Advertisement

Functional Genomics of Metal-Reducing Microbes Degrading Hydrocarbons

  • Pier-Luc TremblayEmail author
  • Tian Zhang
Reference work entry
  • 38 Downloads
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

The anaerobic oxidation of petroleum hydrocarbons can be coupled to the reduction of metals. At contaminated subsurface sites, this phenomenon will accelerate the removal of pollutants and will have an important influence on biogeochemical cycles. Due to its abundance, iron is the most prominent metallic terminal electron acceptor involved in hydrocarbon degradation followed by manganese. Dissimilatory metal-reducing microbes (DMRM) capable of oxidizing either monocyclic aromatic or polycyclic hydrocarbons are phylogenetically diverse with representatives from bacteria as well as from archaea. It has been shown that the monocyclic aromatic hydrocarbons benzene, toluene, ethylbenzene, and xylene and the polyaromatic hydrocarbons naphthalene, 1-methylnaphthalene, and 2-methylnaphtalene can be degraded by metal-reducing enrichment cultures or pure cultures. In recent years, significant breakthroughs have been made in the field of functional genomics for the characterization of the metabolic pathways, enzymes, and genes participating to hydrocarbons degradation by metal-reducing microbes. Here, we present an updated portrait of the monocyclic aromatic and polycyclic hydrocarbons metabolism of DMRM.

Notes

Acknowledgments

This work is funded by the Novo Nordisk Foundation.

References

  1. Abu Laban N, Selesi D, Jobelius C, Meckenstock RU (2009) Anaerobic benzene degradation by Gram-positive sulfate-reducing bacteria. FEMS Microbiol Ecol 68:300–311.  https://doi.org/10.1111/j.1574-6941.2009.00672.xCrossRefPubMedPubMedCentralGoogle Scholar
  2. Abu Laban N, Selesi D, Rattei T, Tischler P, Meckenstock RU (2010) Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture. Environ Microbiol 12:2783–2796.  https://doi.org/10.1111/j.1462-2920.2010.02248.xCrossRefPubMedPubMedCentralGoogle Scholar
  3. Aburto-Medina A, Ball AS (2015) Microorganisms involved in anaerobic benzene degradation. Ann Microbiol 65:1201–1213.  https://doi.org/10.1007/s13213-014-0926-8CrossRefGoogle Scholar
  4. Anderson RT, Lovley DR (1999) Naphthalene and benzene degradation under Fe(III)-reducing conditions in petroleum-contaminated aquifers. Biorem J 3:121–135.  https://doi.org/10.1080/10889869991219271CrossRefGoogle Scholar
  5. Annweiler E, Richnow HH, Antranikian G, Hebenbrock S, Garms C, Franke S, Francke W, Michaelis W (2000) Naphthalene degradation and incorporation of naphthalene-derived carbon into biomass by the thermophile Bacillus thermoleovorans. Appl Environ Microbiol 66:518–523CrossRefPubMedPubMedCentralGoogle Scholar
  6. Annweiler E, Michaelis W, Meckenstock RU (2002) Identical ring cleavage products during anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetralin indicate a new metabolic pathway. Appl Environ Microbiol 68:852–858CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ball HA, Johnson HA, Reinhard M, Spormann AM (1996) Initial reactions in anaerobic ethylbenzene oxidation by a denitrifying bacterium, strain EB1. J Bacteriol 178:5755–5761CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bergmann FD, Selesi D, Meckenstock RU (2011) Identification of new enzymes potentially involved in anaerobic naphthalene degradation by the sulfate-reducing enrichment culture N47. Arch Microbiol 193:241–250.  https://doi.org/10.1007/s00203-010-0667-4CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boll M (2005) Dearomatizing benzene ring reductases. J Mol Microbiol Biotechnol 10:132–142.  https://doi.org/10.1159/000091560CrossRefPubMedPubMedCentralGoogle Scholar
  10. Boll M, Löffler C, Morris BEL, Kung JW (2014) Anaerobic degradation of homocyclic aromatic compounds via arylcarboxyl-coenzyme A esters: organisms, strategies and key enzymes. Environ Microbiol 16:612–627.  https://doi.org/10.1111/1462-2920.12328CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485.  https://doi.org/10.1126/science.1066771CrossRefPubMedPubMedCentralGoogle Scholar
  12. Botton S, Parsons JR (2006) Degradation of btex compounds under iron-reducing conditions in contaminated aquifer microcosms. Environ Toxicol Chem 25:2630–2638CrossRefPubMedPubMedCentralGoogle Scholar
  13. Breese K, Fuchs G (1998) 4-Hydroxybenzoyl-CoA reductase (dehydroxylating) from the denitrifying bacterium Thauera aromatica. Eur J Biochem 251:916–923.  https://doi.org/10.1046/j.1432-1327.1998.2510916.xCrossRefPubMedPubMedCentralGoogle Scholar
  14. Breinig S, Schiltz E, Fuchs G (2000) Genes involved in anaerobic metabolism of phenol in the bacterium Thauera aromatica. J Bacteriol 182:5849–5863CrossRefPubMedPubMedCentralGoogle Scholar
  15. Buckel W, Thauer RK (2013) Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation. Biochim Biophys Acta 1827:94–113.  https://doi.org/10.1016/j.bbabio.2012.07.002CrossRefPubMedPubMedCentralGoogle Scholar
  16. Butler JE, He Q, Nevin KP, He Z, Zhou J, Lovley DR (2007) Genomic and microarray analysis of aromatics degradation in Geobacter metallireducens and comparison to a Geobacter isolate from a contaminated field site. BMC Genomics 8:180.  https://doi.org/10.1186/1471-2164-8-180CrossRefPubMedPubMedCentralGoogle Scholar
  17. Caldwell ME, Suflita JM (2000) Detection of phenol and benzoate as intermediates of anaerobic benzene biodegradation under different terminal electron-accepting conditions. Environ Sci Technol 34:1216–1220.  https://doi.org/10.1021/es990849jCrossRefGoogle Scholar
  18. Carmona M, Zamarro MT, Blázquez B, Durante-Rodríguez G, Juárez JF, Valderrama JA, Barragán MJL, García JL, Díaz E (2009) Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol Mol Biol Rev 73:71–133.  https://doi.org/10.1128/MMBR.00021-08CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chakraborty R, Coates JD (2004) Anaerobic degradation of monoaromatic hydrocarbons. Appl Microbiol Biotechnol 64:437–446.  https://doi.org/10.1007/s00253-003-1526-xCrossRefPubMedPubMedCentralGoogle Scholar
  20. Chakraborty R, Coates JD (2005) Hydroxylation and carboxylation--two crucial steps of anaerobic benzene degradation by Dechloromonas strain RCB. Appl Environ Microbiol 71:5427–5432.  https://doi.org/10.1128/AEM.71.9.5427-5432.2005CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chaurasia AK, Tremblay P-L, Holmes DE, Zhang T (2015) Genetic evidence that the degradation of para-cresol by Geobacter metallireducens is catalyzed by the periplasmic para-cresol methylhydroxylase. FEMS Microbiol Lett.  https://doi.org/10.1093/femsle/fnv145
  22. Coates JD, Bhupathiraju VK, Achenbach LA, Mclnerney MJ, Lovley DR (2001) Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new, strictly anaerobic, dissimilatory Fe(III)-reducers. Int J Syst Evol Microbiol 51:581–588.  https://doi.org/10.1099/00207713-51-2-581
  23. DiDonato RJ, Young ND, Butler JE, Chin K-J, Hixson KK, Mouser P, Lipton MS, DeBoy R, Methé BA (2010) Genome sequence of the deltaproteobacterial strain NaphS2 and analysis of differential gene expression during anaerobic growth on naphthalene. PLoS One 5:e14072.  https://doi.org/10.1371/journal.pone.0014072CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dorer C, Vogt C, Neu TR, Stryhanyuk H, Richnow H-H (2016) Characterization of toluene and ethylbenzene biodegradation under nitrate-, iron(III)- and manganese(IV)-reducing conditions by compound-specific isotope analysis. Environ Pollut 211:271–281.  https://doi.org/10.1016/j.envpol.2015.12.029CrossRefPubMedPubMedCentralGoogle Scholar
  25. Eberlein C, Estelmann S, Seifert J, von Bergen M, Müller M, Meckenstock RU, Boll M (2013a) Identification and characterization of 2-naphthoyl-coenzyme A reductase, the prototype of a novel class of dearomatizing reductases. Mol Microbiol 88:1032–1039.  https://doi.org/10.1111/mmi.12238CrossRefPubMedPubMedCentralGoogle Scholar
  26. Eberlein C, Johannes J, Mouttaki H, Sadeghi M, Golding BT, Boll M, Meckenstock RU (2013b) ATP-dependent/−independent enzymatic ring reductions involved in the anaerobic catabolism of naphthalene. Environ Microbiol 15:1832–1841.  https://doi.org/10.1111/1462-2920.12076CrossRefPubMedPubMedCentralGoogle Scholar
  27. Estelmann S, Blank I, Feldmann A, Boll M (2015) Two distinct old yellow enzymes are involved in naphthyl ring reduction during anaerobic naphthalene degradation. Mol Microbiol 95:162–172.  https://doi.org/10.1111/mmi.12875CrossRefPubMedPubMedCentralGoogle Scholar
  28. Foght J (2008) Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects. J Mol Microbiol Biotechnol 15:93–120.  https://doi.org/10.1159/000121324CrossRefPubMedPubMedCentralGoogle Scholar
  29. Franks AE, Nevin KP (2010) Microbial Fuel Cells, A Current Review. Energies 3:899–919.  https://doi.org/10.3390/en3050899CrossRefGoogle Scholar
  30. Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds – from one strategy to four. Nat Rev Microbiol 9:803–816.  https://doi.org/10.1038/nrmicro2652CrossRefPubMedPubMedCentralGoogle Scholar
  31. Funk MA, Judd ET, Marsh ENG, Elliott SJ, Drennan CL (2014) Structures of benzylsuccinate synthase elucidate roles of accessory subunits in glycyl radical enzyme activation and activity. Proc Natl Acad Sci U S A 111:10161–10166.  https://doi.org/10.1073/pnas.1405983111CrossRefPubMedPubMedCentralGoogle Scholar
  32. Grbić-Galić D, Vogel TM (1987) Transformation of toluene and benzene by mixed methanogenic cultures. Appl Environ Microbiol 53:254–260CrossRefPubMedPubMedCentralGoogle Scholar
  33. Harwood CS, Gibson J (1997) Shedding light on anaerobic benzene ring degradation: a process unique to prokaryotes? J Bacteriol 179:301–309CrossRefPubMedPubMedCentralGoogle Scholar
  34. Heider J (2007) Adding handles to unhandy substrates: anaerobic hydrocarbon activation mechanisms. Curr Opin Chem Biol 11:188–194.  https://doi.org/10.1016/j.cbpa.2007.02.027CrossRefPubMedPubMedCentralGoogle Scholar
  35. Heider J, Spormann AM, Beller HR, Widdel F (1998) Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol Rev 22:459–473.  https://doi.org/10.1111/j.1574-6976.1998.tb00381.xCrossRefGoogle Scholar
  36. Heider J, Szaleniec M, Sünwoldt K, Boll M (2016) Ethylbenzene dehydrogenase and related molybdenum enzymes involved in oxygen-independent alkyl chain hydroxylation. J Mol Microbiol Biotechnol 26:45–62.  https://doi.org/10.1159/000441357CrossRefPubMedPubMedCentralGoogle Scholar
  37. Heinnickel ML, Kaser FM, Coates JD (2010) Hydrocarbon degradation coupled to metal reduction. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 947–955CrossRefGoogle Scholar
  38. Hilberg M, Pierik AJ, Bill E, Friedrich T, Lippert M-L, Heider J (2012) Identification of FeS clusters in the glycyl-radical enzyme benzylsuccinate synthase via EPR and Mössbauer spectroscopy. J Biol Inorg Chem 17:49–56.  https://doi.org/10.1007/s00775-011-0828-1CrossRefPubMedPubMedCentralGoogle Scholar
  39. Holmes DE, Risso C, Smith JA, Lovley DR (2011) Anaerobic oxidation of benzene by the hyperthermophilic archaeon Ferroglobus placidus. Appl Environ Microbiol 77:5926–5933.  https://doi.org/10.1128/AEM.05452-11CrossRefPubMedPubMedCentralGoogle Scholar
  40. Jahn MK, Haderlein SB, Meckenstock RU (2005) Anaerobic degradation of benzene, toluene, ethylbenzene, and o-xylene in sediment-free iron-reducing enrichment cultures. Appl Environ Microbiol 71:3355–3358.  https://doi.org/10.1128/AEM.71.6.3355-3358.2005CrossRefPubMedPubMedCentralGoogle Scholar
  41. Jobst B, Schühle K, Linne U, Heider J (2010) ATP-dependent carboxylation of acetophenone by a novel type of carboxylase. J Bacteriol 192:1387–1394.  https://doi.org/10.1128/JB.01423-09CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kleemann R, Meckenstock RU (2011) Anaerobic naphthalene degradation by Gram-positive, iron-reducing bacteria. FEMS Microbiol Ecol 78:488–496.  https://doi.org/10.1111/j.1574-6941.2011.01193.xCrossRefPubMedPubMedCentralGoogle Scholar
  43. Kloer DP, Hagel C, Heider J, Schulz GE (2006) Crystal structure of ethylbenzene dehydrogenase from Aromatoleum aromaticum. Structure 14:1377–1388.  https://doi.org/10.1016/j.str.2006.07.001CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kniemeyer O, Heider J (2001a) Ethylbenzene dehydrogenase, a novel hydrocarbon-oxidizing molybdenum/iron-sulfur/heme enzyme. J Biol Chem 276:21381–21386.  https://doi.org/10.1074/jbc.M101679200CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kniemeyer O, Heider J (2001b) (S)-1-phenylethanol dehydrogenase of Azoarcus sp. strain EbN1, an enzyme of anaerobic ethylbenzene catabolism. Arch Microbiol 176:129–135CrossRefGoogle Scholar
  46. Kunapuli U, Griebler C, Beller HR, Meckenstock RU (2008) Identification of intermediates formed during anaerobic benzene degradation by an iron-reducing enrichment culture. Environ Microbiol 10:1703–1712.  https://doi.org/10.1111/j.1462-2920.2008.01588.xCrossRefPubMedPubMedCentralGoogle Scholar
  47. Kunapuli U, Jahn MK, Lueders T, Geyer R, Heipieper HJ, Meckenstock RU (2010) Desulfitobacterium aromaticivorans sp. nov. and Geobacter toluenoxydans sp. nov., iron-reducing bacteria capable of anaerobic degradation of monoaromatic hydrocarbons. Int J Syst Evol Microbiol 60:686–695.  https://doi.org/10.1099/ijs.0.003525-0CrossRefPubMedPubMedCentralGoogle Scholar
  48. Kung JW, Löffler C, Dörner K, Heintz D, Gallien S, Van Dorsselaer A, Friedrich T, Boll M (2009) Identification and characterization of the tungsten-containing class of benzoyl-coenzyme A reductases. Proc Natl Acad Sci U S A 106:17687–17692.  https://doi.org/10.1073/pnas.0905073106CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kuntze K, Shinoda Y, Moutakki H, McInerney MJ, Vogt C, Richnow H-H, Boll M (2008) 6-Oxocyclohex-1-ene-1-carbonyl-coenzyme A hydrolases from obligately anaerobic bacteria: characterization and identification of its gene as a functional marker for aromatic compounds degrading anaerobes. Environ Microbiol 10:1547–1556.  https://doi.org/10.1111/j.1462-2920.2008.01570.xCrossRefPubMedPubMedCentralGoogle Scholar
  50. Laempe D, Eisenreich W, Bacher A, Fuchs G (1998) Cyclohexa-1,5-diene-1-carbonyl-CoA hydratase [corrected], an enzyme involved in anaerobic metabolism of benzoyl-CoA in the denitrifying bacterium Thauera aromatica. Eur J Biochem 255:618–627CrossRefPubMedGoogle Scholar
  51. Langenhoff AA, Brouwers-Ceiler DL, Engelberting JH, Quist JJ, Wolkenfelt JGP, Zehnder AJ, Schraa G (1997a) Microbial reduction of manganese coupled to toluene oxidation. FEMS Microbiol Ecol 22:119–127.  https://doi.org/10.1111/j.1574-6941.1997.tb00363.xCrossRefGoogle Scholar
  52. Langenhoff AA, Nijenhuis I, Tan NC, Briglia M, Zehnder AJ, Schraa G (1997b) Characterisation of a manganese-reducing, toluene-degrading enrichment culture. FEMS Microbiol Ecol 24:113–125.  https://doi.org/10.1111/j.1574-6941.1997.tb00428.xCrossRefGoogle Scholar
  53. Leuthner B, Heider J (2000) Anaerobic toluene catabolism of Thauera aromatica: the bbs operon codes for enzymes of beta oxidation of the intermediate benzylsuccinate. J Bacteriol 182:272–277CrossRefPubMedPubMedCentralGoogle Scholar
  54. Leuthner B, Leutwein C, Schulz H, Hörth P, Haehnel W, Schiltz E, Schägger H, Heider J (1998) Biochemical and genetic characterization of benzylsuccinate synthase from Thauera aromatica: a new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism. Mol Microbiol 28:615–628CrossRefPubMedPubMedCentralGoogle Scholar
  55. Leutwein C, Heider J (2001) Succinyl-CoA:(R)-benzylsuccinate CoA-transferase: an enzyme of the anaerobic toluene catabolic pathway in denitrifying bacteria. J Bacteriol 183:4288–4295.  https://doi.org/10.1128/JB.183.14.4288-4295.2001CrossRefPubMedPubMedCentralGoogle Scholar
  56. Leutwein C, Heider J (2002) (R)-Benzylsuccinyl-CoA dehydrogenase of Thauera aromatica, an enzyme of the anaerobic toluene catabolic pathway. Arch Microbiol 178:517–524.  https://doi.org/10.1007/s00203-002-0484-5CrossRefPubMedPubMedCentralGoogle Scholar
  57. Li L, Patterson DP, Fox CC, Lin B, Coschigano PW, Marsh ENG (2009) Subunit structure of benzylsuccinate synthase. Biochemistry 48:1284–1292.  https://doi.org/10.1021/bi801766gCrossRefPubMedPubMedCentralGoogle Scholar
  58. Löffler C, Kuntze K, Vazquez JR, Rugor A, Kung JW, Böttcher A, Boll M (2011) Occurrence, genes and expression of the W/Se-containing class II benzoyl-coenzyme A reductases in anaerobic bacteria. Environ Microbiol 13:696–709.  https://doi.org/10.1111/j.1462-2920.2010.02374.xCrossRefPubMedPubMedCentralGoogle Scholar
  59. Lovley DR (2012) Electromicrobiology. Annu Rev Microbiol 66:391–409.  https://doi.org/10.1146/annurev-micro-092611-150104CrossRefPubMedPubMedCentralGoogle Scholar
  60. Lovley DR, Lonergan DJ (1990) Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15. Appl Environ Microbiol 56:1858–1864CrossRefPubMedPubMedCentralGoogle Scholar
  61. Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJ, Gorby YA, Goodwin S (1993) Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–344CrossRefPubMedPubMedCentralGoogle Scholar
  62. Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49:219–286.  https://doi.org/10.1016/S0065-2911(04)49005-5CrossRefPubMedPubMedCentralGoogle Scholar
  63. Lovley DR, Ueki T, Zhang T, Malvankar NS, Shrestha PM, Flanagan KA, Aklujkar M, Butler JE, Giloteaux L, Rotaru A-E, Holmes DE, Franks AE, Orellana R, Risso C, Nevin KP (2011) Geobacter: the microbe electric’s physiology, ecology, and practical applications. Adv Microb Physiol 59:1–100.  https://doi.org/10.1016/B978-0-12-387661-4.00004-5CrossRefPubMedPubMedCentralGoogle Scholar
  64. Meckenstock RU, Mouttaki H (2011) Anaerobic degradation of non-substituted aromatic hydrocarbons. Curr Opin Biotechnol 22:406–414.  https://doi.org/10.1016/j.copbio.2011.02.009CrossRefPubMedPubMedCentralGoogle Scholar
  65. Meckenstock RU, Annweiler E, Michaelis W, Richnow HH, Schink B (2000) Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Appl Environ Microbiol 66:2743–2747CrossRefPubMedPubMedCentralGoogle Scholar
  66. Meckenstock RU, Boll M, Mouttaki H, Koelschbach JS, Cunha Tarouco P, Weyrauch P, Dong X, Himmelberg AM (2016) Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J Mol Microbiol Biotechnol 26:92–118.  https://doi.org/10.1159/000441358CrossRefPubMedPubMedCentralGoogle Scholar
  67. Morris JM, Jin S (2012) Enhanced biodegradation of hydrocarbon-contaminated sediments using microbial fuel cells. J Hazard Mater 213–214:474–477.  https://doi.org/10.1016/j.jhazmat.2012.02.029CrossRefPubMedPubMedCentralGoogle Scholar
  68. Mouttaki H, Johannes J, Meckenstock RU (2012) Identification of naphthalene carboxylase as a prototype for the anaerobic activation of non-substituted aromatic hydrocarbons. Environ Microbiol 14:2770–2774.  https://doi.org/10.1111/j.1462-2920.2012.02768.xCrossRefPubMedPubMedCentralGoogle Scholar
  69. Muhr E, Leicht O, González Sierra S, Thanbichler M, Heider J (2015) A fluorescent bioreporter for acetophenone and 1-phenylethanol derived from a specifically induced catabolic operon. Front Microbiol.  https://doi.org/10.3389/fmicb.2015.01561
  70. Musat F, Galushko A, Jacob J, Widdel F, Kube M, Reinhardt R, Wilkes H, Schink B, Rabus R (2009) Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria. Environ Microbiol 11:209–219.  https://doi.org/10.1111/j.1462-2920.2008.01756.xCrossRefPubMedPubMedCentralGoogle Scholar
  71. Oberender J, Kung JW, Seifert J, von Bergen M, Boll M (2012) Identification and characterization of a succinyl-coenzyme A (CoA):benzoate CoA transferase in Geobacter metallireducens. J Bacteriol 194:2501–2508.  https://doi.org/10.1128/JB.00306-12CrossRefPubMedPubMedCentralGoogle Scholar
  72. Peters F, Shinoda Y, McInerney MJ, Boll M (2007) Cyclohexa-1,5-diene-1-carbonyl-coenzyme A (CoA) hydratases of Geobacter metallireducens and Syntrophus aciditrophicus: evidence for a common benzoyl-CoA degradation pathway in facultative and strict anaerobes. J Bacteriol 189:1055–1060.  https://doi.org/10.1128/JB.01467-06
  73. Phelps CD, Zhang X, Young LY (2001) Use of stable isotopes to identify benzoate as a metabolite of benzene degradation in a sulphidogenic consortium. Environ Microbiol 3:600–603CrossRefPubMedPubMedCentralGoogle Scholar
  74. Rabus R (2005) Functional genomics of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Appl Microbiol Biotechnol 68:580–587.  https://doi.org/10.1007/s00253-005-0030-xCrossRefPubMedPubMedCentralGoogle Scholar
  75. Rabus R, Kube M, Heider J, Beck A, Heitmann K, Widdel F, Reinhardt R (2005) The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Arch Microbiol 183:27–36.  https://doi.org/10.1007/s00203-004-0742-9CrossRefPubMedPubMedCentralGoogle Scholar
  76. Rooney-Varga JN, Anderson RT, Fraga JL, Ringelberg D, Lovley DR (1999) Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl Environ Microbiol 65:3056–3063CrossRefPubMedPubMedCentralGoogle Scholar
  77. Safinowski M, Meckenstock RU (2004) Enzymatic reactions in anaerobic 2-methylnaphthalene degradation by the sulphate-reducing enrichment culture N 47. FEMS Microbiol Lett 240:99–104.  https://doi.org/10.1016/j.femsle.2004.09.014CrossRefPubMedPubMedCentralGoogle Scholar
  78. Safinowski M, Meckenstock RU (2006) Methylation is the initial reaction in anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Environ Microbiol 8:347–352.  https://doi.org/10.1111/j.1462-2920.2005.00900.xCrossRefPubMedGoogle Scholar
  79. Schleinitz KM, Schmeling S, Jehmlich N, von Bergen M, Harms H, Kleinsteuber S, Vogt C, Fuchs G (2009) Phenol degradation in the strictly anaerobic iron-reducing bacterium Geobacter metallireducens GS-15. Appl Environ Microbiol 75:3912–3919.  https://doi.org/10.1128/AEM.01525-08
  80. Schmeling S, Narmandakh A, Schmitt O, Gad’on N, Schühle K, Fuchs G (2004) Phenylphosphate synthase: a new phosphotransferase catalyzing the first step in anaerobic phenol metabolism in Thauera aromatica. J Bacteriol 186:8044–8057.  https://doi.org/10.1128/JB.186.23.8044-8057.2004CrossRefPubMedPubMedCentralGoogle Scholar
  81. Schmid G, René SB, Boll M (2015) Enzymes of the benzoyl-coenzyme A degradation pathway in the hyperthermophilic archaeon Ferroglobus placidus. Environ Microbiol 17:3289–3300.  https://doi.org/10.1111/1462-2920.12785CrossRefPubMedPubMedCentralGoogle Scholar
  82. Schmid G, Auerbach H, Pierik AJ, Schünemann V, Boll M (2016) ATP-dependent electron activation module of benzoyl-coenzyme A reductase from the hyperthermophilic archaeon Ferroglobus placidus. Biochemistry 55:5578–5586CrossRefPubMedPubMedCentralGoogle Scholar
  83. Schühle K, Fuchs G (2004) Phenylphosphate carboxylase: a new C-C lyase involved in anaerobic phenol metabolism in Thauera aromatica. J Bacteriol 186:4556–4567.  https://doi.org/10.1128/JB.186.14.4556-4567.2004CrossRefPubMedPubMedCentralGoogle Scholar
  84. Schühle K, Gescher J, Feil U, Paul M, Jahn M, Schägger H, Fuchs G (2003) Benzoate-coenzyme A ligase from Thauera aromatica: an enzyme acting in anaerobic and aerobic pathways. J Bacteriol 185:4920–4929CrossRefPubMedPubMedCentralGoogle Scholar
  85. Selesi D, Jehmlich N, von Bergen M, Schmidt F, Rattei T, Tischler P, Lueders T, Meckenstock RU (2010) Combined genomic and proteomic approaches identify gene clusters involved in anaerobic 2-methylnaphthalene degradation in the sulfate-reducing enrichment culture N47. J Bacteriol 192:295–306.  https://doi.org/10.1128/JB.00874-09CrossRefPubMedGoogle Scholar
  86. Smith JA, Lovley DR, Tremblay P-L (2013) Outer cell surface components essential for Fe(III) oxide reduction by Geobacter metallireducens. Appl Environ Microbiol 79:901–907.  https://doi.org/10.1128/AEM.02954-12CrossRefPubMedPubMedCentralGoogle Scholar
  87. Tremblay P-L, Aklujkar M, Leang C, Nevin KP, Lovley D (2012) A genetic system for Geobacter metallireducens: role of the flagellin and pilin in the reduction of Fe(III) oxide. Environ Microbiol Rep 4:82–88.  https://doi.org/10.1111/j.1758-2229.2011.00305.xCrossRefPubMedPubMedCentralGoogle Scholar
  88. Ulrich AC, Beller HR, Edwards EA (2005) Metabolites detected during biodegradation of 13C6-benzene in nitrate-reducing and methanogenic enrichment cultures. Environ Sci Technol 39:6681–6691CrossRefPubMedPubMedCentralGoogle Scholar
  89. Villatoro-Monzón WR, Mesta-Howard AM, Razo-Flores E (2003) Anaerobic biodegradation of BTEX using Mn(IV) and Fe(III) as alternative electron acceptors. Water Sci Technol 48:125–131CrossRefPubMedPubMedCentralGoogle Scholar
  90. Vogel TM, Grbìc-Galìc D (1986) Incorporation of oxygen from water into toluene and benzene during anaerobic fermentative transformation. Appl Environ Microbiol 52:200–202CrossRefPubMedPubMedCentralGoogle Scholar
  91. Vogt C, Kleinsteuber S, Richnow H-H (2011) Anaerobic benzene degradation by bacteria. Microb Biotechnol 4:710–724.  https://doi.org/10.1111/j.1751-7915.2011.00260.xCrossRefPubMedPubMedCentralGoogle Scholar
