Advertisement

Long Time-Scale Atomistic Modeling and Simulation of Deformation and Flow in Solids

  • Yue Fan
  • Penghui Cao
Living reference work entry

Abstract

Atom-based modeling and simulation are essential for the understanding and development of structural materials such as crystalline and amorphous metals. Classical molecular dynamics simulation enables the following of atomic-level structural evolution to elucidate the atomic processes underlying many macroscopic behaviors; however its predictive power is constrained by an intrinsic time-scale limitation. Here, we describe an alternative approach based on potential energy landscape modeling and transition state theory to probe the microscopic mechanisms controlling deformation and plastic flow observed in experiments. We survey several examples of slow deformation in crystals and metallic glasses to illustrate the computational algorithms used to perform the simulations and to reveal the underpinning elementary plastic processes that operate in crystalline and amorphous materials. We first show the evolution of dislocations and their interactions with obstacles over a wide range of strain rates and temperatures and discuss how they lead to macroscopic behaviors such as flow stress upturn and dislocation channeling. Then we turn to amorphous plasticity where discrete stress relaxation (avalanche) processes arise in serrated flow and creep in metallic glasses. A nonlinear interplay between nonaffine atomic displacement and local shear transformation distortion is revealed that provides a molecular explanation of the deformation-rate upturn.

Notes

Acknowledgements

The authors would like to take the opportunity to thank Sidney Yip for the instrumental discussions in outlining this chapter and for the edits. PC acknowledges the support from the US Department of Energy NEUP Grant DE-NE0008450. YF also acknowledges the support from the US Army Research Office Grant No. W911NF-18-1-0119.

References

  1. Antonaglia J, Wright WJ, Gu X, Byer RR, Hufnagel TC, LeBlanc M, Uhl JT, Dahmen KA (2014a) Bulk metallic glasses deform via slip avalanches. Phys Rev Lett 112(15):155501ADSCrossRefGoogle Scholar
  2. Antonaglia J, Xie X, Schwarz G, Wraith M, Qiao J, Zhang Y, Liaw PK, Uhl JT, Dahmen KA (2014b) Tuned critical avalanche scaling in bulk metallic glasses. Sci Rep 4:4382ADSCrossRefGoogle Scholar
  3. Argon AS (1979) Plastic deformation in metallic glasses. Acta Metall 27:47–58CrossRefGoogle Scholar
  4. Armstrong RW, Arnold W, Zerilli FJ (2009) Dislocation mechanics of copper and iron in high rate deformation tests. J Appl Phys 105(2):023511–023517ADSCrossRefGoogle Scholar
  5. Arsenlis A, Cai W, Tang M, Rhee M, Oppelstrup T, Hommes G, Pierce TG, Bulatov VV (2007) Enabling strain hardening simulations with dislocation dynamics. Model Simul Mater Sci Eng 15(6):553ADSCrossRefGoogle Scholar
  6. Bacon DJ, Osetsky YN, Rong Z (2006) Computer simulation of reactions between an edge dislocation and glissile self-interstitial clusters in iron. Philos Mag 86(25–26):3921–3936ADSCrossRefGoogle Scholar
  7. Bacon DJ, Osetsky YN, Rodney D (2009) Chapter 88 dislocation–obstacle interactions at the atomic level. In: Hirth JP, Kubin LP (eds) Dislocations in solids, vol 15. Elsevier, Burlington, pp 1–90CrossRefGoogle Scholar
  8. Bai Z, Fan Y (2018) Abnormal strain rate sensitivity driven by a unit dislocation-obstacle interaction in BCC Fe. Phys Rev Lett 120(12):125504ADSCrossRefGoogle Scholar
  9. Bai XM, Voter AF, Hoagland RG, Nastasi M, Uberuaga BP (2010) Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 327(5973):1631–1634ADSCrossRefGoogle Scholar
  10. Bakó B, Groma I, Györgyi G, Zimányi G (2006) Dislocation patterning: the role of climb in meso-scale simulations. Comput Mater Sci 38(1):22–28CrossRefGoogle Scholar
  11. Barkema GT, Mousseau N (1996) Event-based relaxation of continuous disordered systems. Phys Rev Lett 77(21):4358–4361ADSCrossRefGoogle Scholar
  12. Boyle JT, Spence J (2013) Stress analysis for creep. Elsevier, KentGoogle Scholar
  13. Brechet Y, Estrin Y (1995) On the influence of precipitation on the portevin-le chatelier effect. Acta Metall Mater 43(3):955–963CrossRefGoogle Scholar
  14. Bulatov VV, Hsiung LL, Tang M, Arsenlis A, Bartelt MC, Cai W, Florando JN, Hiratani M, Rhee M, Hommes G, Pierce TG, de la Rubia TD (2006) Dislocation multi-junctions and strain hardening. Nature 440(7088):1174–1178ADSCrossRefGoogle Scholar
  15. Campbell JD, Ferguson WG (1970) The temperature and strain-rate dependence of the shear strength of mild steel. Philos Mag 21(169):63–82ADSCrossRefGoogle Scholar
  16. Cances E, Legoll F, Marinica MC, Minoukadeh K, Willaime F (2009) Some improvements of the activation-relaxation technique method for finding transition pathways on potential energy surfaces. J Chem Phys 130(11):114711. https://doi.org/10.1063/1.3088532ADSCrossRefGoogle Scholar
  17. Cao AJ, Cheng YQ, Ma E (2009) Structural processes that initiate shear localization in metallic glass 57:5146–5155Google Scholar
  18. Cao P, Li M, Heugle RJ, Park HS, Lin X (2012) A self-learning metabasin escape algorithm and the metabasin correlation length of supercooled liquids. Phys Rev E 86:016710ADSCrossRefGoogle Scholar
  19. Cao P, Park HS, Lin X (2013) Strain-rate and temperature-driven transition in the shear transformation zone for two-dimensional amorphous solids. Phys Rev E 88(4):042404ADSCrossRefGoogle Scholar
  20. Cao P, Lin X, Park HS (2014a) Surface shear-transformation zones in amorphous solids. Phys Rev E 90(1):012311ADSCrossRefGoogle Scholar
  21. Cao P, Lin X, Park HS (2014b) Strain-rate and temperature dependence of yield stress of amorphous solids via self-learning metabasin escape algorithm. J Mech Phys Solids 68: 239–250ADSCrossRefGoogle Scholar
  22. Cao P, Short MP, Yip S (2017) Understanding the mechanisms of amorphous creep through molecular simulation. Proc Natl Acad Sci 114(52):13631–13636ADSCrossRefGoogle Scholar
  23. Cao P, Dahmen KA, Kushima A, Wright WJ, Park HS, Short MP, Yip S (2018) Nanomechanics of slip avalanches in amorphous plasticity. J Mech Phys Solids 114:158–171ADSCrossRefGoogle Scholar
  24. Chaari N, Clouet E, Rodney D (2014) First-principles study of secondary slip in zirconium. Phys Rev Lett 112(7):075504ADSCrossRefGoogle Scholar
  25. Dezerald L, Rodney D, Clouet E, Ventelon L, Willaime F (2016) Plastic anisotropy and dislocation trajectory in BCC metals. Nat Commun 7:11695ADSCrossRefGoogle Scholar
  26. Domain C, Monnet G (2005) Simulation of screw dislocation motion in iron by molecular dynamics simulations. Phys Rev Lett 95(21):215506ADSCrossRefGoogle Scholar
  27. Dunlop JW, Bréchet YJM, Legras L, Estrin Y (2007) Dislocation density-based modelling of plastic deformation of zircaloy-4. Mater Sci Eng A 443(1–2):77–86CrossRefGoogle Scholar
  28. Dutta A, Bhattacharya M, Gayathri N, Das GC, Barat P (2012) The mechanism of climb in dislocation–nanovoid interaction. Acta Mater 60(9):3789–3798CrossRefGoogle Scholar
  29. El-Awady JA, Bulent Biner S, Ghoniem NM (2008) A self-consistent boundary element, parametric dislocation dynamics formulation of plastic flow in finite volumes. J Mech Phys Solids 56(5):2019–2035ADSzbMATHCrossRefGoogle Scholar
  30. Falk ML, Langer JS (1998) Dynamics of viscoplastic deformation in amorphous solids. Phys Rev E 57(6):7192–7205ADSCrossRefGoogle Scholar
  31. Falk M, Maloney C (2010) Simulating the mechanical response of amorphous solids using atomistic methods. Eur Phys J B 75(4):405–413ADSCrossRefGoogle Scholar
  32. Fan Y (2013) Atomistic simulation of defect structure evolution and mechanical properties at long time scales, ThesisGoogle Scholar
  33. Fan Y, Osetsky YN, Yip S, Yildiz B (2012) Onset mechanism of strain-rate-induced flow stress upturn. Phys Rev Lett 109(13):135503.  https://doi.org/10.1103/PhysRevLett.109.135503ADSCrossRefGoogle Scholar
  34. Fan Y, Osetskiy YN, Yip S, Yildiz B (2013) Mapping strain rate dependence of dislocation-defect interactions by atomistic simulations. Proc Natl Acad Sci 110(44):17756–17761ADSCrossRefGoogle Scholar
  35. Fan Y, Yip S, Yildiz B (2014) Autonomous basin climbing method with sampling of multiple transition pathways: application to anisotropic diffusion of point defects in HCP Zr. J Phys Condens Matter 26(36):365402CrossRefGoogle Scholar
  36. Ferguson WG, Hauser FE, Dorn JE (1967) Dislocation damping in zinc single crystals. Br J Appl Phys 18(4):411ADSCrossRefGoogle Scholar
  37. Follansbee PS, Kocks UF (1988) A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. Acta Metall 36(1):81–93CrossRefGoogle Scholar
  38. Follansbee PS, Regazzoni G, Kocks UF (1984) Mechanical properties of materials at high rates of strain (9th ed.). The institute of Physics, Inst Phys Conf Ser, p 71Google Scholar
  39. Gordon PA, Neeraj T, Li Y, Li J (2010) Screw dislocation mobility in BCC metals: the role of the compact core on double-kink nucleation. Model Simul Mater Sci Eng 18(8):085008ADSCrossRefGoogle Scholar
  40. Gussev MN, Field KG, Busby JT (2015) Deformation localization and dislocation channel dynamics in neutron-irradiated austenitic stainless steels. J Nucl Mater 460:139–152ADSCrossRefGoogle Scholar
  41. Haixuan X, Yuri NO, Roger ES (2012) Self-evolving atomistic kinetic Monte Carlo: fundamentals and applications. J Phys Condens Matter 24(37):375402CrossRefGoogle Scholar
  42. Harris MB, Watts LS, Homer ER (2016) Competition between shear band nucleation and propagation across rate-dependent flow transitions in a model metallic glass. Acta Mater 111:273–282CrossRefGoogle Scholar
  43. Henkelman G, Jonsson H (1999) A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J Chem Phys 111(15):7010–7022. https://doi.org/10.1063/1.480097ADSCrossRefGoogle Scholar
  44. Hoge KG, Mukherjee AK (1977) The temperature and strain rate dependence of the flow stress of tantalum. J Mater Sci 12(8):1666–1672ADSCrossRefGoogle Scholar
  45. Huang Y, Shen J, Chiu Y, Chen J, Sun J (2009) Indentation creep of an Fe-based bulk metallic glass. Intermetallics 17(4):190–194CrossRefGoogle Scholar
  46. Hull D, Bacon D (2011) Introduction to dislocations (5th ed.). Butterworth-Heinemann, Oxford, ISBN 9780080966724CrossRefGoogle Scholar
  47. Iyer M, Radhakrishnan B, Gavini V (2015) Electronic-structure study of an edge dislocation in aluminum and the role of macroscopic deformations on its energetics. J Mech Phys Solids 76:260–275ADSMathSciNetCrossRefGoogle Scholar
  48. Jumonji K, Ueta S, Miyahara A, Kato M, Sato A (1996) Rapid work hardening caused by cube cross slip in Ni3Al single crystals. Philos Mag A 73(2):345–364ADSCrossRefGoogle Scholar
  49. Kabir M, Lau TT, Rodney D, Yip S, Van Vliet KJ (2010) Predicting dislocation climb and creep from explicit atomistic details. Phys Rev Lett 105(9):095501ADSCrossRefGoogle Scholar
