedCentralCrossRefGoogle Scholar
  112. Hatzinger PB, Böhlke JK, Sturchio NC (2013) Application of stable isotope ratio analysis for biodegradation monitoring in groundwater. Curr Opin Biotechnol 24:542–549PubMedPubMedCentralCrossRefGoogle Scholar
  113. Hatzinger PB, Fuller M, Sturchio NC, Böhlke JK (2018) Validation of stable isotope ratio analysis to document the biodegradation and natural attenuation of RDX. ESTCP roject ER-201208. Environmental Security Technology Certification Program, AlexandriaGoogle Scholar
  114. Hatzinger PB, Fuller M, Sturchio NC, Böhlke JK (2019) Guidance for using compound-specific isotope analysis (CSIA) to document the biodegradation and natural attenuation of RDX. ESTCP roject ER-201208. Environmental Security Technology Certification Program, AlexandriaGoogle Scholar
  115. Heckel B, Rodríguez-Fernández D, Torrentó C, Meyer A, Palau J, Domènech C, Rosell M, Soler A, Hunkeler D, Elsner M (2017) Compound-specific chlorine isotope analysis of tetrachloromethane and trichloromethane by gas chromatography-isotope ratio mass spectrometry vs. gas chromatography-quadrupole mass spectrometry: method development and evaluation of precision and trueness. Anal Chem 89:3411–3420PubMedPubMedCentralCrossRefGoogle Scholar
  116. Hermon L, Denonfoux J, Hellal J, Joulian C, Ferreira S, Vuilleumier S, Imfeld G (2018) Dichloromethane biodegradation in multi-contaminated groundwater: insights from biomolecular and compound-specific isotope analyses. Water Res 142:217–226PubMedPubMedCentralCrossRefGoogle Scholar
  117. Heße F, Prykhodko V, Attinger S, Thullner M (2014) Assessment of the impact of pore-scale mass-transfer restrictions on microbially-induced stable-isotope fractionation. Adv Water Resour 74:79–90CrossRefGoogle Scholar
  118. Hirschorn SK, Grostern A, Lacrampe-Couloume G, Elizabeth AEB, MacKinnon L, Repta C, Major DW, Sherwood-Lollar B (2007) Quantification of biotransformation of chlorinated hydrocarbons in a biostimulation study: added value via stable carbon isotope analysis. J Contam Hydrol 94:249–260PubMedPubMedCentralCrossRefGoogle Scholar
  119. Hofstetter TB, Berg M (2011) Assessing transformation processes of organic contaminants by compound-specific stable isotope analysis. Trends Anal Chem 30:618–627CrossRefGoogle Scholar
  120. Hofstetter TB, Schwarzenbach RP, Bernasconi SM (2008) Assessing transformation processes of organic compounds using stable isotope fractionation. Environ Sci Technol 42:7737–7743PubMedPubMedCentralCrossRefGoogle Scholar
  121. Hofstetter TB, Bolotin J, Pati SG, Skarpeli-Liati M, Spahr S, Wijker RS (2014) Isotope effects as new proxies for organic pollutant transformation. Chimia 68:788–792PubMedPubMedCentralCrossRefGoogle Scholar
  122. Höhener P, Atteia O (2010) Multidimensional analytical models for isotope ratios in groundwater pollutant plumes of organic contaminants undergoing different biodegradation kinetics. Adv Water Resour 33:740–751CrossRefGoogle Scholar
  123. Höhener P, Yu XJ (2012) Stable carbon and hydrogen isotope fractionation of dissolved organic groundwater pollutants by equilibrium sorption. J Contam Hydrol 129:54–61PubMedPubMedCentralCrossRefGoogle Scholar
  124. Höhener P, Eisenmann H, Elsner M, Atteia O (2015) Improved constraints on in situ rates and on quantification of complete chloroethene degradation from stable carbon isotope mass balances in groundwater plumes. J Contam Hydrol 182:173–182PubMedPubMedCentralCrossRefGoogle Scholar
  125. Horst A, Lacrampe-Couloume G (2018) Volatilization, dissolution and equilibrium isotope effects (2H, 13C, 37Cl) of trichloromethane, trichloroethene and methanol dissolved in water. ChemRxiv Preprint.
  126. Horst A, Lacrampe-Couloume G, Sherwood-Lollar B (2016) Vapor pressure isotope effects in halogenated organic compounds and alcohols dissolved in water. Anal Chem 88:12066–12071PubMedPubMedCentralCrossRefGoogle Scholar
  127. Horst A, Renpenning J, Richnow H-H, Gehre M (2017) Compound specific stable chlorine isotopic analysis of volatile aliphatic compounds using gas chromatography hyphenated with multiple collector inductively coupled plasma mass spectrometry. Anal Chem 89:9131–9138PubMedPubMedCentralCrossRefGoogle Scholar
  128. Höyng D, Prommer H, Blum P, Grathwohl P, D’Affonseca FM (2015) Evolution of carbon isotope signatures during reactive transport of hydrocarbons in heterogeneous aquifers. J Contam Hydrol 174:10–27PubMedPubMedCentralCrossRefGoogle Scholar
  129. Huang C, Zeng Y, Luo X, Ren Z, Tang B, Lu Q, Gao S, Wang S, Mai B (2019) In situ microbial degradation of PBDEs in sediments from an e-waste site as revealed by positive matrix factorization and compound-specific stable carbon isotope analysis. Environ Sci Technol 53:1928–1936PubMedPubMedCentralCrossRefGoogle Scholar
  130. Hunkeler D (2008) Strategies to quantify contaminant degradation in groundwater using stable isotope data. In: Candela L, Vadillo I, Elorza FJ (eds) Advances in subsurface pollution of porous media: indicators, processes and modelling. CRC Press/Taylor & Francis Group, London, pp 31–44Google Scholar
  131. Hunkeler D (2016) Use of compound-specific isotope analysis (CSIA) to assess the origin and fate of chlorinated hydrocarbons. In: Adrian L, Löffler F (eds) Organohalide-respiring bacteria. Springer, Berlin/Heidelberg, pp 587–617CrossRefGoogle Scholar
  132. Hunkeler D, Aravena R, Butler BJ (1999) Monitoring microbial dechlorination of tetrachloroethene (PCE) in groundwater using compound-specific stable carbon isotope ratios: microcosm and field studies. Environ Sci Technol 33:2733–2738CrossRefGoogle Scholar
  133. Hunkeler D, Aravena R, Parker BL, Cherry JA, Diao X (2003) Monitoring oxidation of chlorinated ethenes by permanganate in groundwater using stable isotopes: laboratory and field studies. Environ Sci Technol 37:798–804PubMedPubMedCentralCrossRefGoogle Scholar
  134. Hunkeler D, Chollet N, Pittet X, Aravena R, Cherry JA, Parker BL (2004) Effect of source variability and transport processes on carbon isotope ratios of TCE and PCE in two sandy aquifers. J Contam Hydrol 74:265–282PubMedPubMedCentralCrossRefGoogle Scholar
  135. Hunkeler D, Aravena R, Berry-Spark K, Cox E (2005) Assessment of degradation pathways in an aquifer with mixed chlorinated hydrocarbon contamination using stable isotope analysis. Environ Sci Technol 39:5975–5981PubMedPubMedCentralCrossRefGoogle Scholar
  136. Hunkeler D, Aravena R, Shouakar-Stash O, Weisbrod N, Nasser A, Netzer L, Ronen D (2011a) Carbon and chlorine isotope ratios of chlorinated ethenes migrating through a thick unsaturated zone of a sandy aquifer. Environ Sci Technol 45:8247–8253PubMedPubMedCentralCrossRefGoogle Scholar
  137. Hunkeler D, Abe Y, Broholm MM, Jeannottat S, Westergaard C, Jacobsen CS, Aravena R, Bjerg PL (2011b) Assessing chlorinated ethene degradation in a large scale contaminant plume by dual carbon-chlorine isotope analysis and quantitative PCR. J Contam Hydrol 119:69–79PubMedPubMedCentralCrossRefGoogle Scholar
  138. Hwang H-T, Park Y-J, Sudicky EA, Unger AJA, Illman WA, Frape SK, Shouakar-Stash O (2013) A multiphase flow and multispecies reactive transport model for DNAPL-involved compound specific isotope analysis. Adv Water Resour 59:111–122CrossRefGoogle Scholar
  139. Imfeld G, Nijenhuis I, Nikolausz M, Zeiger S, Paschke H, Drangmeister J, Grossmann J, Richnow H-H, Weber S (2008) Assessment of in situ degradation of chlorinated ethenes and bacterial community structure in a complex contaminated groundwater system. Water Res 42:871–882PubMedPubMedCentralCrossRefGoogle Scholar
  140. Imfeld G, Kopinke FD, Fischer A, Richnow H-H (2014) Carbon and hydrogen isotope fractionation of benzene and toluene during hydrophobic sorption in multistep batch experiments. Chemosphere 107:454–461PubMedPubMedCentralCrossRefGoogle Scholar
  141. ITCR (2011) Compound specific isotope analysis – EMD team fact sheet. The Interstate Technology & Regulatory Council (ITRC), Washington, DCGoogle Scholar
  142. ITCR (2013) Environmental molecular diagnostics – new site characterization and remediation enhancement tools. EMD-1, The Interstate Technology & Regulatory Council (ITRC), Washington, DCGoogle Scholar
  143. Ivdra N, Herrero-Martín S, Fischer A (2014) Validation of user- and environmentally friendly extraction and clean-up methods for compound-specific stable carbon isotope analysis of organochlorine pesticides and their metabolites in soils. J Chromatogr A 1355:36–45PubMedPubMedCentralCrossRefGoogle Scholar
  144. Jeannottat S, Hunkeler D (2012) Chlorine and carbon isotopes fractionation during volatilization and diffusive transport of trichloroethene in the unsaturated zone. Environ Sci Technol 46:3169–3176PubMedPubMedCentralCrossRefGoogle Scholar
  145. Jeannottat S, Hunkeler D (2013) Can soil gas VOCs be related to groundwater plumes based on their isotope signature? Environ Sci Technol 47:12115–12122PubMedPubMedCentralCrossRefGoogle Scholar
  146. Jechalke S, Rosell M, Martinez-Lavanchy PM, Perez-Leiva P, Rohwerder T, Vogt C, Richnow H-H (2011) Linking low-level stable isotope fractionation to expression of the cytochrome P450 monooxygenase-encoding ethB Gene for elucidation of methyl tert-butyl ether biodegradation in aerated treatment pond systems. Appl Environ Microbiol 77:1086–1096PubMedPubMedCentralCrossRefGoogle Scholar
  147. Jin B, Rolle M (2014) Mechanistic approach to multi-element isotope modeling of organic contaminant degradation. Chemosphere 95:131–139PubMedPubMedCentralCrossRefGoogle Scholar
  148. Jin B, Rolle M, Li T, Haderlein SB (2014) Diffusive fractionation of BTEX and chlorinated ethenes in aqueous solution: quantification of spatial isotope gradients. Environ Sci Technol 48:6141–6150PubMedPubMedCentralCrossRefGoogle Scholar
  149. Jochmann MA, Schmidt TC (2012) Compound-specific stable isotope analysis. Royal Society of Chemistry, CambridgeGoogle Scholar
  150. Julien M, Parinet J, Nun P, Bayle K, Höhener P, Robins RJ, Remaud GS (2015) Fractionation in position-specific isotope composition during vaporization of environmental pollutants measured with isotope ratio monitoring by 13C nuclear magnetic resonance spectrometry. Environ Pollut 205:299–306PubMedPubMedCentralCrossRefGoogle Scholar
  151. Julien M, Nun P, Robins RJ, Remaud GS, Parinet J, Höhener P (2016) Insights into mechanistic models for evaporation of organic liquids in the environment obtained by position-specific carbon isotope analysis. Environ Sci Technol 49:12782–12788CrossRefGoogle Scholar
  152. Kaown D, Shouakar-Stash O, Yang J, Hyun Y, Lee K-K (2014) Identification of multiple sources of groundwater contamination by dual isotopes. Ground Water 52:875–885PubMedPubMedCentralCrossRefGoogle Scholar
  153. Kaown D, Jun S-C, Kim R-H, Woosik S, Lee K-K (2016) Characterization of a site contaminated by chlorinated ethenes and ethanes using multi-analysis. Environ Earth Sci 75:745CrossRefGoogle Scholar
  154. Kaschl A, Vogt C, Uhlig S, Nijenhuis I, Weiss H, Kästner M, Richnow H-H (2005) Isotopic fractionation indicates anaerobic monochlorobenzene biodegradation. Environ Toxicol Chem 24:1315–1324PubMedPubMedCentralCrossRefGoogle Scholar
  155. Kawashima H, Katayama Y (2010) Source evaluation of diazinon using stable carbon isotope ratio. Environ Forensic 11:363–371CrossRefGoogle Scholar
  156. Kelley CA, Hammer BT, Coffin RB (1997) Concentrations and stable isotope values of BTEX in gasoline-contaminated groundwater. Environ Sci Technol 31:2469–2472CrossRefGoogle Scholar
  157. Khan AM, Wick LY, Thullner M (2018) Applying the Rayleigh approach for stable isotope-based analysis of VOC biodegradation in diffusion-dominated systems. Environ Sci Technol 52:7785–7795PubMedPubMedCentralCrossRefGoogle Scholar
  158. Kirchholtes HJ, Bauer M, Schollenberger U, Spitzberg S, Ufrecht W (2004) Untersuchung eines LHKW-Schadens im Festgestein unter Berücksichtigung von Natural Attenuation – Ergebnisse und Folgerungen aus einer Feldstudie. Grundwasser 9:119–126CrossRefGoogle Scholar
  159. Kirtland BC, Aelion CM, Stone PA, Hunkeler D (2003) Isotopic and geochemical assessment of in situ biodegradation of chlorinated hydrocarbons. Environ Sci Technol 37:4205–4212PubMedPubMedCentralCrossRefGoogle Scholar
  160. Kohli P, Richnow H-H, Lal R (2017) Compound-specific stable isotope analysis: implications in hexachlorocyclohexane in-vitro and field assessment. Indian J Microbiol 57:11–22PubMedPubMedCentralCrossRefGoogle Scholar
  161. Kolhatkar R, Schnobrich M (2017) Land application of sulfate salts for enhanced natural attenuation of benzene in groundwater: a case study. Ground Water Monit Remediat 37:43–57CrossRefGoogle Scholar
  162. Kolhatkar R, Kuder T, Philp P, Allen J, Wilson JT (2002) Use of compound-specific stable carbon isotope analyses to demonstrate anaerobic biodegradation of MTBE in groundwater at a gasoline release site. Environ Sci Technol 36:5139–5146PubMedPubMedCentralCrossRefGoogle Scholar
  163. Kopinke FD, Georgi A, Voskamp M, Richnow H-H (2005) Carbon isotope fractionation of organic contaminants due to retardation on humic substances: implications for natural attenuation studies in aquifers. Environ Sci Technol 39:6052–6062PubMedPubMedCentralCrossRefGoogle Scholar
  164. Kopinke FD, Georgi A, Imfeld M, Richnow H-H (2017) Isotope fractionation of benzene during partitioning – revisited. Chemosphere 168:508–513PubMedPubMedCentralCrossRefGoogle Scholar
  165. Kopinke FD, Georgi A, Roland U (2018) Isotope fractionation in phase-transfer processes under thermodynamic and kinetic control – implications for diffusive fractionation in aqueous solution. Sci Total Environ 610–611:495–502PubMedPubMedCentralCrossRefGoogle Scholar
  166. Kuder T, Philp P (2008) Modern geochemical and molecular tools for monitoring in-situ biodegradation of MTBE and TBA. Rev Environ Sci Biotechnol 7:79–91CrossRefGoogle Scholar
  167. Kuder T, Philp P (2013) Demonstration of compound-specific isotope analysis of hydrogen isotope ratios in chlorinated ethenes. Environ Sci Technol 47:1461–1467PubMedPubMedCentralCrossRefGoogle Scholar
  168. Kuder T, Wilson JT, Kaiser P, Kolhatkar R, Philp P, Allen J (2005) Enrichment of stable carbon and hydrogen isotopes during anaerobic biodegradation of MTBE: microcosm and field evidence. Environ Sci Technol 39:213–220PubMedPubMedCentralCrossRefGoogle Scholar
  169. Kuder T, Philp P, Allen J (2009) Effects of volatilization on carbon and hydrogen isotope ratios of MTBE. Environ Sci Technol 43:1763–1768PubMedPubMedCentralCrossRefGoogle Scholar
  170. Kuhn TK, Hamonts K, Dijk JA, Kalka H, Stichler W, Springael D, Dejonghe W, Meckenstock RU (2009) Assessment of the intrinsic bioremediation capacity of an eutrophic river sediment polluted by discharging chlorinated aliphatic hydrocarbons: a compound-specific isotope approach. Environ Sci Technol 43:5263–5269PubMedPubMedCentralCrossRefGoogle Scholar
  171. Kujawinski DM, Stephan M, Jochmann MA, Krajenke K, Haas J, Schmidt TC (2010) Stable carbon and hydrogen isotope analysis of methyl tert-butyl ether and tert-amyl methyl ether by purge and trap-gas chromatography-isotope ratio mass spectrometry: method evaluation and application. J Environ Monit 12:347–354PubMedPubMedCentralCrossRefGoogle Scholar
  172. Kujawinski DM, Wolbert J-B, Zhang L, Jochmann M, Widory D, Baran N, Schmidt TC (2013) Carbon isotope ratio measurements of glyphosate and AMPA by liquid chromatography coupled to isotope ratio mass spectrometry. Anal Bioanal Chem 405:2869–2878PubMedPubMedCentralCrossRefGoogle Scholar
  173. Kümmel S, Starke R, Chen G, Musat F, Richnow H-H, Vogt C (2016) Hydrogen isotope fractionation as a tool to identify aerobic and anaerobic PAH biodegradation. Environ Sci Technol 50:3091–3100PubMedPubMedCentralCrossRefGoogle Scholar
  174. LaBolle EM, Fogg GE, Eweis JB, Gravner J, Leaist DG (2008) Isotopic fractionation by diffusion in groundwater. Water Resour Res 44:W07405CrossRefGoogle Scholar
  175. Lee S, Kaown D, Lee K (2015) Evaluation of the fate and transport of chlorinated ethenes in a complex groundwater system discharging to a stream in Wonju, Korea. J Contam Hydrol 182:231–243PubMedPubMedCentralCrossRefGoogle Scholar
  176. Lesser LE, Johnson PC, Aravena R, Spinnler GE, Bruce CL, Salanitro JP (2008) An evaluation of compound-specific isotope analyses for assessing the biodegradation of MTBE at Port Hueneme, CA. Environ Sci Technol 42:6637–6643PubMedPubMedCentralCrossRefGoogle Scholar
  177. Liang Q-Y, Xiong Q-Y, Zhao J, Fang C-C, Li Y (2017) Carbon isotopic fractionation during vaporization of low molecular weight hydrocarbons (C6–C12). Pet Sci 14:302–314CrossRefGoogle Scholar
  178. Liu H, Li YX, He X, Sissou Z, Tong L, Yarnes C, Huang X (2016) Compound-specific carbon isotopic fractionation during transport of phthalate esters in sandy aquifer. Chemosphere 144:1831–1836PubMedPubMedCentralCrossRefGoogle Scholar
  179. Liu Y, Bashir S, Stollberg R, Trabitzsch R, Weiß H, Paschke H, Nijenhuis I, Richnow H-H (2017) Compound specific and enantioselective stable isotope analysis as tools to monitor transformation of hexachlorocyclohexane (HCH) in a complex aquifer system. Environ Sci Technol 51:8909–8916PubMedPubMedCentralCrossRefGoogle Scholar
  180. Lojkasek-Lima P, Aravena R, Parker BL, Cherry JA (2012a) Fingerprinting TCE in a bedrock aquifer using compound-specific isotope analysis. Ground Water 50:754–764PubMedPubMedCentralCrossRefGoogle Scholar
  181. Lojkasek-Lima P, Aravena R, Shouakar-Stash O, Frape SK, Marchesi M, Fiorenza S, Vogan J (2012b) Evaluating TCE abiotic and biotic degradation pathways in a permeable reactive barrier using compound specific isotope analysis. Ground Water Monit Remediat 32:53–62CrossRefGoogle Scholar
  182. Lu J, Muramoto F, Philp P, Kuder T (2016) Monitoring in situ biodegradation of MTBE using multiple rounds of compound-specific stable carbon isotope analysis. Ground Water Monit Remediat 36:62–70CrossRefGoogle Scholar
  183. Lutz SR, Van Breukelen BM (2014a) Combined source apportionment and degradation quantification of organic pollutants with CSIA: 1. Model derivation. Environ Sci Technol 48:6220–6228PubMedPubMedCentralCrossRefGoogle Scholar
  184. Lutz SR, Van Breukelen BM (2014b) Combined source apportionment and degradation quantification of organic pollutants with CSIA: 2. Model validation and application. Environ Sci Technol 48:6229–6236PubMedPubMedCentralCrossRefGoogle Scholar
  185. Maier MP, De Corte S, Nitsche S, Spaett T, Boon N, Elsner M (2014) C & N isotope analysis of diclofenac to distinguish oxidative and reductive transformation and to track commercial products. Environ Sci Technol 48:2312–2320PubMedPubMedCentralCrossRefGoogle Scholar
  186. Mak KS, Griebler C, Meckenstock RU, Liedl R, Peter A (2006) Combined application of conservative transport modelling and compound-specific carbon isotope analyses to assess in situ attenuation of benzene, toluene, and o-xylene. J Contam Hydrol 88:306–320PubMedPubMedCentralCrossRefGoogle Scholar
  187. Mancini SA, Lacrampe-Couloume G, Jonker H, Van Breukelen BM, Groen J, Volkering F, Sherwood-Lollar B (2002) Hydrogen isotopic enrichment: an indicator of biodegradation at a petroleum hydrocarbon contaminated field site. Environ Sci Technol 36:2464–2470PubMedPubMedCentralCrossRefGoogle Scholar
  188. Mancini SA, Lacrampe-Couloume G, Sherwood-Lollar B (2008) Source differentiation for benzene and chlorobenzene groundwater contamination: a field application of stable carbon and hydrogen isotope analyses. Environ Forensic 9:177–186CrossRefGoogle Scholar
  189. Martac E, Zamfirescu D, Teutsch G, Blessing M, Schmidt TC, Preuß E, Tschauder G, Meyer J, Peter G (2007) Altstandort Chemische Reinigung Rosengarten-Ehestorf. TerraTech 11–12:9–11Google Scholar
  190. Martin H, Heidinger M, Ertl S, Eichinger L, Tiehm A, Schmidt K, Karch U, Leve J (2006) 13C-Isotopenuntersuchungen zur Bestimmung von Natural Attenuation – Abgrenzung und Charakterisierung eines CKW-Schadens am Standort Frankenthal. TerraTech 3–4:14–17Google Scholar
  191. Mäurer D, Stupp HD, Heinrichs D, Haupt T, Eisenmann H (2009) Strategien zur Behandlung des CKW-BTEX-Grundwasserschadens Deponie Rondenbarg. altlasten spektrum 5: 225–232Google Scholar
  192. McHugh T, Kuder T, Fiorenza S, Gorder K, Dettenmaier E, Philp P (2011) Application of CSIA to distinguish between vapor intrusion and indoor sources of VOCs. Environ Sci Technol 45:5952–5958PubMedPubMedCentralCrossRefGoogle Scholar
  193. McKelvie JR, Lindstrom JE, Beller HR, Richmond SA, Sherwood-Lollar B (2005) Analysis of anaerobic BTX biodegradation in a subarctic aquifer using isotopes and benzylsuccinates. J Contam Hydrol 81:167–186PubMedPubMedCentralCrossRefGoogle Scholar
  194. McKelvie JR, Hirschorn SK, Lacrampe-Couloume G, Lindstrom J, Braddock J, Finneran K, Trego D, Sherwood-Lollar B (2007a) Evaluation of TCE and MTBE in situ biodegradation: integrating stable isotope, metabolic intermediate and microbial lines of evidence. Ground Water Monit Remediat 27:63–73CrossRefGoogle Scholar
  195. McKelvie JR, Mackay DM, de Sieyes NR, Lacrampe-Couloume G, Sherwood-Lollar B (2007b) Quantifying MTBE biodegradation in the Vandenberg Air Force Base ethanol release study using stable carbon isotopes. J Contam Hydrol 94:157–165PubMedPubMedCentralCrossRefGoogle Scholar
  196. McLoughlin P (2019) Protocol for using compound-specific isotope analysis in environmental forensics. Remediat J 25:11–21CrossRefGoogle Scholar
  197. McLoughlin P, Peacock AD, Pirkle RJ, Wilson JT, McCracken RW (2014) CSIA of TCE and daughter products with multiple sources, multiple attenuation mechanisms, and low ethene. Remediat J 29:45–52CrossRefGoogle Scholar
  198. McRae C, Snape CE, Sun C-G, Fabbri D, Tartari D, Trombini C, Fallick AE (2000) Use of compound-specific stable isotope analysis to source anthropogenic natural gas-derived polycyclic aromatic hydrocarbons in a lagoon sediment. Environ Sci Technol 34:4684–4686CrossRefGoogle Scholar
  199. Meckenstock RU, Richnow H-H (2010) Natural stable isotope fractionation for the assessment of hydrocarbon degradation. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 3603–3611CrossRefGoogle Scholar
  200. Meckenstock RU, Morasch B, Kästner M, Vieth A, Richnow H-H (2002) Assessment of bacterial degradation of aromatic hydrocarbons in the environment by analysis of stable carbon isotope fractionation. Water Air Soil Pollut Focus 2:141–152CrossRefGoogle Scholar
  201. Meckenstock RU, Morasch B, Griebler C, Richnow H-H (2004) Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated aquifers. J Contam Hydrol 75:215–255PubMedPubMedCentralCrossRefGoogle Scholar
  202. Melsbach A, Ponsin V, Torrentó C, Lihl C, Hofstetter TB, Hunkeler D, Elsner M (2019) 13C- and 15N-isotope analysis of desphenylchloridazon by liquid chromatography-isotope-ratio mass spectrometry and derivatization gas chromatography-isotope-ratio mass spectrometry. Anal Chem 91:3412–3420PubMedPubMedCentralCrossRefGoogle Scholar
  203. Meyer AH, Penning H, Elsner M (2009) C and N isotope fractionation suggests similar mechanisms of microbial atrazine transformation despite involvement of different enzymes (AtzA and TrzN). Environ Sci Technol 43:8079–8085PubMedPubMedCentralCrossRefGoogle Scholar
  204. Meyer AH, Maier MP, Elsner M (2017) Protocol to investigate volatile aromatic hydrocarbon degradation with purge and trap coupled to a gas chromatograph/isotope ratio mass spectrometer. In: TJ MG et al (eds) Hydrocarbon and lipid Microbiology protocols, Springer protocols handbooks. Springer, Berlin/Heidelberg, pp 259–288Google Scholar
  205. Micic V, Straub KL, Blum P, Kappler A (2007) Natural attenuation of naphthalene and benzene at a former gasworks site. Water Sci Technol 7:145–153Google Scholar
  206. Miljevic N, Golobocanin D (2007) Potential use of environmental isotopes in pollutant migration studies. Arh Hig Rada Toksikol 58:251–262PubMedPubMedCentralCrossRefGoogle Scholar
  207. Milosevic N, Qiu S, Elsner M, Einsiedl F, Maier MP, Bensch HKV, Albrechtsen HJ, Bjerg PL (2013) Combined isotope and enantiomer analysis to assess the fate of phenoxy acids in a heterogeneous geologic setting at an old landfill. Water Res 47:637–649PubMedPubMedCentralCrossRefGoogle Scholar
  208. Miyares PH, Reynolds M, Pennington JC, Coffin RB, Jenkins TF, Cifuentes L (1999) Using stable isotopes of carbon and nitrogen as in situ tracers for monitoring the natural attenuation of explosives. USACE, CRREL special report 99-18, Hannover, USAGoogle Scholar
  209. Mogusu EO, Wolbert JB, Kujawinski DM, Jochmann MA, Elsner M (2015) Dual element ((15)N/(14)N, (13)C/(12)C) isotope analysis of glyphosate and AMPA by derivatization-gas chromatography isotope ratio mass spectrometry (GC/IRMS) combined with LC/IRMS. Anal Bioanal Chem 407:5249–5260PubMedPubMedCentralCrossRefGoogle Scholar
  210. Morasch B, Hunkeler D, Zopfi J, Temime B, Höhener P (2011) Intrinsic biodegradation potential of aromatic hydrocarbons in an alluvial aquifer – potentials and limits of signature metabolite analysis and two stable isotope-based techniques. Water Res 45:4459–4469PubMedPubMedCentralCrossRefGoogle Scholar
  211. Morrill PL, Lacrampe-Couloume G, Slater GF, Sleep BE, Edwards EA, McMaster ML, Major DW, Sherwood-Lollar B (2005) Quantifying chlorinated ethene degradation during reductive dechlorination at Kelly AFB using stable carbon isotopes. J Contam Hydrol 76:279–293PubMedPubMedCentralCrossRefGoogle Scholar
  212. Morrill PL, Sleep BE, Seepersad DJ, McMaster ML, Hood ED, LeBron C, Major DW, Edwards EA, Sherwood-Lollar B (2009) Variations in expression of carbon isotope fractionation of chlorinated ethenes during biologically enhanced PCE dissolution close to a source zone. J Contam Hydrol 110:60–71PubMedPubMedCentralCrossRefGoogle Scholar
  213. Moshkovich E, Ronen Z, Gelman F, Dahan O (2018) In situ bioremediation of a gasoline-contaminated vadose zone: implications from direct observations. Vadose Zone J 17:170153CrossRefGoogle Scholar
  214. Mundle SOC, Johnson T, Lacrampe-Couloume G, Perez-de-Mora A, Duhamel M, Edwards EA, McMaster ML, Cox E, Révész KM, Sherwood-Lollar B (2012) Monitoring biodegradation of ethene and bioremediation of chlorinated ethenes at a contaminated site. Environ Sci Technol 46:1731–1738PubMedPubMedCentralCrossRefGoogle Scholar
  215. Musat F, Vogt C, Richnow H-H (2016) Carbon and hydrogen stable isotope fractionation associated with the aerobic and anaerobic degradation of saturated and alkylated aromatic hydrocarbons. J Mol Microbiol Biotechnol 26:211–226PubMedPubMedCentralCrossRefGoogle Scholar
  216. Négrel P, Blessing M, Millot R, Petelet-Giraud E, Innocent C (2012) Isotopic methods give clues about the origins of trace metals and organic pollutants in the environment. Trends Anal Chem 38:143–153CrossRefGoogle Scholar
  217. Nijenhuis I, Richnow H-H (2016) Stable isotope fractionation concepts for characterizing biotransformation of organohalides. Curr Opin Biotechnol 41:108–113PubMedPubMedCentralCrossRefGoogle Scholar
  218. Nijenhuis I, Nikolausz M, Köth A, Felfoldi T, Weiss H, Drangmeister J, Grossmann J, Kästner M, Richnow H-H (2007) Assessment of the natural attenuation of chlorinated ethenes in an anaerobic contaminated aquifer in the Bitterfeld/Wolfen area using stable isotope techniques, microcosm studies and molecular biomarkers. Chemosphere 67:300–311PubMedPubMedCentralCrossRefGoogle Scholar
  219. Nijenhuis I, Schmidt M, Pellegatti E, Paramatti E, Richnow H-H, Gargini A (2013) A stable isotope approach for source apportionment of chlorinated ethene plumes at a complex multi-contamination events urban site. J Contam Hydrol 153:92–105PubMedPubMedCentralCrossRefGoogle Scholar
  220. Nijenhuis I, Renpenning J, Kümmel S, Richnow H-H, Gehre M (2016) Recent advances in multi-element compound-specific stable isotope analysis of organohalides: achievements, challenges and prospects for assessing environmental sources and transformation. Trends Environ Anal Chem 11:1–8CrossRefGoogle Scholar
  221. Niu L, Xu C, Zhu S, Bao H, Xu Y, Li H, Zhang Z, Zhang X, Qiu J, Liu W (2016) Enantiomer signature and carbon isotope evidence for the migration and transformation of DDTs in arable soils across China. Sci Rep 6:38475PubMedPubMedCentralCrossRefGoogle Scholar
  222. NJDEP – New Jersey Department of Environmental Protection (2012) Monitored natural attenuation technical guidance. Site Remediation ProgramGoogle Scholar
  223. Ojeda AS, Phillips E, Mancini SA, Sherwood-Lollar B (2019) Sources of uncertainty in biotransformation mechanistic interpretations and remediation studies using CSIA. Anal Chem 91:9147–9153Google Scholar
  224. O’Malley VP, Abrajano TA, Hellou J (1996) Stable carbon isotopic apportionment of individual polycyclic aromatic hydrocarbons in St. John’s Harbour, Newfoundland. Environ Sci Technol 30:634–639CrossRefGoogle Scholar
  225. Ottosen CB, Murray AM, Broholm MM, Bjerg PL (2019) In situ quantification of degradation is needed for reliable risk assessments and site-specific monitored natural attenuation. Environ Sci Technol 53:1–3PubMedPubMedCentralCrossRefGoogle Scholar
  226. Oudijk G (2008) Compound-specific stable carbon isotope analysis of MTBE in groundwater contamination fingerprinting studies: the use of hydrogeologic principles to assess its validity. Environ Forensic 9:40–54CrossRefGoogle Scholar
  227. Palau J, Marchesi M, Chambon JCC, Aravena R, Canals A, Binning PJ, Bjerg PL, Otero N, Soler A (2014) Multi-isotope (carbon and chlorine) analysis for fingerprinting and site characterization at a fractured bedrock aquifer contaminated by chlorinated ethenes. Sci Total Environ 475:61–70PubMedPubMedCentralCrossRefGoogle Scholar
  228. Palau J, Jamin P, Badin A, Vanhecke N, Haerens B, Brouyère S, Hunkeler D (2016) Use of dual carbon-chlorine isotope analysis to assess the degradation pathways of 1,1,1-trichloroethane in groundwater. Water Res 92:235–243PubMedPubMedCentralCrossRefGoogle Scholar
  229. Passeport E, Landis R, Mundle SOC, Chu K, Mack EE, Lutz EJ, Sherwood-Lollar B (2014) Diffusion sampler for compound specific carbon isotope analysis of dissolved hydrocarbon contaminants. Environ Sci Technol 48:9582–9590PubMedPubMedCentralCrossRefGoogle Scholar
  230. Passeport E, Landis R, Lacrampe-Couloume G, Lutz EJ, Mack EE, West K, Morgan S, Sherwood-Lollar B (2016) Sediment monitored natural recovery evidenced by compound specific isotope analysis and high-resolution pore water sampling. Environ Sci Technol 50:12197–12204PubMedPubMedCentralCrossRefGoogle Scholar
  231. Pati SG, Shin K, Skarpeli-Liati M, Bolotin J, Eustis SN, Spain JC, Hofstetter TB (2012) Carbon and nitrogen isotope effects associated with the dioxygenation of aniline and diphenylamine. Environ Sci Technol 46:11844–11853PubMedPubMedCentralCrossRefGoogle Scholar
  232. Pati SG, Kohler HE, Hofstetter TB (2017) Characterization of substrate, cosubstrate, and product isotope effects associated with enzymatic oxygenations of organic compounds based on compound-specific isotope analysis. Methods Enzymol 596:291–329PubMedPubMedCentralCrossRefGoogle Scholar
  233. Patterson BM, Aravena R, Davis GB, Furness AJ, Bastow TP, Bouchard D (2013) Multiple lines of evidence to demonstrate vinyl chloride aerobic biodegradation in the vadose zone, and factors controlling rates. J Contam Hydrol 153:69–77PubMedPubMedCentralCrossRefGoogle Scholar
  234. Pennington JC, Brannon JM, Gunnison D, Harrelson DW, Zakikhani M, Miyares P, Jenkins TM, Clarke J, Hayes C, Ringleberg D, Perkins E, Fredrickson H (2001) Monitored natural attenuation of explosives. Soil Sediment Contam 10:45–70CrossRefGoogle Scholar
  235. Peter A, Steinbach A, Liedl R, Ptak T, Michaelis W, Teutsch G (2004) Assessing microbial degradation of o-xylene at field-scale from the reduction in mass flow rate combined with compound-specific isotope analyses. J Contam Hydrol 71:127–154PubMedPubMedCentralCrossRefGoogle Scholar
  236. Petitta M, Pacioni E, Sbarbati C, Corvatta G, Fanelli M, Aravena R (2013) Hydrodynamic and isotopic characterization of a site contaminated by chlorinated solvents: Chienti River Valley, Central Italy. Appl Geochem 32:164–174CrossRefGoogle Scholar
  237. Philp RP (2007) The emergence of stable isotopes in environmental and forensic geochemistry studies: a review. Environ Chem Lett 5:57–66CrossRefGoogle Scholar
  238. Philp RP, Pirkle RJ, McLoughlin PW, Peacock AD, Yang X (2007) Monitored natural attenuation forum: the use of carbon isotope analysis at MNA sites. Remediat J 17:127–137CrossRefGoogle Scholar
  239. Pierce AA, Chapman SW, Zimmerman LK, Hurley JC, Aravena R, Cherry JA, Parker BL (2018) DFN-M field characterization of sandstone for a process-based site conceptual model and numerical simulations of TCE transport with degradation. J Contam Hydrol 212:96–114PubMedPubMedCentralCrossRefGoogle Scholar
  240. Ponsin V, Maier J, Guelorget Y, Hunkeler D, Bouchard D, Villavicencio H, Höhener P (2015) Documentation of time-scales for onset of natural attenuation in an aquifer treated by a crude-oil recovery system. Sci Total Environ 512–513:62–73PubMedPubMedCentralCrossRefGoogle Scholar
  241. Pooley KE, Blessing M, Schmidt TC, Haderlein SB, Macquarrie KTB, Prommer H (2009) Aerobic biodegradation of chlorinated ethenes in a fractured bedrock aquifer: quantitative assessment by compound-specific isotope analysis (CSIA) and reactive transport modeling. Environ Sci Technol 43:7458–7464PubMedPubMedCentralCrossRefGoogle Scholar
  242. Prommer H, Anneser B, Rolle M, Einsiedl F, Griebler C (2009) Biogeochemical and isotopic gradients in a BTEX/PAH contaminant plume: model-based interpretation of a high-resolution field data set. Environ Sci Technol 43:8206–8212PubMedPubMedCentralCrossRefGoogle Scholar
  243. Puigserver D, Herrero J, Torres M, Cortés A, Nijenhuis I, Kuntze K, Parker BL, Carmona JM (2016) Reductive dechlorination in recalcitrant sources of chloroethenes in the transition zone between aquifers and aquitards. Environ Sci Pollut Res Int 23:18724–18741PubMedPubMedCentralCrossRefGoogle Scholar
  244. Qiu S, Eckert D, Cirpka OA, Huenniger M, Knappett P, Maloszewski P, Meckenstock RU, Griebler C, Elsner M (2013) Direct experimental evidence of non-first order degradation kinetics and sorption-induced isotopic fractionation in a mesoscale aquifer: 13C/12C analysis of a transient toluene pulse. Environ Sci Technol 47:6892–6899PubMedPubMedCentralCrossRefGoogle Scholar
  245. Rakoczy J, Remy B, Vogt C, Richnow H-H (2011) A bench-scale constructed wetland as a model to characterize benzene biodegradation processes in freshwater wetlands. Environ Sci Technol 45:10036–10044PubMedPubMedCentralCrossRefGoogle Scholar
  246. Renpenning J, Nijenhuis I (2016) Evaluation of the microbial reductive dehalogenation reaction using compound-specific stable isotope analysis (CSIA). In: Adrian L, Löffler F (eds) Organohalide-respiring bacteria. Springer, Berlin/Heidelberg, pp 429–453Google Scholar
  247. Renpenning J, Hitzfeld KL, Gilevska T, Nijenhuis I, Gehre M, Richnow H-H (2015a) Development and validation of an universal interface for compound-specific stable isotope analysis of chlorine (37Cl/35Cl) by GC-high-temperature conversion (HTC)-MS/IRMS. Anal Chem 87:2832–2839PubMedPubMedCentralCrossRefGoogle Scholar
  248. Renpenning J, Kümmel S, Hitzfeld KL, Schimmelmann A, Gehre M (2015b) Compound-specific hydrogen isotope analysis of heteroatom-bearing compounds via gas chromatography-chromium-based high-temperature conversion (Cr/HTC)-isotope ratio mass spectrometry. Anal Chem 87:9443–9450PubMedPubMedCentralCrossRefGoogle Scholar
  249. Renpenning J, Schimmelmann A, Gehre M (2017) Compound-specific hydrogen isotope analysis of fluorine-, chlorine-, bromine- and iodine-bearing organics using gas chromatography-chromium-based high-temperature conversion (Cr/HTC) isotope ratio mass spectrometry. Rapid Commun Mass Spectrom 31:1095–1102Google Scholar
  250. Renpenning J, Horst A, Schmidt M, Gehre M (2018) Online isotope analysis of 37Cl/35Cl universally applied for semi-volatile organic compounds using GC-MC-ICPMS. J Anal At Spectrom 33:314–321Google Scholar
  251. Révész KM, Sherwood-Lollar B, Kirshtein JD, Tiedeman CR, Imbrigiotta TE, Goode DJ, Shapiro AM, Voytek MA, Lacombe PJ, Busenberg E (2014) Integration of stable carbon isotope, microbial community, dissolved hydrogen gas, and 2HH2O tracer data to assess bioaugmentation for chlorinated ethene degradation in fractured rocks. J Contam Hydrol 156:62–77PubMedPubMedCentralCrossRefGoogle Scholar
  252. Richards PM, Liang Y, Johnson RL, Mattes TE (2019) Cryogenic soil coring reveals coexistence of aerobic and anaerobic vinyl chloride degrading bacteria in a chlorinated ethene contaminated aquifer. Water Res 157:281–291PubMedPubMedCentralCrossRefGoogle Scholar
  253. Richnow H-H, Meckenstock RU (1999) Isotopen-geochemisches Konzept zur In-situ Erfassung des biologischen Abbaus in kontaminiertem Grundwasser. TerraTech 8:38–41Google Scholar
  254. Richnow H-H, Gehre M, Kästner M, Morasch B, Meckenstock RU (2000) Isotope fractionation of aromatic hydrocarbons – a perspective to characterise microbial in-situ degradation. Isot Environ Health Stud 36:383–384Google Scholar
  255. Richnow H-H, Vieth A, Kästner M, Gehre M, Meckenstock RU (2002) Isotope fractionation of toluene: a perspective to characterise microbial in situ degradation. Sci World J 2:1227–1234CrossRefGoogle Scholar
  256. Richnow H-H, Meckenstock RU, Reitzel LA, Baun A, Ledin A, Christensen TH (2003a) In situ biodegradation determined by carbon isotope fractionation of aromatic hydrocarbons in an anaerobic landfill leachate plume (Vejen, Denmark). J Contam Hydrol 64:59–72PubMedPubMedCentralCrossRefGoogle Scholar
  257. Richnow H-H, Annweiler E, Michaelis W, Meckenstock RU (2003b) Microbial in situ degradation of aromatic hydrocarbons in a contaminated aquifer monitored by carbon isotope fractionation. J Contam Hydrol 65:101–120PubMedPubMedCentralCrossRefGoogle Scholar
  258. Rodríguez-Fernández D, Torrentó C, Palau J, Marchesi M, Soler A, Hunkeler D, Domènech C, Rosell M (2018) Unravelling long-term source removal effects and chlorinated methanes natural attenuation processes by C and Cl stable isotopic patterns at a complex field site. Sci Total Environ 645:286–296PubMedPubMedCentralCrossRefGoogle Scholar
  259. Rolle M, Jin B (2017) Normal and Inverse diffusive isotope fractionation of deuterated toluene and benzene in aqueous systems. Environ Sci Technol Lett 4:298–304CrossRefGoogle Scholar
  260. Rolle M, Chiogna G, Bauer R, Griebler C, Grathwohl P (2010) Isotopic fractionation by transverse dispersion: flow-through microcosms and reactive transport modeling study. Environ Sci Technol 44:6167–6173PubMedPubMedCentralCrossRefGoogle Scholar
  261. Rosell M, Häggblom MM, Richnow H-H (2007) Compound-specific isotope analysis (CSIA) to characterise degradation pathways and to quantify in-situ degradation of fuel oxygenates and other fuel-derived contaminants. In: Barceló D (ed) Fuel oxygenates. Springer, Berlin/Heidelberg, pp 99–119CrossRefGoogle Scholar
  262. Saber D, Mauro D, Sirivedhin T (2006) Environmental forensics investigation in sediments near a former manufactured gas plant site. Environ Forensic 7:65–75CrossRefGoogle Scholar
  263. Sagi-Ben Moshe S, Ronen Z, Dahan O, Bernstein A, Weisbrod N, Gelman F, Adar E (2010) Isotopic evidence and quantification assessment of in situ RDX biodegradation in the deep unsaturated zone. Soil Biol Biochem 42:1253–1262CrossRefGoogle Scholar
  264. Schaefer CE, Lippincott DR, Klammler H, Hatfield K (2018a) Evidence of rock matrix back-diffusion and abiotic dechlorination using a field testing approach. J Contam Hydrol 209:33–41PubMedPubMedCentralCrossRefGoogle Scholar
  265. Schaefer CE, Lavorgna GM, Haluska AA, Annable MD (2018b) Long-term impacts on groundwater and reductive dechlorination following bioremediation in a highly characterized trichloroethene DNAPL source area. Ground Water Monit Remediat 38:65–74CrossRefGoogle Scholar
  266. Schiefler AA, Tobler DJ, Overheu ND, Tuxen N (2018) Extent of natural attenuation of chlorinated ethenes at a contaminated site in Denmark. Energy Procedia 146:188–193CrossRefGoogle Scholar
  267. Schmidt TC, Jochmann MA (2012) Origin and fate of organic compounds in water: characterization by compound-specific stable isotope analysis. Annu Rev Anal Chem 5:133–155CrossRefGoogle Scholar
  268. Schmidt TC, Zwank L, Elsner M, Berg M, Meckenstock RU, Haderlein SB (2004) Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects, and future challenges. Anal Bioanal Chem 378:283–300PubMedPubMedCentralCrossRefGoogle Scholar
  269. Schreglmann K, Hoeche M, Steinbeiss S, Reinnicke S, Elsner M (2013) Carbon and nitrogen isotope analysis of atrazine and desethylatrazine at sub-microgram per liter concentrations in groundwater. Anal Bioanal Chem 405:2857–2867PubMedPubMedCentralCrossRefGoogle Scholar
  270. Schürner HK, Maier MP, Eckert D, Brejcha R, Neumann CC, Stumpp C, Cirpka OA, Elsner M (2016) Compound-specific stable isotope fractionation of pesticides and pharmaceuticals in a mesoscale aquifer model. Environ Sci Technol 50:5729–5739PubMedPubMedCentralCrossRefGoogle Scholar
  271. Schüth C, Taubald H, Bolano N, Maciejczyk K (2003) Carbon and hydrogen isotope effects during sorption of organic contaminants on carbonaceous materials. J Contam Hydrol 64:269–281PubMedPubMedCentralCrossRefGoogle Scholar
  272. Schwarzenbach RP, Gschwend PM, Imboden DM (2016) Chapter 27: assessing transformation processes using compound-specific isotope analysis (CSIA). In: Environmental organic chemistry, 3rd edn. Wiley, New York, pp 897–944Google Scholar
  273. Segal DC, Kuder T, Kolhatkar R (2018) Assessment of anaerobic biodegradation of bis(2-chloroethyl) ether in groundwater using carbon and chlorine compound-specific isotope analysis. Sci Total Environ 625:696–705PubMedPubMedCentralCrossRefGoogle Scholar
  274. Shayan M, Thomson NR, Aravena R, Barker JF, Madsen EL, Marchesi M, DeRito CM, Bouchard D, Buscheck T, Kolhatkar R, Daniels EJ (2018) Integrated plume treatment using persulfate coupled with microbial sulfate reduction. Ground Water Monit Remediat 38:45–61CrossRefGoogle Scholar
  275. Sherwood-Lollar B, Slater GF, Sleep B, Witt M, Klecka GM, Harkness M, Spivack J (2001) Stable carbon isotope evidence for intrinsic bioremediation of tetrachloroethene and trichloroethene at area 6, Dover Air Force Base. Environ Sci Technol 35:261–269PubMedPubMedCentralCrossRefGoogle Scholar
  276. Slater GF (2003) Stable isotope forensics – when isotopes work. Environ Forensic 4:13–23CrossRefGoogle Scholar
  277. Song DL, Conrad ME, Sorenson KS, Alvarez-Cohen L (2002) Stable carbon isotope fractionation during enhanced in situ bioremediation of trichloroethene. Environ Sci Technol 36:2262–2268PubMedPubMedCentralCrossRefGoogle Scholar
  278. Sonne AT, McKnight US, Rønde V, Bjerg PL (2017) Assessing the chemical contamination dynamics in a mixed land use stream system. Water Res 125:141–151PubMedPubMedCentralCrossRefGoogle Scholar
  279. Spahr S, Huntscha S, Bolotin J, Maier MP, Elsner M, Hollender J, Hofstetter TB (2013) Compound-specific isotope analysis of benzotriazole and its derivatives. Anal Bioanal Chem 405:2843–2856PubMedPubMedCentralCrossRefGoogle Scholar
  280. Spence MJ, Bottrell SH, Thornton SF, Richnow H-H, Spence KH (2005) Hydrochemical and isotopic effects associated with petroleum fuel biodegradation pathways in a chalk aquifer. J Contam Hydrol 79:67–88PubMedPubMedCentralCrossRefGoogle Scholar
  281. Stehmeier LG, Diegor EJM, Francis MM, Winsor L, Abrajano TA (1999a) Use of isotope fractionation in residual hydrocarbons for monitoring bioremediation. In: Alleman BC, Leeson A (eds) Natural attenuation of chlorinated solvents, petroleum hydrocarbons, and other organic compounds. Battelle Press, Columbus, pp 207–212Google Scholar
  282. Stehmeier LG, Francis MM, Jack TR, Diegor E, Winsor L, Abrajano TA (1999b) Field and in vitro evidence for in-situ bioremediation using compound-specific C-13/C-12 ratio monitoring. Org Geochem 30:821–833CrossRefGoogle Scholar
  283. Steinbach A, Seifert R, Annweiler E, Michaelis W (2004) Hydrogen and carbon isotope fractionation during anaerobic biodegradation of aromatic hydrocarbons – a field study. Environ Sci Technol 38:609–616PubMedPubMedCentralCrossRefGoogle Scholar
  284. Stelzer N, Fischer A, Kästner M, Richnow H-H (2006) Analyse des anaeroben Benzolabbaus: Vergleich von In-situ-Mikrokosmen, Elektronenakzeptorbilanzen und Isotopenfraktionierungsprozessen. Grundwasser 11:247–258CrossRefGoogle Scholar
  285. Stelzer N, Imfeld G, Thullner M, Lehmann J, Poser A, Richnow H-H, Nijenhuis I (2009) Integrative approach to delineate natural attenuation of chlorinated benzenes in anoxic aquifers. Environ Pollut 157:1800–1806PubMedPubMedCentralCrossRefGoogle Scholar
  286. Sturchio NC, Clausen JL, Heraty LJ, Huang L, Holt BD, Abrajano TA (1998) Chlorine isotope investigation of natural attenuation of trichloroethene in an aerobic aquifer. Environ Sci Technol 32:3037–3042CrossRefGoogle Scholar
  287. Tang X, Yang Y, Huang W, McBride MB, Guo J, Tao R, Dai Y (2017) Transformation of chlorpyrifos in integrated recirculating constructed wetlands (IRCWs) as revealed by compound-specific stable isotope (CSIA) and microbial community structure analysis. Bioresour Technol 233:264–270PubMedPubMedCentralCrossRefGoogle Scholar
  288. Teixeira LGP, de Abreu AES (2018) Aplicação da análise isotópica de composto específico (técnica CSIA) emperícias ambientais para distinguir diferentes fontes de contaminação. Revista do Instituto Geológico 39:31–41CrossRefGoogle Scholar
  289. Thierrin J, Davis GB, Barber C (1995) A ground-water tracer test with deuterated compounds for monitoring in situ biodegradation and retardation of aromatic hydrocarbons. Ground Water 33:469–475CrossRefGoogle Scholar
  290. Thornton SF, Rivett MO (2008) Monitored natural attenuation of organic contaminants in groundwater: principles and application. Proc Inst Civ Eng Water Manage 161:381–392CrossRefGoogle Scholar
  291. Thornton SF, Bottrell SH, Spence KH, Pickup R, Spence MJ, Shah N, Mallinson HEH, Richnow H-H (2011) Assessment of MTBE biodegradation in contaminated groundwater using C-13 and C-14 analysis: field and laboratory microcosm studies. Appl Geochem 26:828–837CrossRefGoogle Scholar
  292. Thouement HAA, Kuder T, Heimovaara TJ, van Breukelen BM (2019) Do CSIA data from aquifers inform on natural degradation of chlorinated ethenes in aquitards?. J Contam Hydrol 226:103520Google Scholar
  293. Thullner M, Richnow H-H, Fischer A (2009) Characterization and quantification of in situ biodegradation of groundwater contaminants using stable isotope fractionation analysis: advantages and limitations. In: Gallo D, Mancini R (eds) Environmental and regional air pollution: air, water and soil pollution science and technology. Nova Science Publishers, New York, pp 41–81Google Scholar
  294. Thullner M, Centler F, Richnow H-H, Fischer A (2012) Quantification of organic pollutant degradation in contaminated aquifers using compound specific stable isotope analysis – review of recent developments. Org Geochem 42:1440–1460CrossRefGoogle Scholar
  295. Thullner M, Fischer A, Richnow H-H, Wick LY (2013) Influence of mass transfer on stable isotope fractionation. Appl Microbiol Biotechnol 97:441–452PubMedPubMedCentralCrossRefGoogle Scholar
  296. Torrentó C, Audí-Miró C, Bordeleau G, Marchesi M, Rosell M, Otero N, Soler A (2014) The use of alkaline hydrolysis as a novel strategy for chloroform remediation: The feasibility of using construction wastes and evaluation of carbon isotopic fractionation. Environ Sci Technol 48:1869–1877Google Scholar
  297. Torrentó C, Bakkour R, Glauser G, Melsbach A, Ponsin V, Hofstetter TB, Elsner M, Hunkeler D (2019) Solid-phase extraction method for stable isotope analysis of pesticides from large volume environmental water samples. Analyst 144:2898–2908PubMedPubMedCentralCrossRefGoogle Scholar
  298. UBA – German Federal Environment Agency (2011) Consideration of natural attenuation in remediating contaminated sites. Position paper OF 10/12/2009, Dessau-RoßlauGoogle Scholar
  299. US-EPA (2008) A Guide for assessing biodegradation and source identification of organic ground water contaminants using compound specific isotope analysis (CSIA). EPA-600/R-08/148, AdaGoogle Scholar
  300. US-EPA (2013) Introduction to in situ bioremediation of groundwater. EPA-542-R-13-018Google Scholar
  301. Van Breukelen BM (2007) Extending the Rayleigh Equation to allow competing isotope fractionating pathways to improve quantification of biodegradation. Environ Sci Technol 41:4004–4010PubMedPubMedCentralCrossRefGoogle Scholar
  302. Van Breukelen BM, Prommer H (2008) Beyond the Rayleigh equation: reactive transport modeling of isotope fractionation effects to improve quantification of biodegradation. Environ Sci Technol 42:2457–2463PubMedPubMedCentralCrossRefGoogle Scholar
  303. Van Breukelen BM, Rolle M (2012) Transverse hydrodynamic dispersion effects on isotope signals in groundwater chlorinated solvents’ plumes. Environ Sci Technol 46:7700–7708PubMedPubMedCentralCrossRefGoogle Scholar
  304. Van der Waals MJ, Pijls C, Sinke AJC, Langenhoff AAM, Smidt H, Gerritse J (2018) Anaerobic degradation of a mixture of MtBE, EtBE, TBA, and benzene under different redox conditions. Appl Microbiol Biotechnol 102:3387–3397PubMedPubMedCentralCrossRefGoogle Scholar
  305. Van Keer I, Bronders J, Verhack J, Schwarzbauer J, Swennen R (2012) Limitations in the use of compound-specific stable isotope analysis to understand the behaviour of a complex BTEX groundwater contamination near Brussels (Belgium). Environ Earth Sci 66:457–470CrossRefGoogle Scholar
  306. VanStone N, Przepiora A, Vogan J, Lacrampe-Couloume G, Powers B, Perez E, Mabury S, Sherwood-Lollar B (2005) Monitoring trichloroethene remediation at an iron permeable reactive barrier using stable carbon isotopic analysis. J Contam Hydrol 78:313–325PubMedPubMedCentralCrossRefGoogle Scholar
  307. Velimirovic M, Tosco T, Uyttebroek M, Luna M, Gastone F, De Boer C, Klaas N, Sapion H, Eisenmann H, Larsson PO, Braun J, Sethi R, Bastiaens L (2014) Field assessment of guar gum stabilized microscale zerovalent iron particles for in-situ remediation of 1,1,1-trichloroethane. J Contam Hydrol 164:88–99PubMedPubMedCentralCrossRefGoogle Scholar
  308. Vieth A, Morasch B, Meckenstock RU, Richnow H-H (2001) Charakterisierung des biologischen Abbaus von BTEX im Grundwasser über Isotopenfraktionierung – Feldstudien. TerraTech 5:37–41Google Scholar
  309. Vieth A, Müller J, Strauch G, Kästner M, Gehre M, Meckenstock RU, Richnow H-H (2003) In-situ biodegradation of tetrachloroethene and trichloroethene in contaminated aquifers monitored by stable isotope fractionation. Isot Environ Health Stud 39:113–124CrossRefGoogle Scholar
  310. Vieth A, Kästner M, Schirmer M, Weiss H, Gödeke S, Meckenstock RU, Richnow H-H (2005) Monitoring in situ biodegradation of benzene and toluene by stable carbon isotope fractionation. Environ Toxicol Chem 24:51–60PubMedPubMedCentralCrossRefGoogle Scholar
  311. Vogel M, Nijenhuis I, Lloyd J, Boothman C, Pöritz M, Mackenzie K (2018) Combined chemical and microbiological degradation of tetrachloroethene during the application of Carbo-Iron at a contaminated field site. Sci Total Environ 628–629:1027–1036PubMedPubMedCentralCrossRefGoogle Scholar
  312. Vogt C, Cyrus E, Herklotz I, Schlosser D, Bahr A, Herrmann S, Richnow H-H, Fischer A (2008) Evaluation of toluene degradation pathways by two-dimensional stable isotope fractionation. Environ Sci Technol 42:7793–7800PubMedPubMedCentralCrossRefGoogle Scholar
  313. Vogt C, Dorer C, Musat F, Richnow H-H (2016) Multi isotope fractionation concepts to characterize the degradation of hydrocarbons – from enzymes to the environment. Curr Opin Biotechnol 41:90–98PubMedPubMedCentralCrossRefGoogle Scholar
  314. Vogt C, Musat F, Richnow H-H (2018) Compound-specific isotope analysis for studying the biological degradation of hydrocarbons. In: Boll M (ed) Anaerobic utilization of hydrocarbons, oils, and lipids, Handbook of hydrocarbon and lipid microbiology. Springer, ChamGoogle Scholar
  315. Walker SE, Dickhut RM, Chisholm-Brause C, Sylva S, Reddy CM (2005) Molecular and isotopic identification of PAH sources in a highly industrialized urban estuary. Org Geochem 36:619–632CrossRefGoogle Scholar
  316. Wang Y (2013) Chlorinated hydrocarbon – contaminated site investigation with optimized 3D-CSIA approach. Remediat J 23:111–120CrossRefGoogle Scholar
  317. Wang Y (2016) Breakthrough in 2D-CSIA technology for 1,4-Dioxane. Remediat J 27:61–70CrossRefGoogle Scholar
  318. Wang Y, Smith GJ (2010) Advanced site diagnostic tool 3D-CSIA for in situ remediation. Remediat J 21:79–86CrossRefGoogle Scholar
  319. Wanner P, Aravena R, Fernandes J, BenIsrael M, Haack EA, Tsao DT, Dunfield KE, Parker BL (2019) Assessing toluene biodegradation under temporally varying redox conditions in a fractured bedrock aquifer using stable isotope methods. Water Res 165:114986Google Scholar
  320. Wanner P, Hunkeler D (2015) Carbon and chlorine isotopologue fractionation of chlorinated hydrocarbons during diffusion in water and low permeability sediments. Geochim Cosmochim Acta 157:198–212CrossRefGoogle Scholar
  321. Wanner P, Hunkeler D (2019) Isotope fractionation due to aqueous phase diffusion – what do diffusion models and experiments tell? – a review. Chemosphere 219:1032–1043PubMedPubMedCentralCrossRefGoogle Scholar
  322. Wanner P, Parker PL, Chapman SW, Aravena R, Hunkeler D (2017) Does sorption influence isotope ratios of chlorinated hydrocarbons under field conditions? Appl Geochem 84:348–359CrossRefGoogle Scholar
  323. Wanner P, Parker BL, Chapman SW, Lima G, Gilmore A, Mack EE, Aravena R (2018) Identification of degradation pathways of chlorohydrocarbons in saturated low-permeability sediments using compound-specific isotope analysis. Environ Sci Technol 52:7296–7306PubMedPubMedCentralCrossRefGoogle Scholar
  324. Watzinger A, Leitner S (2015) Altlastenerkundung mit Hilfe von komponentenspezifischer Isotopenuntersuchung (CSIA). ÖVA-Erkundungstechnologiereport, ER 001Google Scholar
  325. Wei M, Rakoczy J, Vogt C, Harnisch F, Schumann R, Richnow H-H (2015) Enhancement and monitoring of pollutant removal in a constructed wetland by microbial electrochemical technology. Bioresour Technol 196:490–499PubMedPubMedCentralCrossRefGoogle Scholar
  326. Wei Y, Thomson NR, Aravena R, Marchesi M, Barker JF, Madsen EL, Kolhatkar R, Buscheck T, Hunkeler D, DeRito CM (2018) Infiltration of sulfate to enhance sulfate-reducing biodegradation of petroleum hydrocarbons. Ground Water Monit Remed 38:73–87CrossRefGoogle Scholar
  327. Wiegert C, Aeppli C, Knowles T, Holmstrand H, Evershed R, Pancost RD, Machackova J, Gustafsson Ö (2012) Dual carbon-chlorine stable isotope investigation of sources and fate of chlorinated ethenes in contaminated groundwater. Environ Sci Technol 46:10918–10925PubMedPubMedCentralCrossRefGoogle Scholar
  328. Wijker RS, Bolotin J, Nishino SF, Spain JC, Hofstetter TB (2013) Using compound-specific isotope analysis to assess biodegradation of nitroaromatic explosives in the subsurface. Environ Sci Technol 47:6872–6883PubMedPubMedCentralCrossRefGoogle Scholar
  329. Wilkin RT, Lee TR, Sexton MR, Acree SD, Puls RW, Blowes DW, Kalinowski C, Tilton JM, Woods LL (2019) Geochemical and isotope study of trichloroethene degradation in a zero-valent iron permeable reactive barrier: a twenty-two-year performance evaluation. Environ Sci Technol 53:296–306PubMedPubMedCentralCrossRefGoogle Scholar
  330. Wilson JT, Kolhatkar R, Kuder T, Philp P, Daugherty SJ (2005) Stable isotope analysis of MTBE to evaluate the source of TBA in ground water. Ground Water Monit Remed 25:108–116CrossRefGoogle Scholar
  331. Wittebol J, Dinkla I (2017) The use of multiple lines of evidence to substantiate anaerobic BTEX degradation in groundwater. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and lipid microbiology protocols. Pollution mitigation and waste treatment applications. Springer, Berlin/Heidelberg, pp 117–130Google Scholar
  332. Worch E (1993) A new equation for the calculation of diffusion coefficients for dissolved substances. Vom Wasser 81:289–297Google Scholar
  333. Wu L, Liu Y, Xiao Liu, Bajaj A, Sharma M, Lal R, Richnow H-H (2019) Isotope fractionation approach to characterize the reactive transport processes governing the fate of hexachlorocyclohexanes at a contaminated site in India. Environ Int 132:105036Google Scholar
  334. Wu L, Verma D, Bondgaard M, Melvej A, Vogt C, Subudhi S, Richnow H-H (2018) Carbon and hydrogen isotope analysis of parathion for characterizing its natural attenuation by hydrolysis at a contaminated site. Water Res 143:146–154PubMedPubMedCentralCrossRefGoogle Scholar
  335. Xiong WH, Mathies C, Bradshaw K, Carlson T, Tang K, Wang Y (2012) Benzene removal by a novel modification of enhanced anaerobic biostimulation. Water Res 46:4721–4731PubMedPubMedCentralCrossRefGoogle Scholar
  336. Xu S, Sherwood-Lollar B, Passeport E, Sleep BE (2016) Diffusion related isotopic fractionation effects with one-dimensional advective-dispersive transport. Sci Total Environ 550:200–208PubMedPubMedCentralCrossRefGoogle Scholar
  337. Xu S, Sherwood-Lollar B, Sleep BE (2017) Rethinking aqueous phase diffusion related isotope fractionation: contrasting theoretical effects with observations at the field scale. Sci Total Environ 607–608:1085–1095PubMedPubMedCentralCrossRefGoogle Scholar
  338. Zakon Y, Halicz L, Lev O, Gelman F (2016) Compound-specific bromine isotope ratio analysis using gas chromatography/quadrupole mass spectrometry. Rapid Commun Mass Spectrom 30:1951–1956PubMedPubMedCentralCrossRefGoogle Scholar
  339. Zeng YH, Luo XJ, Yu LH, Chen HS, Wu JP, Chen SJ, Mai BX (2013) Using compound-specific stable carbon isotope analysis to trace metabolism and trophic transfer of PCBs and PBDEs in fish from an e-waste site, South China. Environ Sci Technol 47:4062–4068PubMedPubMedCentralCrossRefGoogle Scholar
  340. Zhou Z, Cui Z, Xu S (2017) Impact of soil heterogeneity and NAPL presence on stable carbon isotope signature distribution during reactive transport. Water Air Soil Pollut 228:408CrossRefGoogle Scholar
  341. Zwank L, Berg M, Schmidt TC, Haderlein SB (2003) Compound-specific carbon isotope analysis of volatile organic compounds in the low-microgram per liter range. Anal Chem 75:5575–5583PubMedPubMedCentralCrossRefGoogle Scholar
  342. Zwank L, Berg M, Elsner M, Schmidt TC, Schwarzenbach RP, Haderlein SB (2005) New evaluation scheme for two-dimensional isotope analysis to decipher biodegradation processes: application to groundwater contamination by MTBE. Environ Sci Technol 39:1018–1029PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Isodetect GmbHLeipzigGermany
  2. 2.Department of Isotope BiogeochemistryHelmholtz Centre for Environmental Research – UFZLeipzigGermany

Personalised recommendations