  92. Wang X, Cai Z, Zhou Q, Zhang Z, Chen C (2012) Bioelectrochemical stimulation of petroleum hydrocarbon degradation in saline soil using U-tube microbial fuel cells. Biotechnol Bioeng 109:426–433.  https://doi.org/10.1002/bit.23351CrossRefPubMedPubMedCentralGoogle Scholar
  93. Weelink SAB, van Doesburg W, Saia FT, Rijpstra WIC, Röling WFM, Smidt H, Stams AJM (2009) A strictly anaerobic betaproteobacterium Georgfuchsia toluolica gen. nov., sp. nov. degrades aromatic compounds with Fe(III), Mn(IV) or nitrate as an electron acceptor. FEMS Microbiol Ecol 70:575–585.  https://doi.org/10.1111/j.1574-6941.2009.00778.xCrossRefPubMedPubMedCentralGoogle Scholar
  94. Weinert T, Huwiler SG, Kung JW, Weidenweber S, Hellwig P, Stärk H-J, Biskup T, Weber S, Cotelesage JJH, George GN, Ermler U, Boll M (2015) Structural basis of enzymatic benzene ring reduction. Nat Chem Biol 11:586–591.  https://doi.org/10.1038/nchembio.1849CrossRefPubMedPubMedCentralGoogle Scholar
  95. White GF, Edwards MJ, Gomez-Perez L, Richardson DL, Butt JN, Clarke TA (2016) Mechanisms of bacterial extracellular electron exchange. Adv Microb Physiol 68:87–138.  https://doi.org/10.1016/bs.ampbs.2016.02.002CrossRefPubMedPubMedCentralGoogle Scholar
  96. Wischgoll S, Heintz D, Peters F, Erxleben A, Sarnighausen E, Reski R, Van Dorsselaer A, Boll M (2005) Gene clusters involved in anaerobic benzoate degradation of Geobacter metallireducens. Mol Microbiol 58:1238–1252.  https://doi.org/10.1111/j.1365-2958.2005.04909.xCrossRefPubMedPubMedCentralGoogle Scholar
  97. Wischgoll S, Taubert M, Peters F, Jehmlich N, von Bergen M, Boll M (2009) Decarboxylating and nondecarboxylating glutaryl-coenzyme A dehydrogenases in the aromatic metabolism of obligately anaerobic bacteria. J Bacteriol 191:4401–4409.  https://doi.org/10.1128/JB.00205-09CrossRefPubMedPubMedCentralGoogle Scholar
  98. Zhang X, Young LY (1997) Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia. Appl Environ Microbiol 63:4759–4764CrossRefPubMedPubMedCentralGoogle Scholar
  99. Zhang X, Sullivan ER, Young LY (2000) Evidence for aromatic ring reduction in the biodegradation pathway of carboxylated naphthalene by a sulfate reducing consortium. Biodegradation 11:117–124CrossRefPubMedPubMedCentralGoogle Scholar
  100. Zhang T, Gannon SM, Nevin KP, Franks AE, Lovley DR (2010) Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ Microbiol 12:1011–1020.  https://doi.org/10.1111/j.1462-2920.2009.02145.xCrossRefPubMedPubMedCentralGoogle Scholar
  101. Zhang T, Bain TS, Nevin KP, Barlett MA, Lovley DR (2012) Anaerobic benzene oxidation by Geobacter species. Appl Environ Microbiol 78:8304–8310.  https://doi.org/10.1128/AEM.02469-12CrossRefPubMedPubMedCentralGoogle Scholar
  102. Zhang T, Tremblay P-L, Chaurasia AK, Smith JA, Bain TS, Lovley DR (2013) Anaerobic benzene oxidation via phenol in Geobacter metallireducens. Appl Environ Microbiol 79:7800–7806.  https://doi.org/10.1128/AEM.03134-13CrossRefPubMedPubMedCentralGoogle Scholar
  103. Zhang T, Tremblay P-L, Chaurasia AK, Smith JA, Bain TS, Lovley DR (2014) Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens. Front Microbiol 5:245.  https://doi.org/10.3389/fmicb.2014.00245CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Chemistry, Chemical Engineering and Life ScienceWuhan University of TechnologyWuhanPeople’s Republic of China
  2. 2.Bioelectrochemical Systems, The Novo Nordisk Foundation Center for BiosustainablityTechnical University of DenmarkHørsholmDenmark

Personalised recommendations