Advertisement

Titania and Its Outstanding Properties: Insights from First Principles Calculations

Living reference work entry

Abstract

Titanium dioxide (TiO2) is one of the most widely used photocatalytic materials due its abundance, non-toxicity, and high stability in different environments and conditions. TiO2 is also considered a prototypical metal oxide and a model system for experimental and theoretical studies of materials properties and surface reactions. TiO2 has several polymorphs, rutile and anatase being the most common ones. Rutile is the thermodynamically most stable bulk phase; anatase is stable in nanoparticles and shows higher activity in many photocatalytic reactions, making it the most interesting phase for use in high surface area photocatalytic and photovoltaic devices. While insulating when stoichiometric, TiO2 is most frequently reduced and electrically conducting due to the presence of intrinsic defects and their induced excess electrons, which transform it into an n-type semiconductor with many technologically relevant properties. As surfaces have a prominent role in most of TiO2’s applications, intense efforts have been devoted to the characterization of TiO2 surfaces and their interactions with various molecular species and environments. In this Chapter, we present an overview of recent theoretical/computational studies on TiO2, focusing mainly on reduced anatase surfaces and their interactions with molecular oxygen and water, which have a central role in various fields, from photocatalysis and nanomaterial synthesis to geochemistry and environmental chemistry. These studies highlight the effectiveness of combined experimental and theoretical approaches as well as the important role of simulations in bridging the gap between experiments under vacuum conditions and in realistic environments.

Notes

Acknowledgments

This work was supported by DoE-BES, Division of Chemical Sciences, Geosciences, and Biosciences under Award DE-SC0007347. We acknowledge the use of the computational resources of TIGRESS high performance computer center at Princeton University.