  50. Kioussis NG, Ghoniem NM (2010) Modeling of dislocation interaction with solutes, nano-precipitates and interfaces: a multiscale challenge. J Comput Theor Nanosci 7(8):1317–1346CrossRefGoogle Scholar
  51. Klueh R (2005) Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors. Int Mater Rev 50(5):287–310CrossRefGoogle Scholar
  52. Kocks UF, Argon AS, Ashby MF (1975) Thermodynamics and Kinetics of Slip (9th ed.). Pergamon Press, New York. Prog Mater Sci, 19(9):p. 110Google Scholar
  53. Krisponeit J-O, Pitikaris S, Avila KE, Küchemann S, Krüger A, Samwer K (2014) Crossover from random three-dimensional avalanches to correlated nano shear bands in metallic glasses. Nat Commun 5:3616CrossRefGoogle Scholar
  54. Kumar A, Hauser FE, Dorn JE (1968) Viscous drag on dislocations in aluminum at high strain rates. Acta Metall 16(9):1189–1197CrossRefGoogle Scholar
  55. Kushima A, Lin X, Li J, Eapen J, Mauro JC, Qian X, Diep P, Yip S (2009a) Computing the viscosity of supercooled liquids. J Chem Phys 130(22):224504ADSCrossRefGoogle Scholar
  56. Kushima A, Lin X, Li J, Qian X, Eapen J, Mauro JC, Diep P, Yip S (2009b) Computing the viscosity of supercooled liquids. II. Silica and strong-fragile crossover behavior. J Chem Phys 131(16):164505–164509Google Scholar
  57. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci 99(20):12562–12566ADSCrossRefGoogle Scholar
  58. Lebensohn RA, Tomé CN, CastaÑeda PP (2007) Self-consistent modelling of the mechanical behaviour of viscoplastic polycrystals incorporating intragranular field fluctuations. Philos Mag 87(28):4287–4322ADSCrossRefGoogle Scholar
  59. Lebyodkin MA, Brechet Y, Estrin Y, Kubin LP (1995) Statistics of the catastrophic slip events in the portevin-le chatelier effect. Phys Rev Lett 74(23):4758–4761ADSCrossRefGoogle Scholar
  60. Lu J, Ravichandran G, Johnson WL (2003) Deformation behavior of the Zr 41.2 Ti 13.8 Cu 12.5 Ni 10 Be 22.5 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater 51(12):3429–3443CrossRefGoogle Scholar
  61. Maaß R, Klaumünzer D, Löffler J (2011) Propagation dynamics of individual shear bands during inhomogeneous flow in a Zr-based bulk metallic glass. Acta Mater 59(8):3205–3213CrossRefGoogle Scholar
  62. Matsukawa Y, Zinkle SJ (2004) Dynamic observation of the collapse process of a stacking fault tetrahedron by moving dislocations. J Nucl Mater 329–333, Part B(0):919–923Google Scholar
  63. Mendelev MI, Han S, Srolovitz DJ, Ackland GJ, Sun DY, Asta M (2003) Development of new interatomic potentials appropriate for crystalline and liquid iron. Philos Mag 83(35):3977–3994ADSCrossRefGoogle Scholar
  64. Needleman A, Van der Giessen E (2005) Elasticity: finite element modeling A2 – Buschow, K.H. Jürgen. Elsevier, Oxford, pp 1–6Google Scholar
  65. Nieh T, Wadsworth J (2006) Homogeneous deformation of bulk metallic glasses. Scr Mater 54(3):387–392CrossRefGoogle Scholar
  66. Norfleet DM, Dimiduk DM, Polasik SJ, Uchic MD, Mills MJ (2008) Dislocation structures and their relationship to strength in deformed nickel microcrystals. Acta Mater 56(13):2988–3001CrossRefGoogle Scholar
  67. Onimus F, Béchade J-L (2009) A polycrystalline modeling of the mechanical behavior of neutron irradiated zirconium alloys. J Nucl Mater 384(2):163–174ADSCrossRefGoogle Scholar
  68. Onimus F, Monnet I, Béchade JL, Prioul C, Pilvin P (2004) A statistical TEM investigation of dislocation channeling mechanism in neutron irradiated zirconium alloys. J Nucl Mater 328(2–3):165–179ADSCrossRefGoogle Scholar
  69. Osetsky YN, Matsukawa Y, Stoller RE, Zinkle SJ (2006a) On the features of dislocation–obstacle interaction in thin films: large-scale atomistic simulation. Philos Mag Lett 86(8):511–519ADSCrossRefGoogle Scholar
  70. Osetsky YN, Rodney D, Bacon DJ (2006b) Atomic-scale study of dislocation–stacking fault tetrahedron interactions. Part I: mechanisms. Philos Mag 86(16):2295–2313ADSCrossRefGoogle Scholar
  71. Preston DL, Tonks DL, Wallace DC (2003) Model of plastic deformation for extreme loading conditions. J Appl Phys 93(1):211–220ADSCrossRefGoogle Scholar
  72. Proville L, Rodney D, Marinica M-C (2012) Quantum effect on thermally activated glide of dislocations. Nat Mater 11(10):845–849ADSCrossRefGoogle Scholar
  73. Regazzoni G, Kocks UF, Follansbee PS (1987) Dislocation kinetics at high strain rates. Acta Metall 35(12):2865–2875CrossRefGoogle Scholar
  74. Remington BA, Allen P, Bringa EM, Hawreliak J, Ho D, Lorenz KT, Lorenzana H, McNaney JM, Meyers MA, Pollaine SW, Rosolankova K, Sadik B, Schneider MS, Swift D, Wark J, Yaakobi B (2006) Material dynamics under extreme conditions of pressure and strain rate. Mater Sci Technol 22(4):474–488CrossRefGoogle Scholar
  75. Rodney D, Proville L (2009) Stress-dependent peierls potential: influence on kink-pair activation. Phys Rev B 79(9):094108ADSCrossRefGoogle Scholar
  76. Schuh C, Nieh T, Kawamura Y (2002) Rate dependence of serrated flow during nanoindentation of a bulk metallic glass. J Mater Res 17(7):1651–1654ADSCrossRefGoogle Scholar
  77. Schuh CA, Hufnagel TC, Ramamurty U (2007) Mechanical behavior of amorphous alloys. Acta Mater 55(12):4067–4109CrossRefGoogle Scholar
  78. Schwarz KW (1999) Simulation of dislocations on the mesoscopic scale. I. Methods and examples. J Appl Phys 85(1):108–119ADSCrossRefGoogle Scholar
  79. Sentjabrskaja T, Chaudhuri P, Hermes M, Poon W, Horbach J, Egelhaaf S, Laurati M (2015) Creep and flow of glasses: strain response linked to the spatial distribution of dynamical heterogeneities. Sci Rep 5:11884ADSCrossRefGoogle Scholar
  80. Shan Z, Li J, Cheng Y, Minor A, Asif SS, Warren O, Ma E (2008) Plastic flow and failure resistance of metallic glass: insight from in situ compression of nanopillars. Phys Rev B 77(15):155419ADSCrossRefGoogle Scholar
  81. Shin CS, Fivel MC, Verdier M, Robertson C (2005) Dislocation dynamics simulations of fatigue of precipitation-hardened materials. Mater Sci Eng A 400–401:166–169CrossRefGoogle Scholar
  82. Siebenbürger M, Ballauff M, Voigtmann T (2012) Creep in colloidal glasses. Phys Rev Lett 108(25):255701ADSCrossRefGoogle Scholar
  83. Sorensen MR, Voter AF (2000) Temperature-accelerated dynamics for simulation of infrequent events. J Chem Phys 112(21):9599–9606ADSCrossRefGoogle Scholar
  84. Spaepen F (1977) A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall 25(4):407–415CrossRefGoogle Scholar
  85. Steinberg DJ, Lund CM (1989) A constitutive model for strain rates from 10[sup - 4] to 10[sup 6] s[sup - 1]. J Appl Phys 65(4):1528–1533ADSCrossRefGoogle Scholar
  86. Suo Z (2000) Evolving material structures of small feature sizes. Int J Solids Struct 37(1):367–378zbMATHCrossRefGoogle Scholar
  87. Tao W, Cao P, Park HS (2018a) Atomistic simulation of the rate-dependent ductile-to-brittle failure transition in bicrystalline metal nanowires. Nano lett 18(2):1296–1304ADSCrossRefGoogle Scholar
  88. Tao W, Cao P, Park HS (2018b) Superplastic creep of metal nanowires from rate-dependent plasticity transition. ACS nano 12(5):4984–4992CrossRefGoogle Scholar
  89. Terentyev D, Grammatikopoulos P, Bacon DJ, Osetsky YN (2008) Simulation of the interaction between an edge dislocation and a< 1 0 0> interstitial dislocation loop in α-iron, Acta Materialia 56(18):5034–5046CrossRefGoogle Scholar
  90. Terentyev D, Osetsky YN, Bacon DJ (2010a) Competing processes in reactions between an edge dislocation and dislocation loops in a body-centred cubic metal. Scr Mater 62(9):697–700CrossRefGoogle Scholar
  91. Terentyev D, Bonny G, Domain C, Pasianot RC (2010b) Interaction of a 1/2< 111> screw dislocation with Cr precipitates in BCC Fe studied by molecular dynamics. Phys Rev B 81(21):214106ADSCrossRefGoogle Scholar
  92. Turner PA, Tomé CN, Christodoulou N, Woo CH (1999) A self-consistent model for polycrystals undergoing simultaneous irradiation and thermal creep. Philos Mag A 79(10):2505–2524ADSCrossRefGoogle Scholar
  93. Van der Giessen E, Deshpande VS, Cleveringa HHM, Needleman A (2001) Discrete dislocation plasticity and crack tip fields in single crystals. J Mech Phys Solids 49(9):2133–2153ADSzbMATHCrossRefGoogle Scholar
  94. Voter AF (1997) A method for accelerating the molecular dynamics simulation of infrequent events. J Chem Phys 106(11):4665–4677ADSCrossRefGoogle Scholar
  95. Wang H, Xu DS, Rodney D, Veyssire P, Yang R (2013) Atomistic investigation of the annihilation of non-screw dislocation dipoles in al, cu, ni and γ-tial. Model Simul Mater Sci Eng 21(2):025002ADSCrossRefGoogle Scholar
  96. Wei Y, Zhigang S (1996) Global view of microstructural evolution: energetics, kinetics and dynamical systems. Acta Mech Sinica 12(2):144–157zbMATHCrossRefGoogle Scholar
  97. Wright WJ, Byer RR, Gu X (2013) High–speed imaging of a bulk metallic glass during uniaxial compression. Appl Phys Lett 102(24):241920ADSCrossRefGoogle Scholar
  98. Wright WJ, Liu Y, Gu X, Van Ness KD, Robare SL, Liu X, Antonaglia J, LeBlanc M, Uhl JT, Hufnagel TC et al (2016) Experimental evidence for both progressive and simultaneous shear during quasistatic compression of a bulk metallic glass. J Appl Phys 119(8):084908ADSCrossRefGoogle Scholar
  99. Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2002) Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nat Mater 1(1):45–49ADSCrossRefGoogle Scholar
  100. Yan X, Cao P, Tao W, Sharma P, Park HS (2016) Atomistic modeling at experimental strain rates and timescales. J Phys D Appl Phys 49(49):493002CrossRefGoogle Scholar
  101. Yip S (2003) Synergistic science. Nat Mater 2(1):3–5ADSCrossRefGoogle Scholar
  102. Yip S (2016) Understanding the viscosity of supercooled liquids and the glass transition through molecular simulations. Mol Simul 42(16):1330–1342CrossRefGoogle Scholar
  103. Yip S, Short MP (2013) Multiscale materials modelling at the mesoscale. Nat Mater 12(9):774ADSCrossRefGoogle Scholar
  104. Zbib HM, de la Rubia TD (2002) A multiscale model of plasticity. Int J Plast 18(9):1133–1163zbMATHCrossRefGoogle Scholar
  105. Zerilli FJ, Armstrong RW (1987) Dislocation-mechanics-based constitutive relations for material dynamics calculations. J Appl Phys 61(5):1816–1825ADSCrossRefGoogle Scholar
  106. Zhong Y, Zhu T (2008) Simulating nanoindentation and predicting dislocation nucleation using interatomic potential finite element method. Comput Methods Appl Mech Eng 197(41–42): 3174–3181ADSzbMATHCrossRefGoogle Scholar
  107. Zhu T, Li J, Samanta A, Leach A, Gall K (2008) Temperature and strain-rate dependence of surface dislocation nucleation. Phys Rev Lett 100(2):025502ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Department of Nuclear Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Section editors and affiliations

  • Wanda Andreoni
    • 1
  • Sidney Yip
    • 2
  1. 1.Institute of PhysicsSwiss Federal Institute of Technology - LausanneLausanneSwitzerland
  2. 2.Department of Nuclear Science & EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations