Electrocatalysis Beyond the Computational Hydrogen Electrode

  • Harald OberhoferEmail author
Living reference work entry


The computational hydrogen electrode approach allows the alignment of theoretical electrochemical potentials calculated with ab initio methods to those measured in experiment. It contributed greatly to opening up the fields of electrochemistry and photo-electrochemistry to theoretical treatment. Yet, virtually all practical implementations of the computational hydrogen electrode relied on a number of simplifications and approximations, which are not necessarily always justified. This chapter highlights three of these approximations as well as the challenges prompting them and gives a brief review of the computational methods available to overcome each. Specifically, it addresses the effects of the electrolyte, the important choice of the model reactive site – including surface defects and co-catalysts – and the evaluation of kinetic barriers.



The author gratefully acknowledges support from the Solar Technologies Go Hybrid initiative of the State of Bavaria and the German Science Foundation DFG (grant no. OB425/4-1) as well as insightful discussions with Dr. Christoph Scheurer and Prof. Karsten Reuter. Creation of some illustrations was aided by Matthias Kick and Markus Sinstein.


  1. Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter T, Moses PG, Skulason E, Bligaard T, Nørskov JK (2007) Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys Rev Lett 99(1):016105Google Scholar
  2. Aktins PW, de Paula J (2014) Atkins’ physical chemistry, 10th edn. Oxford University Press, OxfordGoogle Scholar
  3. Andreussi O, Dabo I, Marzari N (2012) Revised self-consistent continuum solvation in electronic-structure calculations. J Chem Phys 136(6):064102ADSCrossRefGoogle Scholar
  4. Bardhan JP, Knepley MG (2014) Communication: modeling charge-sign asymmetric solvation free energies with nonlinear boundary conditions. J Chem Phys 141(13):131103.
  5. Berger D, Logsdail AJ, Oberhofer H, Farrow MR, Catlow CRA, Sherwood P, Sokol AA, Blum V, Reuter K (2014) Embedded-cluster calculations in a numeric atomic orbital density-functional theory framework. J Chem Phys 141(2):024105Google Scholar
  6. Berger D, Oberhofer H, Reuter K (2015) First-principles embedded-cluster calculations of the neutral and charged oxygen vacancy at the rutile TiO2 (110) surface. Phys Rev B 92(7):075308Google Scholar
  7. Bhattacharya S, Berger D, Reuter K, Ghiringhelli LM, Levchenko SV (2017) Theoretical evidence for unexpected O-rich phases at corners of MgO surfaces. Phys Rev Mat 1(7):071601Google Scholar
  8. Bi W, Li X, Zhang L, Jin T, Zhang L, Zhang Q, Luo Y, Wu C, Xie Y (2015) Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution. Nat Commun 6:8647Google Scholar
  9. Blum V, Gehrke R, Hanke F, Havu P, Havu V, Ren X, Reuter K, Scheffler M (2009) Ab initio molecular simulations with numeric atom-centered orbitals. Comput Phys Commun 180(11):2175–2196ADSzbMATHCrossRefGoogle Scholar
  10. Boda D, Fawcett WR, Henderson D, Sokołowski S (2002) Monte Carlo, density functional theory, and Poisson–Boltzmann theory study of the structure of an electrolyte near an electrode. J Chem Phys 116(16):7170–7176ADSCrossRefGoogle Scholar
  11. Bohinc K, Shrestha A, Brumen M, May S (2012) Poisson-Helmholtz-Boltzmann model of the electric double layer: analysis of monovalent ionic mixtures. Phys Rev E 85(3):031130Google Scholar
  12. Borukhov I, Andelman D, Orland H (1997) Steric effects in electrolytes: a modified Poisson-Boltzmann equation. Phys Rev Lett 79(3):435ADSCrossRefGoogle Scholar
  13. Chan K, Nørskov JK (2015) Electrochemical barriers made simple. J Phys Chem Lett 6(14):2663–2668CrossRefGoogle Scholar
  14. Chan K, Nørskov JK (2016) Potential dependence of electrochemical barriers from ab initio calculations. J Phys Chem Lett 7(9):1686–1690CrossRefGoogle Scholar
  15. Chapman DL (1913) LI. A contribution to the theory of electrocapillarity. Philos Mag 25(148):475–481zbMATHCrossRefGoogle Scholar
  16. Chen J, Li YF, Sit P, Selloni A (2013) Chemical dynamics of the first proton-coupled electron transfer of water oxidation on TiO2 anatase. J Am Chem Soc 135(50):18774–18777CrossRefGoogle Scholar
  17. Cheng J, Sprik M (2010a) Acidity of the aqueous rutile TiO2 (110) surface from density functional theory based molecular dynamics. J Chem Theor Comput 6(3):880–889CrossRefGoogle Scholar
  18. Cheng J, Sprik M (2010b) Aligning electronic energy levels at the TiO2/H2O interface. Phys Rev B 82(8):081406Google Scholar
  19. Cheng J, Sprik M (2014) The electric double layer at a rutile TiO2 water interface modelled using density functional theory based molecular dynamics simulation. J Phys Condens Matter 26(24):244108Google Scholar
  20. Cheng J, Liu X, Kattirtzi JA, VandeVondele J, Sprik M (2014a) Aligning electronic and protonic energy levels of proton-coupled electron transfer in water oxidation on aqueous TiO2. Angew Chem Int Ed 53(45):12046–12050CrossRefGoogle Scholar
  21. Cheng J, Liu X, VandeVondele J, Sulpizi M, Sprik M (2014b) Redox potentials and acidity constants from density functional theory based molecular dynamics. Acc Chem Res 47(12):3522–3529CrossRefGoogle Scholar
  22. Cheng T, Xiao H, Goddard WA III (2015) Free-energy barriers and reaction mechanisms for the electrochemical reduction of CO on the Cu (100) surface, including multiple layers of explicit solvent at pH 0. J Phys Chem Lett 6(23):4767–4773CrossRefGoogle Scholar
  23. Cheng T, Xiao H, Goddard WA (2017) Full atomistic reaction mechanism with kinetics for CO reduction on Cu (100) from ab initio molecular dynamics free-energy calculations at 298 K. Proc Natl Acad Sci USA 114:201612106CrossRefGoogle Scholar
  24. Choyke WJ, Matsunami H, Pensl G (2013) Silicon carbide: recent major advances. Springer Science & Business Media, BerlinGoogle Scholar
  25. Cowan AJ, Durrant JR (2013) Long-lived charge separated states in nanostructured semiconductor photoelectrodes for the production of solar fuels. Chem Soc Rev 42(6):2281–2293CrossRefGoogle Scholar
  26. Demers S, van de Walle A (2012) Intrinsic defects and dopability of zinc phosphide. Phys Rev B 85(19):195208Google Scholar
  27. Deskins NA, Rousseau R, Dupuis M (2010) Defining the role of excess electrons in the surface chemistry of TiO2. J Phys Chem C 114(13):5891–5897CrossRefGoogle Scholar
  28. Deskins NA, Rousseau R, Dupuis M (2011) Distribution of Ti3+ surface sites in reduced TiO2. J Phys Chem C 115(15):7562–7572CrossRefGoogle Scholar
  29. Diebold U (2003) Structure and properties of TiO2 surfaces: a brief review. Appl Phys A 76(5):681–687ADSCrossRefGoogle Scholar
  30. Diebold U, Lehman J, Mahmoud T, Kuhn M, Leonardelli G, Hebenstreit W, Schmid M, Varga P (1998) Intrinsic defects on a TiO2 (110)(1× 1) surface and their reaction with oxygen: a scanning tunneling microscopy study. Surf Sci 411(1–2):137–153ADSCrossRefGoogle Scholar
  31. Dupont C, Andreussi O, Marzari N (2013) Self-consistent continuum solvation (SCCS): the case of charged systems. J Chem Phys 139(21):214110ADSCrossRefGoogle Scholar
  32. Fang YH, Liu ZP (2010) Mechanism and tafel lines of electro-oxidation of water to oxygen on RuO2 (110). J Am Chem Soc 132(51):18214–18222CrossRefGoogle Scholar
  33. Fang YH, Wei GF, Liu ZP (2013) Theoretical modeling of electrode/electrolyte interface from first-principles periodic continuum solvation method. Catal Today 202:98–104CrossRefGoogle Scholar
  34. Feibelman PJ (2002) Partial dissociation of water on Ru (0001). Science 295(5552):99–102ADSCrossRefGoogle Scholar
  35. Filhol JS, Doublet ML (2013) An ab initio study of surface electrochemical disproportionation: the case of a water monolayer adsorbed on a Pd (111) surface. Catal Today 202:87–97CrossRefGoogle Scholar
  36. Filhol JS, Neurock M (2006) Elucidation of the electrochemical activation of water over Pd by first principles. Angew Chem Int Ed 45(3):402–406CrossRefGoogle Scholar
  37. Fisicaro G, Genovese L, Andreussi O, Mandal S, Nair NN, Marzari N, Goedecker S (2017) Soft-sphere continuum solvation in electronic-structure calculations. J Chem Theor Comput 13(8):3829–3845CrossRefGoogle Scholar
  38. Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, Van de Walle CG (2014) First-principles calculations for point defects in solids. Rev Mod Phys 86(1):253ADSCrossRefGoogle Scholar
  39. Gambu TG, Petersen MA, van Steen E (2017) Probing the edge effect on the ORR activity using platinum nanorods: a DFT study. Catal Today.
  40. Gauthier JA, Dickens CF, Chen LD, Doyle AD, Nørskov JK (2017) Solvation effects for oxygen evolution reaction catalysis on IrO2 (110). J Phys Chem C 121(21):11455–11463. Scholar
  41. Gong XQ, Selloni A, Batzill M, Diebold U (2006) Steps on anatase TiO2 (101). Nat Mater 5(8):665ADSCrossRefGoogle Scholar
  42. Gong XQ, Selloni A, Dulub O, Jacobson P, Diebold U (2008) Small Au and Pt clusters at the anatase TiO2 (101) surface: behavior at terraces, steps, and surface oxygen vacancies. J Am Chem Soc 130(1):370–381CrossRefGoogle Scholar
  43. Göttle AJ, Koper MT (2017) Proton-coupled electron transfer in the electrocatalysis of CO2 reduction: prediction of sequential vs. concerted pathways using DFT. Chem Sci 8(1):458–465CrossRefGoogle Scholar
  44. Gouy G (1917) Sur la fonction électrocapillaire. Ann Phys (Paris) 9:129–184ADSzbMATHGoogle Scholar
  45. Gratzel M (2012) Energy resources through photochemistry and catalysis. Elsevier, AmsterdamGoogle Scholar
  46. Groß A, Gossenberger F, Lin X, Naderian M, Sakong S, Roman T (2014) Water structures at metal electrodes studied by ab initio molecular dynamics simulations. J Electrochem Soc 161(8):E3015–E3020CrossRefGoogle Scholar
  47. Halter DP, Palumbo CT, Ziller JW, Gembicky M, Rheingold AL, Evans WJ, Meyer K (2018) Electrocatalytic H2O reduction with f-elements: mechanistic insight and overpotential tuning in a series of lanthanide complexes. J Am Chem Soc 140(7):2587–2594. Scholar
  48. Hansen MH, Rossmeisl J (2016) pH in grand canonical statistics of an electrochemical interface. J Phys Chem C 120(51):29135–29143CrossRefGoogle Scholar
  49. Hansen MH, Nilsson A, Rossmeisl J (2017) Modelling pH and potential in dynamic structures of the water/Pt (111) interface on the atomic scale. Phys Chem Chem Phys 19(34):23505–23514CrossRefGoogle Scholar
  50. Haynes WM (2014) CRC handbook of chemistry and physics. CRC press, Boca RatonGoogle Scholar
  51. Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry. Science 268(5214):1144–1149ADSCrossRefGoogle Scholar
  52. Hou Y, Abrams BL, Vesborg PC, Björketun ME, Herbst K, Bech L, Setti AM, Damsgaard CD, Pedersen T, Hansen O et al (2011) Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat Mater 10(6):434ADSCrossRefGoogle Scholar
  53. Hu QM, Reuter K, Scheffler M (2007) Towards an exact treatment of exchange and correlation in materials: application to the “CO adsorption puzzle” and other systems. Phys Rev Lett 98(17):176103ADSCrossRefGoogle Scholar
  54. Ikeda S, Sugiyama N, Pal B, Marcí G, Palmisano L, Noguchi H, Uosaki K, Ohtani B (2001) Photocatalytic activity of transition-metal-loaded titanium (IV) oxide powders suspended in aqueous solutions: correlation with electron–hole recombination kinetics. Phys Chem Chem Phys 3(2):267–273CrossRefGoogle Scholar
  55. Janik MJ, Taylor CD, Neurock M (2007) First principles analysis of the electrocatalytic oxidation of methanol and carbon monoxide. Top Catal 46(3–4):306–319CrossRefGoogle Scholar
  56. Janotti A, Van de Walle CG (2011) LDA+U and hybrid functional calculations for defects in ZnO, SnO2, and TiO2. Phys Status Solidi B 248(4):799–804ADSCrossRefGoogle Scholar
  57. Janotti A, Varley J, Rinke P, Umezawa N, Kresse G, Van de Walle C (2010) Hybrid functional studies of the oxygen vacancy in TiO2. Phys Rev B 81(8):085212ADSCrossRefGoogle Scholar
  58. Kandoi S, Gokhale A, Grabow L, Dumesic J, Mavrikakis M (2004) Why Au and Cu are more selective than Pt for preferential oxidation of CO at low temperature. Catal Lett 93(1–2): 93–100CrossRefGoogle Scholar
  59. Keeley DF, Hoffpauir MA, Meriwether JR (1988) Solubility of aromatic hydrocarbons in water and sodium chloride solutions of different ionic strengths: benzene and toluene. J Chem Eng Data 33(2):87–89CrossRefGoogle Scholar
  60. Kick M, Reuter K, Oberhofer H (2018, in preparation) DFT+U in a numeric atom centered orbital frameworkGoogle Scholar
  61. Kiriukhin MY, Collins KD (2002) Dynamic hydration numbers for biologically important ions. Biophys Chem 99(2):155–168CrossRefGoogle Scholar
  62. Kirkwood JG (1934) Theory of solutions of molecules containing widely separated charges with special application to zwitterions. J Chem Phys 2(7):351–361ADSzbMATHCrossRefGoogle Scholar
  63. Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2(5):799–805CrossRefGoogle Scholar
  64. Komsa HP, Pasquarello A (2013) Finite-size supercell correction for charged defects at surfaces and interfaces. Phys Rev Lett 110(9):095505ADSCrossRefGoogle Scholar
  65. Koper MT (2013a) Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chem Sci 4(7):2710–2723CrossRefGoogle Scholar
  66. Koper MT (2013b) Theory of the transition from sequential to concerted electrochemical proton–electron transfer. Phys Chem Chem Phys 15(5):1399–1407CrossRefGoogle Scholar
  67. Kubas A, Berger D, Oberhofer H, Maganas D, Reuter K, Neese F (2016) Surface adsorption energetics studied with “gold standard” wave-function-based ab initio methods: small-molecule binding to TiO2 (110). J Phys Chem Lett 7(20):4207–4212CrossRefGoogle Scholar
  68. Lany S, Zunger A (2009) Accurate prediction of defect properties in density functional supercell calculations. Model Simul Mater Sci Eng 17(8):084002ADSCrossRefGoogle Scholar
  69. Latimer WM, Pitzer KS, Slansky CM (1993) The free energy of hydration of gaseous ions, and the absolute potential of the normal calomel electrode. In: Pitzer KS (ed) Molecular structure and statistical thermodynamics: selected papers of Kenneth S Pitzer. World Scientific, Singapore, pp 485–489CrossRefGoogle Scholar
  70. Li J, Cushing SK, Zheng P, Senty T, Meng F, Bristow AD, Manivannan A, Wu N (2014a) Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer. J Am Chem Soc 136(23):8438–8449CrossRefGoogle Scholar
  71. Li P, Henkelman G, Keith JA, Johnson JK (2014b) Elucidation of aqueous solvent-mediated hydrogen-transfer reactions by ab initio molecular dynamics and nudged elastic-band studies of NaBH4 hydrolysis. J Phys Chem C 118(37):21385–21399CrossRefGoogle Scholar
  72. Long F, McDevit W (1952) Activity coefficients of nonelectrolyte solutes in aqueous salt solutions. Chem Rev 51(1):119–169CrossRefGoogle Scholar
  73. Maayan G, Gluz N, Christou G (2018) A bioinspired soluble manganese cluster as a water oxidation electrocatalyst with low overpotential. Nat Catal 1(1):48CrossRefGoogle Scholar
  74. Makov G, Payne M (1995) Periodic boundary conditions in ab initio calculations. Phys Rev B 51(7):4014ADSCrossRefGoogle Scholar
  75. Marcus Y (1985) Ions in solution and their solvation. Wiley, New JerseyGoogle Scholar
  76. Marenich A, Kelly C, Thompson J, Hawkins G, Chambers C, Giesen D, Winget P, Cramer C, Truhlar D (2012) Minnesota solvation database–version 2012. University of Minnesota, MinneapolisGoogle Scholar
  77. Mathew K, Sundararaman R, Letchworth-Weaver K, Arias T, Hennig RG (2014) Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J Chem Phys 140(8):084106ADSCrossRefGoogle Scholar
  78. Matthey D, Wang J, Wendt S, Matthiesen J, Schaub R, Lægsgaard E, Hammer B, Besenbacher F (2007) Enhanced bonding of gold nanoparticles on oxidized TiO2 (110). Science 315(5819):1692–1696ADSCrossRefGoogle Scholar
  79. Mattioli G, Giannozzi P, Amore Bonapasta A, Guidoni L (2013) Reaction pathways for oxygen evolution promoted by cobalt catalyst. J Am Chem Soc 135(41):15353–15363CrossRefGoogle Scholar
  80. Meng S, Wang E, Gao S (2004) Water adsorption on metal surfaces: a general picture from density functional theory studies. Phys Rev B 69(19):195404ADSCrossRefGoogle Scholar
  81. Michaelides A, Alavi A, King DA (2004) Insight into H2O-ice adsorption and dissociation on metal surfaces from first-principles simulations. Phys Rev B 69(11):113404ADSCrossRefGoogle Scholar
  82. Mobley DL, Barber AE, Fennell CJ, Dill KA (2008) Charge asymmetries in hydration of polar solutes. J Phys Chem B 112(8):2405–2414CrossRefGoogle Scholar
  83. Mones L, Csányi G (2012) Topologically invariant reaction coordinates for simulating multistate chemical reactions. J Phys Chem B 116(51):14876–14885CrossRefGoogle Scholar
  84. Mones L, Kulhánek P, Simon I, Laio A, Fuxreiter M (2009) The energy gap as a universal reaction coordinate for the simulation of chemical reactions. J Phys Chem B 113(22):7867–7873CrossRefGoogle Scholar
  85. Neurock M (2003) Perspectives on the first principles elucidation and the design of active sites. J Catal 216(1–2):73–88CrossRefGoogle Scholar
  86. Nielsen M, Björketun ME, Hansen MH, Rossmeisl J (2015) Towards first principles modeling of electrochemical electrode–electrolyte interfaces. Surf Sci 631:2–7ADSCrossRefGoogle Scholar
  87. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108(46):17886–17892CrossRefGoogle Scholar
  88. Oberhofer H, Reuter K (2013) First-principles thermodynamic screening approach to photo-catalytic water splitting with co-catalysts. J Chem Phys 139(4):044710ADSCrossRefGoogle Scholar
  89. Ogasawara H, Brena B, Nordlund D, Nyberg M, Pelmenschikov A, Pettersson L, Nilsson A (2002) Structure and bonding of water on Pt (111). Phys Rev Lett 89(27):276102CrossRefGoogle Scholar
  90. Onsager L (1936) Electric moments of molecules in liquids. J Am Chem Soc 58(8):1486–1493CrossRefGoogle Scholar
  91. Otani M, Sugino O (2006) First-principles calculations of charged surfaces and interfaces: A plane-wave nonrepeated slab approach. Phys Rev B 73(11):115407ADSCrossRefGoogle Scholar
  92. Otani M, Hamada I, Sugino O, Morikawa Y, Okamoto Y, Ikeshoji T (2008) Electrode dynamics from first principles. J Phys Soc Jpn 77(2):024802–024802ADSCrossRefGoogle Scholar
  93. Pérez-Tejeda P, Maestre A, Balón M, Hidalgo J, Muñoz MA, Sánchez M (1987) Setschenow coefficients for caffeine, theophylline and theobromine in aqueous electrolyte solutions. J Chem Soc Farad Trans 1 83(4):1029–1039CrossRefGoogle Scholar
  94. Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Nørskov JK (2010) How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ Sci 3(9):1311–1315CrossRefGoogle Scholar
  95. Qian M, Cui S, Jiang D, Zhang L, Du P (2017) Highly efficient and stable water-oxidation electrocatalysis with a very low overpotential using FeNiP substitutional-solid-solution nanoplate arrays. Adv Mater 29(46):1704075CrossRefGoogle Scholar
  96. Ran J, Zhang J, Yu J, Jaroniec M, Qiao SZ (2014) Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem Soc Rev 43(22):7787–7812CrossRefGoogle Scholar
  97. Ran J, Gao G, Li FT, Ma TY, Du A, Qiao SZ (2017) Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat Commun 8:13907ADSCrossRefGoogle Scholar
  98. Rao RR, Kolb MJ, Halck NB, Pedersen AF, Mehta A, You H, Stoerzinger KA, Feng Z, Hansen HA, Zhou H et al (2017) Towards identifying the active sites on RuO2 (110) in catalyzing oxygen evolution. Energy Environ Sci 10(12):2626–2637CrossRefGoogle Scholar
  99. Rayalu SS, Jose D, Joshi MV, Mangrulkar PA, Shrestha K, Klabunde K (2013) Photocatalytic water splitting on Au/TiO2 nanocomposites synthesized through various routes: enhancement in photocatalytic activity due to SPR effect. Appl Catal B 142:684–693CrossRefGoogle Scholar
  100. Reda M, Hansen HA, Vegge T (2018) DFT study of stabilization effects on N-doped graphene for ORR catalysis. Catal Today 312:118–125CrossRefGoogle Scholar
  101. Reuter K (2016) Ab initio thermodynamics and first-principles microkinetics for surface catalysis. Catal Lett 146(3):541–563CrossRefGoogle Scholar
  102. Reuter K, Scheffler M (2001) Composition, structure, and stability of RuO2 (110) as a function of oxygen pressure. Phys Rev B 65(3):035406ADSCrossRefGoogle Scholar
  103. Reuter K, Plaisance CP, Oberhofer H, Andersen M (2017) Perspective: on the active site model in computational catalyst screening. J Chem Phys 146(4):040901ADSCrossRefGoogle Scholar
  104. Ringe S, Oberhofer H, Hille C, Matera S, Reuter K (2016) Function-space-based solution scheme for the size-modified Poisson–Boltzmann equation in full-potential DFT. J Chem Theor Comput 12(8):4052–4066CrossRefGoogle Scholar
  105. Ringe S, Oberhofer H, Reuter K (2017) Transferable ionic parameters for first-principles Poisson-Boltzmann solvation calculations: neutral solutes in aqueous monovalent salt solutions. J Chem Phys 146(13):134103ADSCrossRefGoogle Scholar
  106. Rossmeisl J, Skúlason E, Björketun ME, Tripkovic V, Nørskov JK (2008) Modeling the electrified solid–liquid interface. Chem Phys Lett 466(1):68–71ADSCrossRefGoogle Scholar
  107. Rossmeisl J, Chan K, Ahmed R, Tripković V, Björketun ME (2013) pH in atomic scale simulations of electrochemical interfaces. Phys Chem Chem Phys 15(25):10321–10325CrossRefGoogle Scholar
  108. Scherlis DA, Fattebert JL, Gygi F, Cococcioni M, Marzari N (2006) A unified electrostatic and cavitation model for first-principles molecular dynamics in solution. J Chem Phys 124(7):074103ADSCrossRefGoogle Scholar
  109. Schnur S, Groß A (2009) Properties of metal–water interfaces studied from first principles. New J Phys 11(12):125003CrossRefGoogle Scholar
  110. Setchenow M (1892) Action de l’acide carbonique sur les solutions des sels a acides forts. Ann Chim Phys 25:226Google Scholar
  111. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321):eaad4998CrossRefGoogle Scholar
  112. Seitz LC, Dickens CF, Nishio K, Hikita Y, Montoya J, Doyle A, Kirk C, Vojvodic A, Hwang HY, Norskov JK et al (2016) A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353(6303):1011–1014ADSCrossRefGoogle Scholar
  113. Setvin M, Hao X, Daniel B, Pavelec J, Novotny Z, Parkinson GS, Schmid M, Kresse G, Franchini C, Diebold U (2014) Charge trapping at the step edges of TiO2 anatase (101). Angew Chem Int Ed 53(18):4714–4716CrossRefGoogle Scholar
  114. Sherwood P, de Vries AH, Guest MF, Schreckenbach G, Catlow CRA, French SA, Sokol AA, Bromley ST, Thiel W, Turner AJ et al (2003) QUASI: a general purpose implementation of the QM/MM approach and its application to problems in catalysis. J Mol Struct 632(1–3):1–28CrossRefGoogle Scholar
  115. Shi C, Chan K, Yoo JS, Nørskov JK (2016) Barriers of electrochemical CO2 reduction on transition metals. Org Process Res Dev 20(8):1424–1430CrossRefGoogle Scholar
  116. Shibuya T, Yasuoka K, Mirbt S, Sanyal B (2012) A systematic study of polarons due to oxygen vacancy formation at the rutile TiO2 (110) surface by GGA+U and HSE06 methods. J Phys Condens Matter 24(43):435504ADSCrossRefGoogle Scholar
  117. Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W (2010) Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theor Comput 6(5):1509–1519CrossRefGoogle Scholar
  118. Siahrostami S, Vojvodic A (2015) Influence of adsorbed water on the oxygen evolution reaction on oxides. J Phys Chem C 119(2):1032–1037. Scholar
  119. Sinstein M, Scheurer C, Matera S, Blum V, Reuter K, Oberhofer H (2017) Efficient implicit solvation method for full potential DFT. J Chem Theor Comput 13(11):5582–5603CrossRefGoogle Scholar
  120. Skúlason E, Karlberg GS, Rossmeisl J, Bligaard T, Greeley J, Jónsson H, Nørskov JK (2007) Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt (111) electrode. Phys Chem Chem Phys 9(25):3241–3250CrossRefGoogle Scholar
  121. Skúlason E, Tripkovic V, Björketun ME, Gudmundsdottir S, Karlberg G, Rossmeisl J, Bligaard T, Jónsson H, Nørskov JK (2010) Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J Phys Chem C 114(42):18182–18197CrossRefGoogle Scholar
  122. Sokol AA, Bromley ST, French SA, Catlow CRA, Sherwood P (2004) Hybrid QM/MM embedding approach for the treatment of localized surface states in ionic materials. Int J Quantum Chem 99(5):695–712CrossRefGoogle Scholar
  123. Stampfl C, Ganduglia-Pirovano MV, Reuter K, Scheffler M (2002) Catalysis and corrosion: the theoretical surface-science context. Surf Sci 500(1–3):368–394ADSCrossRefGoogle Scholar
  124. Stecher T, Reuter K, Oberhofer H (2016) First-principles free-energy barriers for photoelectrochemical surface reactions: proton abstraction at TiO2 (110). Phys Rev Lett 117(27):276001ADSCrossRefGoogle Scholar
  125. Stern O (1924) The theory of the electrolytic double-layer. Z Elektrochem 30(508):1014–1020Google Scholar
  126. Su R, Tiruvalam R, Logsdail AJ, He Q, Downing CA, Jensen MT, Dimitratos N, Kesavan L, Wells PP, Bechstein R et al (2014) Designer titania-supported Au–Pd nanoparticles for efficient photocatalytic hydrogen production. ACS nano 8(4):3490–3497CrossRefGoogle Scholar
  127. Sumita M, Hu C, Tateyama Y (2010) Interface water on TiO2 anatase (101) and (001) surfaces: first-principles study with TiO2 slabs dipped in bulk water. J Phys Chem C 114(43):18529–18537CrossRefGoogle Scholar
  128. Thiyagarajan N, Janmanchi D, Tsai YF, Wanna WH, Ramu R, Chan SI, Zen JM, Yu SSF (2018) A carbon electrode functionalized by a tricopper cluster complex: overcoming overpotential and production of hydrogen peroxide in the oxygen reduction reaction. Angew Chem Int Ed 57:1CrossRefGoogle Scholar
  129. Tilocca A, Selloni A (2004) Structure and reactivity of water layers on defect-free and defective anatase TiO2 (101) surfaces. J Phys Chem B 108(15):4743–4751CrossRefGoogle Scholar
  130. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105(8):2999–3094CrossRefGoogle Scholar
  131. Tsuji I, Kato H, Kobayashi H, Kudo A (2004) Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)x (Zn2)(1−x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. J Am Chem Soc 126(41):13406–13413CrossRefGoogle Scholar
  132. Valdes A, Qu ZW, Kroes GJ, Rossmeisl J, Nørskov JK (2008) Oxidation and photo-oxidation of water on TiO2 surface. J Phys Chem C 112:9872CrossRefGoogle Scholar
  133. Van de Walle CG, Neugebauer J (2004) First-principles calculations for defects and impurities: applications to III-nitrides. J Appl Phys 95(8):3851–3879ADSCrossRefGoogle Scholar
  134. Wahlström E, Lopez N, Schaub R, Thostrup P, Rønnau A, Africh C, Lægsgaard E, Nørskov J, Besenbacher F (2003) Bonding of gold nanoclusters to oxygen vacancies on rutile TiO2 (110). Phys Rev Lett 90(2):026101ADSCrossRefGoogle Scholar
  135. Wang J, Hammer B (2006) Role of Au+ in supporting and activating Au7 on TiO2 (110). Phys Rev Lett 97(13):136107ADSCrossRefGoogle Scholar
  136. Wasileski SA, Janik MJ (2008) A first-principles study of molecular oxygen dissociation at an electrode surface: a comparison of potential variation and coadsorption effects. Phys Chem Chem Phys 10(25):3613–3627CrossRefGoogle Scholar
  137. Waxman EM, Elm J, Kurtén T, Mikkelsen KV, Ziemann PJ, Volkamer R (2015) Glyoxal and methylglyoxal setschenow salting constants in sulfate, nitrate, and chloride solutions: measurements and Gibbs energies. Environ Sci Technol 49(19):11500–11508ADSCrossRefGoogle Scholar
  138. Wood BC, Schwegler E, Choi WI, Ogitsu T (2013) Hydrogen-bond dynamics of water at the interface with InP/GaP (001) and the implications for photoelectrochemistry. J Am Chem Soc 135(42):15774–15783CrossRefGoogle Scholar
  139. Yang J, Wang D, Han H, Li C (2013) Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc Chem Res 46(8):1900–1909CrossRefGoogle Scholar
  140. Zawadzki P, Laursen AB, Jacobsen KW, Dahl S, Rossmeisl J (2012) Oxidative trends of TiO2—hole trapping at anatase and rutile surfaces. Energy Environ Sci 5(12):9866–9869CrossRefGoogle Scholar
  141. Zhang B, Zheng X, Voznyy O, Comin R, Bajdich M, García-Melchor M, Han L, Xu J, Liu M, Zheng L, García de Arquer FP, Dinh CT, Fan F, Yuan M, Yassitepe E, Chen N, Regier T, Liu P, Li Y, De Luna P, Janmohamed A, Xin HL, Yang H, Vojvodic A, Sargent EH (2016) Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352(6283):333–337ADSCrossRefGoogle Scholar
  142. Zhao Z, Li Z, Zou Z (2012) Structure and properties of water on the anatase TiO2 (101) surface: from single-molecule adsorption to interface formation. J Phys Chem C 116(20):11054–11061CrossRefGoogle Scholar
  143. Zong X, Yan H, Wu G, Ma G, Wen F, Wang L, Li C (2008) Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J Am Chem Soc 130(23):7176–7177CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chair for Theoretical Chemistry and Catalysis Research CenterTechnische Universität MünchenGarchingGermany

Section editors and affiliations

  • Horia Metiu
    • 1
  • Karsten Reuter
    • 2
  1. 1.Department of Chemistry & BiochemistryUniversity of California at Santa BarbaraSanta BarbaraUSA
  2. 2.Theoretische ChemieTechnical UniversityMünchenGermany

Personalised recommendations