References

  1. Anisimov VI, Zaanen J, Andersen OK (1991) Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys Rev B 44(3):943ADSCrossRefGoogle Scholar
  2. Argondizzo A, Cui X, Wang C, Sun H, Shang H, Zhao J, Petek H (2015) Ultrafast multiphoton pump-probe photoemission excitation pathways in rutileTiO2(110). Phys Rev B 91(15):155429ADSCrossRefGoogle Scholar
  3. Aschauer U, Selloni A (2011) Structure of the rutile TiO2 (011) surface in an aqueous environment. Phys Rev Lett 106(16):166102ADSCrossRefGoogle Scholar
  4. Aschauer U, Chen J, Selloni A (2010) Peroxide and superoxide states of adsorbed O(2) on anatase TiO(2) (101) with subsurface defects. Phys Chem Chem Phys 12(40):12956–12960CrossRefGoogle Scholar
  5. Bai J, Zhou B (2014) Titanium dioxide nanomaterials for sensor applications. Chem Rev 114(19):10131–10176CrossRefGoogle Scholar
  6. Balajka J, Aschauer U, Mertens SFL, Selloni A, Schmid M, Diebold U (2017) Surface structure of TiO2 rutile (011) exposed to liquid water. J Phys Chem C 121(47):26424–26431CrossRefGoogle Scholar
  7. Batzill M (2011) Fundamental aspects of surface engineering of transition metal oxide photocatalysts. Energy Environ Sci 4(9):3275–3286CrossRefGoogle Scholar
  8. Beck TJ, Klust A, Batzill M, Diebold U, Di Valentin C, Selloni A (2004) Surface structure of TiO2(011)-(2*1). Phys Rev Lett 93(3):036104/036101–036104/036104ADSCrossRefGoogle Scholar
  9. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652ADSCrossRefGoogle Scholar
  10. Berger T, Sterrer M, Diwald O, Knözinger E, Panayotov D, Thompson TL, Yates JT Jr (2005) Light-induced charge separation in anatase TiO2 particles. J Phys Chem B 109(13):6061–6068CrossRefGoogle Scholar
  11. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503–6570CrossRefGoogle Scholar
  12. Cheng H, Selloni A (2009a) Energetics and diffusion of intrinsic surface and subsurface defects on anatase TiO2(101). J Chem Phys 131(5):054703ADSCrossRefGoogle Scholar
  13. Cheng H, Selloni A (2009b) Surface and subsurface oxygen vacancies in anatase TiO[sub 2] and differences with rutile. Phys Rev B Condens Matter Mater Phys 79(9):092101ADSCrossRefGoogle Scholar
  14. Cheng H, Selloni A (2010) Hydroxide ions at the water/anatase TiO(2)(101) interface: structure and electronic states from first principles molecular dynamics. Langmuir 26(13):11518–11525CrossRefGoogle Scholar
  15. Cohen AJ, Mori-Sanchez P, Yang WT (2008) Insights into current limitations of density functional theory. Science 321(5890):792–794ADSCrossRefGoogle Scholar
  16. De Angelis F, Di Valentin C, Fantacci S, Vittadini A, Selloni A (2014) Theoretical studies on anatase and less common TiO2 phases: bulk, surfaces, and nanomaterials. Chem Rev 114:9708CrossRefGoogle Scholar
  17. Deskins NA, Dupuis M (2007) Electron transport via polaron hopping in bulk TiO2: a density functional theory characterization. Phys Rev B 75(19):195212ADSCrossRefGoogle Scholar
  18. Deskins NA, Rousseau R, Dupuis M (2011) Distribution of Ti3+ surface sites in reduced TiO2. J Phys Chem C 115(15):7562–7572CrossRefGoogle Scholar
  19. Di Valentin C, Pacchioni G, Selloni A (2009) Reduced and n-type doped TiO2: nature of Ti3+ species. J Phys Chem C 113(48):20543CrossRefGoogle Scholar
  20. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(5–8):53–229ADSCrossRefGoogle Scholar
  21. Forro L, Chauvet O, Emin D, Zuppiroli L, Berger H, Lévy F (1994) High mobility n-type charge carriers in large single crystals of anatase (TiO2). J Appl Phys 75(1):633–635ADSCrossRefGoogle Scholar
  22. Gong X-Q, Khorshidi N, Stierle A, Vonk V, Ellinger C, Dosch H, Cheng H, Selloni A, He Y, Dulub O, Diebold U (2009) The 2×1 reconstruction of the rutile TiO2(011) surface: a combined density functional theory, X-ray diffraction, and scanning tunneling microscopy study. Surf Sci 603(1):138–144ADSCrossRefGoogle Scholar
  23. Gratzel M (2001) Photoelectrochemical cells. Nature 414(6861):338–344ADSCrossRefGoogle Scholar
  24. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110(11):6595–6663CrossRefGoogle Scholar
  25. He Y, Dulub O, Cheng H, Selloni A, Diebold U (2009a) Evidence for the predominance of subsurface defects on reduced anatase TiO2(101). Phys Rev Lett 102(10):106105ADSCrossRefGoogle Scholar
  26. He YB, Tilocca A, Dulub O, Selloni A, Diebold U (2009b) Local ordering and electronic signatures of submonolayer water on anatase TiO2(101). Nat Mater 8(7):585–589ADSCrossRefGoogle Scholar
  27. Henrich VE, Dresselhaus G, Zeiger HJ (1976) Observation of two-dimensional phases associated with defect states on the surface of TiO_{2}. Phys Rev Lett 36(22):1335–1339ADSCrossRefGoogle Scholar
  28. Herman GS, Sievers MR, Gao Y (2000) Structure determination of the two-domain (1×4) Anatase TiO2(001) surface. Phys Rev Lett 84(15):3354–3357ADSCrossRefGoogle Scholar
  29. Herman GS, Dohnalek Z, Ruzycki N, Diebold U (2003) Experimental investigation of the interaction of water and methanol with anatase-TiO2(101). J Phys Chem B 107(12):2788–2795CrossRefGoogle Scholar
  30. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96CrossRefGoogle Scholar
  31. Hosseinpour S, Tang F, Wang F, Livingstone RA, Schlegel SJ, Ohto T, Bonn M, Nagata Y, Backus EHG (2017) Chemisorbed and physisorbed water at the TiO2/water interface. J Phys Chem Lett 8(10):2195–2199CrossRefGoogle Scholar
  32. Hu S, Lewis NS, Ager JW, Yang J, McKone JR, Strandwitz NC (2015) Thin-film materials for the protection of semiconducting photoelectrodes in solar-fuel generators. J Phys Chem C 119(43):24201–24228CrossRefGoogle Scholar
  33. Kavan L, Gratzel M, Gilbert SE, Klemenz C, Scheel HJ (1996) Electrochemical and photoelectrochemical investigation of single-crystal anatase. J Am Chem Soc 118(28):6716CrossRefGoogle Scholar
  34. Khomenko VM, Langer K, Rager H, Fett A (1998) Electronic absorption by Ti3+ ions and electron delocalization in synthetic blue rutile. Phys Chem Miner 25(5):338–346ADSCrossRefGoogle Scholar
  35. Lazzeri M, Selloni A (2001) Stress-driven reconstruction of an oxide surface. The anatase TiO2(001)-(1 * 4) surface. Phys Rev Lett 87(26):266105/266101–266105/266104ADSCrossRefGoogle Scholar
  36. Lazzeri M, Vittadini A, Selloni A (2001) Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys Rev B Condens Matter Mater Phys 63(15):155409/155401–155409/155409ADSCrossRefGoogle Scholar
  37. Li Y-F, Selloni A (2013) Theoretical study of interfacial electron transfer from reduced anatase TiO2(101) to adsorbed O2. J Am Chem Soc 135(24):9195–9199CrossRefGoogle Scholar
  38. Li M, Hebenstreit W, Diebold U, Tyryshkin AM, Bowman MK, Dunham GG, Henderson MA (2000) The influence of the bulk reduction state on the surface structure and morphology of rutile TiO2(110) single crystals. J Phys Chem B 104(20):4944–4950CrossRefGoogle Scholar
  39. Li Y-F, Liu Z-P, Liu L, Gao W (2010) Mechanism and activity of photocatalytic oxygen evolution on Titania Anatase in aqueous surroundings. J Am Chem Soc 132(37):13008–13015CrossRefGoogle Scholar
  40. Livraghi S, Chiesa M, Paganini MC, Giamello E (2011) On the nature of reduced states in titanium dioxide as monitored by electron paramagnetic resonance. I: the anatase case. J Phys Chem C 115(51):25413–25421CrossRefGoogle Scholar
  41. Livraghi S, Rolando M, Maurelli S, Chiesa M, Paganini MC, Giamello E (2014) Nature of reduced states in titanium dioxide as monitored by electron paramagnetic resonance. II: Rutile and Brookite cases. J Phys Chem C 118(38):22141–22148CrossRefGoogle Scholar
  42. Ma Y, Wang X, Jia Y, Chen X, Han H, Li C (2014) Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem Rev 114(19):9987–10043CrossRefGoogle Scholar
  43. Moser S, Moreschini L, Jacimovic J, Barisic OS, Berger H, Magrez A, Chang YJ, Kim KS, Bostwick A, Rotenberg E, Forro L, Grioni M (2013) Tunable polaronic conduction in anatase TiO2. Phys Rev Lett 110(19):196403ADSCrossRefGoogle Scholar
  44. Ohno T, Sarukawa K, Matsumura M (2002) Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New J Chem 26(9):1167–1170CrossRefGoogle Scholar
  45. Onda K, Li B, Petek H (2004) Two-photon photoemission spectroscopy of TiO2(110) surfaces modified by defects and O2 or H2O adsorbates. Phys Rev B 70(4):045415ADSCrossRefGoogle Scholar
  46. Onida G, Reining L, Rubio A (2002) Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev Mod Phys 74(2):601–659ADSCrossRefGoogle Scholar
  47. Pang CL, Lindsay R, Thornton G (2013) Structure of clean and adsorbate-covered single-crystal rutile TiO2 surfaces. Chem Rev 113(6):3887–3948CrossRefGoogle Scholar
  48. Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105(22):9982–9985ADSCrossRefGoogle Scholar
  49. Rajh T, Dimitrijevic NM, Bissonnette M, Koritarov T, Konda V (2014) Titanium dioxide in the service of the biomedical revolution. Chem Rev 114(19):10177–10216CrossRefGoogle Scholar
  50. Ramamoorthy M, Vanderbilt D, King-Smith RD (1994) First-principles calculations of the energetics of stoichiometric TiO2 surfaces. Phys Rev B 49(23):16721–16727ADSCrossRefGoogle Scholar
  51. Rödel TC, Fortuna F, Bertran F, Gabay M, Rozenberg MJ, Santander-Syro AF, Le Fèvre P (2015) Engineering two-dimensional electron gases at the (001) and (101) surfaces of TiO2 anatase using light. Phys Rev B 92(4):041106(R)ADSCrossRefGoogle Scholar
  52. Scheiber P, Fidler M, Dulub O, Schmid M, Diebold U, Hou W, Aschauer U, Selloni A (2012) (Sub)surface mobility of oxygen vacancies at the TiO2 anatase (101) surface. Phys Rev Lett 109(13):136103ADSCrossRefGoogle Scholar
  53. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114(19):9919–9986CrossRefGoogle Scholar
  54. Selçuk S, Selloni A (2013) Surface structure and reactivity of anatase TiO2 crystals with dominant {001} facets. J Phys Chem C 117(12):6358–6362CrossRefGoogle Scholar
  55. Selçuk S, Selloni A (2014) Influence of external electric fields on oxygen vacancies at the anatase (101) surface. J Chem Phys 141:084705ADSCrossRefGoogle Scholar
  56. Selcuk S, Selloni A (2016) Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces. Nat Mater 15(10):1107–1112ADSCrossRefGoogle Scholar
  57. Setvin M, Aschauer U, Scheiber P, Li Y-F, Hou W, Schmid M, Selloni A, Diebold U (2013) Reaction of O-2 with subsurface oxygen vacancies on TiO2 anatase (101). Science 341(6149):988–991ADSCrossRefGoogle Scholar
  58. Setvin M, Franchini C, Hao X, Schmid M, Janotti A, Kaltak M, Van de Walle CG, Kresse G, Diebold U (2014a) Direct view at excess electrons in TiO2 rutile and anatase. Phys Rev Lett 113(8):086402ADSCrossRefGoogle Scholar
  59. Setvin M, Hao X, Daniel B, Pavelec J, Novotny Z, Parkinson GS, Schmid M, Kresse G, Franchini C, Diebold U (2014b) Charge trapping at the step edges of TiO2 anatase (101). Angew Chem Int Ed 53(18):4714–4716CrossRefGoogle Scholar
  60. Sumita M, Hu C, Tateyama Y (2010) Interface water on TiO2 anatase (101) and (001) surfaces: first-principles study with TiO2 slabs dipped in bulk water. J Phys Chem C 114(43):18529–18537CrossRefGoogle Scholar
  61. Sun C, Liu L-M, Selloni A, Lu GQ, Smith SC (2010) Titania-water interactions: a review of theoretical studies. J Mater Chem 20(46):10319–10334CrossRefGoogle Scholar
  62. Tachikawa T, Yamashita S, Majima T (2011) Evidence for crystal-face-dependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis. J Am Chem Soc 133(18):7197–7204CrossRefGoogle Scholar
  63. Thomas AG, Flavell WR, Mallick AK, Kumarasinghe AR, Tsoutsou D, Khan N, Chatwin C, Rayner S, Smith GC, Stockbauer RL, Warren S, Johal TK, Patel S, Holland D, Taleb A, Wiame F (2007) Comparison of the electronic structure of anatase and rutileTiO2single-crystal surfaces using resonant photoemission and x-ray absorption spectroscopy. Phys Rev B 75(3):035105ADSCrossRefGoogle Scholar
  64. Tilocca A, Selloni A (2004) Vertical and lateral order in adsorbed water layers on anatase TiO2(101). Langmuir 20(19):8379–8384CrossRefGoogle Scholar
  65. Torrelles X, Cabailh G, Lindsay R, Bikondoa O, Roy J, Zegenhagen J, Teobaldi G, Hofer WA, Thornton G (2008) Geometric structure of TiO2(011)(2x1). Phys Rev Lett 101(18):185501ADSCrossRefGoogle Scholar
  66. Trail J, Monserrat B, López Ríos P, Maezono R, Needs RJ (2017) Quantum Monte Carlo study of the energetics of the rutile, anatase, brookite, and columbite TiO2 polymorphs. Phys Rev B 95(12):121108ADSCrossRefGoogle Scholar
  67. Treacy JPW, Hussain H, Torrelles X, Grinter DC, Cabailh G, Bikondoa O, Nicklin C, Selcuk S, Selloni A, Lindsay R, Thornton G (2017) Geometric structure of anatase TIO2(101). Phys Rev B 95(7):075416ADSCrossRefGoogle Scholar
  68. Vittadini A, Selloni A, Rotzinger FP, Gratzel M (1998) Structure and energetics of water adsorbed at TiO2 anatase (101) and (001) surfaces. Phys Rev Lett 81(14):2954–2957ADSCrossRefGoogle Scholar
  69. Wang Z, Wen B, Hao Q, Liu L-M, Zhou C, Mao X, Lang X, Yin W-J, Dai D, Selloni A, Yang X (2015) Localized excitation of Ti3+ ions in the photoabsorption and photocatalytic activity of reduced rutile TiO2. J Am Chem Soc 137(28):9146–9152CrossRefGoogle Scholar
  70. Yu J, Low J, Xiao W, Zhou P, Jaroniec M (2014) Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J Am Chem Soc 136(25):8839–8842CrossRefGoogle Scholar
  71. Zhang HZ, Banfield JF (1998) Thermodynamic analysis of phase stability of nanocrystalline titania. J Mater Chem 8(9):2073–2076CrossRefGoogle Scholar
  72. Zhang Y, Payne DT, Pang CL, Fielding HH, Thornton G (2015) Non-band-gap photoexcitation of hydroxylated TiO2. J Phys Chem Lett 6(17):3391–3395CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryPrinceton UniversityPrincetonUSA

Section editors and affiliations

  • Wanda Andreoni
    • 1
  • Sidney Yip
    • 2
  1. 1.Institute of PhysicsSwiss Federal Institute of Technology - LausanneLausanneSwitzerland
  2. 2.Department of Nuclear Science & EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations