Computational Models of Eukaryotic Cells in Health and Disease

  • Kirill LykovEmail author
  • Igor V. Pivkin
Living reference work entry


Eukaryotic cells play a crucial role in many processes in health and disease in the human body. The importance of an understanding of cell behavior from the mechanical point of view triggered the development of many computational models. In this chapter, we present recent progress in this field. We focus primarily on computational models of suspended in flow and adherent to substrate eukaryotic cells.



This work was supported by Swiss National Science Foundation grant 205321_173020.


  1. Agrawal H, Zelisko M, Liu L, Sharma P (2016) Rigid proteins and softening of biological membranes with application to HIV-induced cell membrane softening. Sci Rep 6:25412.,
  2. Brangwynne C, MacKintosh F, Kumar S, Geisse N, Talbot J, Mahadevan L, Parker K, Ingber D, Weitz D (2006) Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J Cell Biol (173):733–741Google Scholar
  3. Chaudhuri PK, Ebrahimi Warkiani M, Jing T, Kenry, Lim CT (2016) Microfluidics for research and applications in oncology. Analyst 141:504–524.
  4. Cross SE, Yu-Sheng J, Jianyu R, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2(12):780–783.,{&}db=a9h{% \&}AN=32097033{\&}site=ehost-live
  5. Dowling EP, Ronan W, Ofek G, Deshpande VS, McMeeking RM, Athanasiou Ka, McGarry JP (2012) The effect of remodelling and contractility of the actin cytoskeleton on the shear resistance of single cells: a computational and experimental investigation. J R Soc Interface 9:3469–3479.
  6. Fang Y, Lai KWC (2016) Modeling the mechanics of cells in the cell-spreading process driven by traction forces. Phys Rev E 93:1–15.
  7. Fedosov Da, Gompper G (2014) White blood cell margination in microcirculation. Soft matter 10:2961–70.,
  8. Fletcher AG, Cooper F, Baker RE, Fletcher AG (2017) Mechanocellular models of epithelial morphogenesis. Phil Trans R Soc B (372).
  9. Friedl P, Wolf K, Lammerding J (2011) Nuclear mechanics during cell migration. Curr Opin Cell Biol 23(1):55–64.,, cell structure and dynamics
  10. Gerlitz G, Bustin M (2012) The role of chromatin structure in cell migration. Trends Cell Biol 21(1):6–11.
  11. Guilak F, Tedrow JR, Burgkart R (2000) Viscoelastic properties of the cell nucleus. Biochem biophys Res Commun 269:781–786.
  12. Guyot Y, Smeets B, Odenthal T, Subramani R, Luyten FP, Ramon H, Papantoniou I, Geris L (2016) Immersed boundary models for quantifying flow-induced mechanical stimuli on stem cells seeded on 3D scaffolds in perfusion bioreactors. PLoS Comput Biol 12(9):1–21.
  13. Kardas D, Nackenhorst U, Balzani D (2013) Computational model for the cell-mechanical response of the osteocyte cytoskeleton based on self-stabilizing tensegrity structures. Biomech Model Mechanobiol 12(1):167–183.
  14. Kim MC, Kim C, Wood L, Neal D, Kamm RD, Asada HH (2012) Integrating focal adhesion dynamics, cytoskeleton remodeling, and actin motor activity for predicting cell migration on 3D curved surfaces of the extracellular matrix. Integr Biol 4(11):1386.,$backslash$npapers3://publication/doi/10.1039/c2ib20159c
  15. Kim MC, Neal DM, Kamm RD, Asada HH (2013) Dynamic modeling of cell migration and spreading behaviors on fibronectin coated planar substrates and micropatterned geometries. PLoS Comput Biol 9(2).
  16. Kim MC, Whisler J, Silberberg YR, Kamm RD, Asada HH (2015) Cell invasion dynamics into a three dimensional extracellular matrix fibre network. PLoS Comput Biol 11(10):1–29., 0504028
  17. Kollmannsberger P, Fabry B (2011) Linear and nonlinear rheology of living cells. Ann Rev Mater Res 41:75–97.
  18. Lammerding CD, Jan (2014) Nuclear mechanics in cancer. Adv Exp Med Biol 773:435–470.,
  19. Liu F, Wu D, Wu X, Chen K (2015a) Analyses of the cell mechanical damage during microinjection. Soft Matter 11(7):1434–1442.,
  20. Liu Z, Lee Y, Jang JH, Li Y, Han X, Yokoi K, Ferrari M, Zhou L, Qin L (2015b) Microfluidic cytometric analysis of cancer cell transportability and invasiveness. Sci Rep 5:14272.,
  21. Lykov K, Nematbakhsh Y, Shang M, Lim CT, Pivkin IV (2017) Probing eukaryotic cell mechanics via mesoscopic simulations. PLoS Comput Biol 13(9):1–26., e1005726
  22. Nan L, Jiang Z, Wei X (2014) Emerging microfluidic devices for cell lysis: a review. Lab Chip 14:1060–1073.
  23. Nematbakhsh Y, Lim C (2015) Cell biomechanics and its applications in human disease diagnosis. Acta Mech Sin 31(2):268–273.
  24. Nematbakhsh Y, Pang KT, Lim CT (2017) Correlating the viscoelasticity of breast cancer cells with their malignancy. Converg Sci Phys Oncol 3(3):034003.
  25. Pinho D, Yaginuma T, Lima R (2013) A microfluidic device for partial cell separation and deformability assessment. Biochip J 7:367–374.
  26. Ramaekers FCS, Bosman FT (2004) The cytoskeleton and disease. J Pathol 204(4):351–354.
  27. Ronan W, Deshpande VS, McMeeking RM, McGarry JP (2012) Numerical investigation of the active role of the actin cytoskeleton in the compression resistance of cells. J Mech Behav Biomed Mater 14:143–157.
  28. Rossinelli D, Yu-Hang T, Lykov K, Alexeev D, Bernaschi M, Hadjidoukas P, Bisson M, Joubert W, Conti C, Karniadakis G, Fatica M, Pivkin I, Koumoutsakos P (2015) The in-silico lab-on-a-chip: petascale and high-throughput simulations of microfluidics at cell resolution. In: Proceedings of 2015 international conference for high performance computing, networking, storage and analysis, SC’15. ACM, New YorkGoogle Scholar
  29. Rowat A, Lammerding J, Ipsen J (2006) Mechanical properties of the cell nucleus and the effect of emerin deficiency. Biophys J 91(12):4649–4664.,
  30. Rynearson AL, Sussman CR (2011) Nuclear structure, organization, and oncogenesis. J Gastrointest Cancer 42(2):112–117.
  31. Stephens AD, Banigan EJ, Adam SA, Goldman RD, Marko JF (2017) Chromatin and lamin a determine two different mechanical response regimes of the cell nucleus. Mol Biol Cell 28(2):1–29.
  32. Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Biomater 3(4):413–438.,
  33. Takeishi N, Imai Y, Nakaaki K, Yamaguchi T, Ishikawa T (2014) Leukocyte margination at arteriole shear rate. Physiol Rep 2(6):1–8.,
  34. Takeishi N, Imai Y, Yamaguchi T, Ishikawa T (2015) Flow of a circulating tumor cell and red blood cells in microvessels. Phys Rev E Stat Nonlinear Soft Matter Phys 92(6):1–6.
  35. Takeishi N, Imai Y, Ishida S, Omori T, Kamm RD, Ishikawa T (2016) Cell adhesion during bullet motion in capillaries. Am J Physiol Heart Circ Physiol 311(2):H395–H403.,
  36. Ujihara Y, Nakamura M, Miyazaki H, Wada S (2010) Proposed spring network cell model based on a minimum energy concept. Ann Biomed Eng 38(4):1530–1538.
  37. Ujihara Y, Nakamura M, Miyazaki H, Wada S (2012) Contribution of actin filaments to the global compressive properties of fibroblasts. J Mech Behav Biomed Mater 14:192–198.
  38. Xiao LL, Fu YLSCBM (2016a) Effects of flowing RBCs on adhesion of a circulating tumor cell in microvessels. Biomech Model Mechanobiol.
  39. Xiao LL, Fu YLSCBM (2016b) Numerical simulation of a single cell passing through a narrow slit. Biomech Model Mechanobiol.
  40. Ye T, Phan-Thien N, Lim CT (2016) Particle-based simulations of red blood cells - A review. J Biomechan 49(11):2255–2266.
  41. Yung C, Fiering J, Mueller A, Ingber D (2009) Micromagnetic-microfluidic blood cleansing device. Lab Chip 9:1171–1177.
  42. Zeng Y, Kia A, Teo YSk (2012) A three-dimensional random network model of the cytoskeleton and its role in mechanotransduction and nucleus deformation. Biomech ModelMechanobiol (11):49–59.
  43. Zhang Z, Xu J, Hong B, Chen X (2014) The effects of 3D channel geometry on CTC passing pressure – towards deformability-based cancer cell separation. Lab Chip 14:2576–84.,

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Informatics, Institute of Computational ScienceUniversita della Svizzera ItalianaLuganoSwitzerland

Section editors and affiliations

  • Ming Dao
    • 1
  • George E Karniadakis
    • 2
  1. 1.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Division of Applied MathematicsBrown UniversityProvidenceUSA

Personalised recommendations