Advertisement

DFT-Parameterized Object Kinetic Monte Carlo Simulations of Radiation Damage

  • Enrique MartínezEmail author
  • María José Caturla
  • Jaime Marian
Living reference work entry

Abstract

Materials for nuclear applications are subjected to extremely stringent conditions. The incoming energetic particles create different types of defects in the material that modify the system microstructure. These defects diffuse and interact with each other and pre-existing features in the material, leading to alterations of the material properties, and even to failure. To deploy reliable materials for such extreme applications, a deep understanding of the microstructural changes and their relation to material properties is critically required. Synergistic experimental and theoretical studies are paramount to gain such crucial knowledge. In this work we review one theoretical venue developed over the years to first understand and then predict the material response upon irradiation: an object kinetic Monte Carlo (OKMC) approach parameterized to first-principles data. We review the theory behind the kinetic Monte Carlo (KMC) algorithm and the specifics of the OKMC as a mesoscale methodology. We describe density functional theory (DFT) as an ab initio approach that can accurately calculate parameters required by the OKMC as input data to be able to analyze the microstructure evolution of the system. Finally, we show two applications lengthily studied in the literature: the microstructural evolution of both ferritic steels and tungsten under diverse irradiation conditions.

Notes

Acknowledgements

The authors thank Malvin H. Kalos, Alfredo Caro, Frédéric Soisson, Vasily Bulatov, Blas Uberuaga, Arthur F. Voter, and Danny Perez for many useful discussions. E.M. wants to thank Gustavo Esteban for useful comments on the manuscript. E.M. acknowledges the support of the U.S. DOE, Office of Science, Advanced Scientific Computing Research and Fusion Energy Sciences through the Scientific Discovery through Advanced Computing (SciDAC) project on Plasma-Surface Interactions for this work. This research used resources provided by the LANL Institutional Computing Program. LANL, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US DOE under contract DE-AC52-06NA25396.

References

  1. Abe H, Kuramoto E (1999) Interaction of solutes with irradiation-induced defects of electron-irradiated dilute iron alloys. J Nucl Mater 271–272:209–213ADSCrossRefGoogle Scholar
  2. Arsenlis A, Cai W, Tang M, Rhee M, Oppelstrup T, Hommes G, Pierce TG, Bulatov VV (2007) Enabling strain hardening simulations with dislocation dynamics. Model Simul Mater Sci Eng 15:553–595ADSCrossRefGoogle Scholar
  3. Athènes M, Bulatov VV (2014) Path factorization approach to stochastic simulations. Phys Rev Lett 113(23):230601ADSCrossRefGoogle Scholar
  4. Baldwin M, Doerner R (2008) Helium induced nanoscopic morphology on tungsten under fusion relevant plasma conditions. Nucl Fusion 48(3):035001, 00193ADSCrossRefGoogle Scholar
  5. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys Rev A 38(6):3098–3100ADSCrossRefGoogle Scholar
  6. Becquart C, Domain C (2007) Ab initio calculations about intrinsic point defects and He in W. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 255(1):23–26ADSCrossRefGoogle Scholar
  7. Becquart C, Domain C (2009) A density functional theory assessment of the clustering behaviour of He and H in tungsten. J Nucl Mater 386–388:109–111ADSCrossRefGoogle Scholar
  8. Becquart CS, Domain C (2010) Modeling microstructure and irradiation effects. Metall Mater Trans A 42A:852ADSGoogle Scholar
  9. Becquart C, Domain C, Sarkar U, DeBacker A, Hou M (2010) Microstructural evolution of irradiated tungsten: ab initio parameterisation of an OKMC model. J Nucl Mater 403(1–3): 75–88ADSCrossRefGoogle Scholar
  10. Becquart CS, Barthe MF, De Backer A (2011) Modelling radiation damage and He production in tungsten. Phys Scripta T145:014048ADSCrossRefGoogle Scholar
  11. Bertin N, Upadhyay MV, Pradalier C, Capolungo L (2015) A FFT-based formulation for efficient mechanical fields computation in isotropic and anisotropic periodic discrete dislocation dynamics. Model Simul Mater Sci Eng 23(6):065009ADSCrossRefGoogle Scholar
  12. Bortz AB, Kalos MH, Lebowitz JL (1975) A new algorithm for Monte Carlo simulation of Ising spin systems. J Comput Phys 17:10–18ADSCrossRefGoogle Scholar
  13. Castin N, Bakaev A, Bonny G, Sand A, Malerba L, Terentyev D (2017) On the onset of void swelling in pure tungsten under neutron irradiation: an object kinetic Monte Carlo approach. J Nucl Mater 493:280–293ADSCrossRefGoogle Scholar
  14. Castin N, Bonny G, Bakaev A, Ortiz C, Sand A, Terentyev D (2018) Object kinetic Monte Carlo model for neutron and ion irradiation in tungsten: impact of transmutation and carbon impurities. J Nucl Mater 500:15–25ADSCrossRefGoogle Scholar
  15. Caturla MJ, Soneda N, Alonso E, Wirth BD, de la Rubia TD, Perlado JM (2000) Comparative study of radiation damage accumulation in Cu and Fe. J Nucl Mater 276:13ADSCrossRefGoogle Scholar
  16. Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45(7):4CrossRefGoogle Scholar
  17. Chatterjee A, Vlachos DG (2007) An overview of spatial microscopic and accelerated kinetic Monte Carlo methods. J Comput-Aided Mater Des 14(2):253–308ADSCrossRefGoogle Scholar
  18. Correa AA, Kohanoff J, Artacho E, Sánchez-Portal D, Caro A (2012) Nonadiabatic forces in ion-solid interactions: the initial stages of radiation damage. Phys Rev Lett 108(21):213201ADSCrossRefGoogle Scholar
  19. Dai Y, Victoria M (1997) Defect cluster structure and tensile properties of copper single crystals irradiated with 600 MeV protons. MRS Proc 439:319–324CrossRefGoogle Scholar
  20. De Backer A, Sand A, Ortiz CJ, Domain C, Olsson P, Berthod E, Becquart CS (2016) Primary damage in tungsten using the binary collision approximation, molecular dynamic simulations and the density functional theory. Phys Scripta T167:014018ADSCrossRefGoogle Scholar
  21. Domain C, Becquart CS, Malerba L (2004) Simulation of radiation damage in Fe alloys: an object kinetic Monte Carlo approach. J Nucl Mater 335:121ADSCrossRefGoogle Scholar
  22. Draeger EW, Andrade X, Gunnels JA, Bhatele A, Schleife A, Correa AA (2017) Massively parallel first-principles simulation of electron dynamics in materials. J Parallel Distrib Comput 106: 205–214CrossRefGoogle Scholar
  23. Elcock EW (1959) Vacancy diffusion in ordered alloys. Proc Phys Soc 73:250ADSCrossRefGoogle Scholar
  24. Elcock EW, McCombie CW (1957) Vacancy diffusion in binary ordered alloys. Phys Rev Lett Editor 109:605Google Scholar
  25. El-Mellouhi F, Mousseau N, Lewis LJ (2008) Kinetic activation-relaxation technique: an off-lattice self-learning kinetic Monte Carlo algorithm. Phys Rev B 78:153202ADSCrossRefGoogle Scholar
  26. Eyring H, Walter J, Kimball GE (1944) Quantum chemistry, 1st edn. Wiley, New YorkGoogle Scholar
  27. Feibelman PJ (1990) Diffusion path for an Al adatom on Al(001). Phys Rev Lett 65(6):729–732ADSCrossRefGoogle Scholar
  28. Fernandez N, Ferro Y, Kato D (2015) Hydrogen diffusion and vacancies formation in tungsten: density functional theory calculations and statistical models. Acta Mater 94:307–318CrossRefGoogle Scholar
  29. Fichthorn KA, Lin Y (2013) A local superbasin kinetic Monte Carlo method. J Chem Phys 138(16):164104ADSCrossRefGoogle Scholar
  30. Fu CC, Dalla Torre J, Willaime F, Bocquet J-L, Barbu A (2005) Multiscale modelling of defect kinetics in irradiated iron. Nature Mater 4:68ADSCrossRefGoogle Scholar
  31. Gámez L, Gámez B, Caturla MJ, Terentyev D, Perlado JM (2011) Object Kinetic Monte Carlo calculations of irradiated Fe-Cr dilute alloys: the effect of the interaction radius between substitutional Cr and self-interstitial Fe. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 269(14):1684–1688ADSCrossRefGoogle Scholar
  32. Gharaee L, Marian J, Erhart P (2016) The role of interstitial binding in radiation induced segregation in W-Re alloys. J Appl Phys 120(2):025901ADSCrossRefGoogle Scholar
  33. Gibson MA, Bruck J (2000) Efficient exact stochastic simulation of chemical systems with many species and many channels. J Phys Chem A 104(9):1876–1889CrossRefGoogle Scholar
  34. Gillespie D (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys 22:403–434ADSMathSciNetCrossRefGoogle Scholar
  35. Gillespie D (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361CrossRefGoogle Scholar
  36. Gilmer GH, Bennema P (1972) Simulation of crystal growth with surface diffusion. J Appl Phys 43(4):1347–1360ADSCrossRefGoogle Scholar
  37. Glensk A, Grabowski B, Hickel T, Neugebauer J (2015) Understanding anharmonicity in FCC materials: from its origin to ab initio strategies beyond the quasiharmonic approximation. Phys Rev Lett 114(19):195901ADSCrossRefGoogle Scholar
  38. Grabowski B, Hickel T, Neugebauer J (2007) Ab initio study of the thermodynamic properties of nonmagnetic elementary FCC metals: exchange-correlation-related error bars and chemical trends. Phys Rev B 76(2)Google Scholar
  39. Grabowski B, Hickel T, Neugebauer J (2011) Formation energies of point defects at finite temperatures. Phys Status Solidi B 248(6):1295–1308, 00049.  https://doi.org/10.1002/pssb.201046302ADSCrossRefGoogle Scholar
  40. Hanusse P, Blanche A (1981) A Monte Carlo method for large reaction diffusion systems. J Chem Phys 74:6148ADSCrossRefGoogle Scholar
  41. Heinisch HL (1990) Computer simulation of high energy displacement cascades. Radiat Eff Defects Solids 113:53CrossRefGoogle Scholar
  42. Henkelman G, Jonsson H (1999) A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J Chem Phys 111(15):7010–7022, 01295ADSCrossRefGoogle Scholar
  43. Henkelman G, Jonsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113(22) 9978–9985ADSCrossRefGoogle Scholar
  44. Henkelman G, Jonsson H (2001) Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table. J Chem Phys 115(21):9657ADSCrossRefGoogle Scholar
  45. Henkelman G, Uberuaga BP, Jonsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904ADSCrossRefGoogle Scholar
  46. Henriksson KOE, Nordlund K, Krasheninnikov A, Keinonen J (2005) Difference in formation of hydrogen and helium clusters in tungsten. Appl Phys Lett 87(16):163113ADSCrossRefGoogle Scholar
  47. Hohenberg P, Kohn W (1964) Inhomogenous electron gas. Phys Rev B 136:864–B871ADSCrossRefGoogle Scholar
  48. Huang G-Y, Juslin N, Wirth BD (2016) First-principles study of vacancy, interstitial, noble gas atom interstitial and vacancy clusters in BCC-W. Comput Mater Sci 123:121–130CrossRefGoogle Scholar
  49. Huang CH, Gharaee L, Zhao Y, Erhart P, Marian J (2017) Mechanism of nucleation and incipient growth of Re clusters in irradiated W-Re alloys from kinetic Monte Carlo simulations. Phys Rev B 96:094108ADSCrossRefGoogle Scholar
  50. Huang CH, Gilbert MR, Marian J (2018) Simulating irradiation hardening in tungsten under fast neutron irradiation including Re production by transmutation. J Nucl Mat 499:204–215ADSCrossRefGoogle Scholar
  51. Hudson TS, Dudarev SL, Caturla MJ, Sutton AP (2005) Effects of elastic interactions on post-cascade radiation damage evolution in kinetic monte carlo simulations. Philos Mag 85:661–675ADSCrossRefGoogle Scholar
  52. Hunter A, Saied F, Le C, Koslowski M (2011) Large-scale 3D phase field dislocation dynamics simulations on high-performance architectures. Int J High Perform Comput Appl 25(2): 223–235, 00026CrossRefGoogle Scholar
  53. Jiménez F, Ortiz C (2016) A GPU-based parallel object kinetic monte carlo algorithm for the evolution of defects in irradiated materials. Comput Mater Sci 113:178–186CrossRefGoogle Scholar
  54. Kampen NGV (1992) Stochastic processes in physics and chemistry, 2nd edn. Elsevier, AmsterdamzbMATHGoogle Scholar
  55. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):1133ADSMathSciNetCrossRefGoogle Scholar
  56. Körmann F, Dick A, Grabowski B, Hallstedt B, Hickel T, Neugebauer J (2008) Free energy of bcc iron: integrated ab initio derivation of vibrational, electronic, and magnetic contributions. Phys Rev B 78(3):033102ADSCrossRefGoogle Scholar
  57. Langreth DC, Mehl MJ (1983) Beyond the local-density approximation in calculations of ground-state electronic properties. Phys Rev B 28(4):1809–1834ADSCrossRefGoogle Scholar
  58. Lasa A, Tahtinen SK, Nordlund K (2014) Loop punching and bubble rupture causing surface roughening A model for W fuzz growth. EPL (Europhys Lett) 105(2):25002, 00010ADSCrossRefGoogle Scholar
  59. Lu G-H, Zhou H-B, Becquart CS (2014) A review of modelling and simulation of hydrogen behaviour in tungsten at different scales. Nucl Fusion 54(8):086001ADSCrossRefGoogle Scholar
  60. Malerba L, Caro A, Wallenius J (2008) Multiscale modelling of radiation damage and phase transformations: The challenge of FeCr alloys. J Nucl Mater 382:112–125ADSCrossRefGoogle Scholar
  61. Martin-Bragado I, Tian S, Johnson M, Castrillo P, Pinacho R, Rubio J, Jaraiz M (2006) Modeling charged defects, dopant diffusion and activation mechanisms for TCAD simulations using kinetic Monte Carlo. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 253(1–2):63–67ADSCrossRefGoogle Scholar
  62. Martin-Bragado I, Rivera A, Valles G, Gomez-Selles JL, Caturla MJ (2013) MMonCa: an object kinetic Monte Carlo simulator for damage irradiation evolution and defect diffusion. Comput Phys Commun 184(12):2703–2710, 00037ADSCrossRefGoogle Scholar
  63. Martinez E, Uberuaga BP (2015) Mobility and coalescence of stacking fault tetrahedra in cu. Sci Rep 5:9084ADSCrossRefGoogle Scholar
  64. Martínez E, Marian J, Kalos M, Perlado J (2008) Synchronous parallel kinetic Monte Carlo for continuum diffusion-reaction systems. J Comput Phys 227(8):3804–3823, 00032ADSMathSciNetzbMATHCrossRefGoogle Scholar
  65. Martínez E, Monasterio PR, Marian J (2011) Billion-atom synchronous parallel kinetic monte carlo simulations of critical 3D Ising systems. J Comp Phys 230:1359–1369ADSzbMATHCrossRefGoogle Scholar
  66. Mason DR, Yi X, Kirk MA, Dudarev SL (2014) Elastic trapping of dislocation loops in cascades in ion-irradiated tungsten foils. J Phys Condens Matter 26(37):375701CrossRefGoogle Scholar
  67. Maury F, Lucasson P, Lucasson A, Faudot F, Bigot J (1987) A study of irradiated FeCr alloys: deviations from Matthiessen’s rule and interstitial migration. J Phys F Metal Phys 17(5): 1143–1165ADSCrossRefGoogle Scholar
  68. Nguyen-Manh D, Dudarev S (2006) Multi-scale modelling of defect behavior in BCC transition metals and iron alloys for future fusion power plants. Mater Sci Eng A 423(1–2):74–78CrossRefGoogle Scholar
  69. Niklasson A, Tymczak C, Challacombe M (2006) Time-reversible born-oppenheimer molecular dynamics. Phys Rev Lett 97(12):123001ADSCrossRefGoogle Scholar
  70. Novotny MA (1995) Monte Carlo algorithms with absorbing Markov chains: fast local algorithms for slow dynamics. Phys Rev Lett 74(1):1ADSCrossRefGoogle Scholar
  71. Oda T, Zhu D, Watanabe Y (2015) Kinetic Monte Carlo simulation on influence of vacancy on hydrogen diffusivity in tungsten. J Nucl Mater 467:439–447ADSCrossRefGoogle Scholar
  72. Ohsawa K, Goto J, Yamakami M, Yamaguchi M, Yagi M (2010) Trapping of multiple hydrogen atoms in a tungsten monovacancy from first principles. Phys Rev B 82(18):184117ADSCrossRefGoogle Scholar
  73. Olsson P (2009) Ab initio study of interstitial migration in Fe-Cr alloys. J Nucl Mater 386–388: 86–89ADSCrossRefGoogle Scholar
  74. Olsson P, Domain C, Wallenius J (2007) Ab initio study of Cr interactions with point defects in bcc Fe. Phys Rev B 75:014110ADSCrossRefGoogle Scholar
  75. Olsson P, Becquart CS, Domain C (2016) Ab initio threshold displacement energies in iron. Mater Res Lett 4(4):219–225CrossRefGoogle Scholar
  76. Opplestrup T, Bulatov V, Gilmer G, Kalos M, Sadigh B (2006) First-passage Monte Carlo algorithm: diffusion without all the Hops. Phys Rev Lett 97(23):230602ADSCrossRefGoogle Scholar
  77. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46(11):6671–6687ADSCrossRefGoogle Scholar
  78. Perini A, Jacucci G, Martin G (1984) Cluster free energy in the simple-cubic Ising model. Phys Rev B 29(5):2689–2697ADSCrossRefGoogle Scholar
  79. Schulze TP (2002) Kinetic Monte Carlo simulations with minimal searching. Phys Rev E 65(3):036704ADSCrossRefGoogle Scholar
  80. Shim Y, Amar J (2005a) Rigorous synchronous relaxation algorithm for parallel kinetic Monte Carlo simulations of thin film growth. Phys Rev B 71(11):115436ADSCrossRefGoogle Scholar
  81. Shim Y, Amar JG (2005b) Semirigorous synchronous sublattice algorithm for parallel kinetic monte carlo simulations of thin film growth. Phys Rev B 71:125432ADSCrossRefGoogle Scholar
  82. Sholl DS, Steckel JA (2009) Density functional theory a practical introduction. Wiley, HobokenCrossRefGoogle Scholar
  83. Slepoy A, Thompson AP, Plimpton SJ (2008) A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks. J Chem Phys 128(20):205101ADSCrossRefGoogle Scholar
  84. Söderlind P, Yang LH, Moriarty JA, Wills JM (2000) First-principles formation energies of monovacancies in BCC transition metals. Phys Rev B 61(4):2579–2586ADSCrossRefGoogle Scholar
  85. Sørensen MR, Voter AF (2000) Temperature-accelerated dynamics for simulation of infrequent events. J Chem Phys 112(21):9599–9606ADSCrossRefGoogle Scholar
  86. Subramanian G, Perez D, Uberuaga BP, Tomé CN, Voter AF (2013) Method to account for arbitrary strains in kinetic Monte Carlo simulations. Phys Rev B 87(14):144107ADSCrossRefGoogle Scholar
  87. Suzudo T, Yamaguchi M, Hasegawa A (2014) Stability and mobility of rhenium and osmium in tungsten: first principles study. Model Simul Mater Sci Eng 22(7):075006ADSCrossRefGoogle Scholar
  88. Takaki S, Fuss J (1983) Dedek HKU, Schultz H. The resistivity recovery of high purity and carbon doped iron following low electron irradiation. Rad Eff 79:87–122CrossRefGoogle Scholar
  89. Trushin O, Karim A, Kara A, Rahman TS (2005) Self-learning kinetic Monte Carlo method: application to Cu(111). Phys Rev B 72:115401ADSCrossRefGoogle Scholar
  90. Uberuaga BP, Hoagland RG, Voter AF, Valone SM (2007) Direct Transformation of Vacancy Voids to Stacking Fault Tetrahedra. Phys Rev Lett 99:135501ADSCrossRefGoogle Scholar
  91. Uberuaga BP, Martínez E, Perez D, Voter AF (2018) Discovering mechanisms relevant for radiation damage evolution. Comput Mater Sci 147:282–292CrossRefGoogle Scholar
  92. Valles G, González C, Martin-Bragado I, Iglesias R, Perlado J, Rivera A (2015a) The influence of high grain boundary density on helium retention in tungsten. J Nucl Mater 457:80–87ADSCrossRefGoogle Scholar
  93. Valles G, Cazalilla AL, Gonzalez C, Martin-Bragado I, Prada A, Iglesias R, Perlado J, Rivera A (2015b) A multiscale approach to defect evolution in tungsten under helium irradiation. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 352:100–103ADSCrossRefGoogle Scholar
  94. Valles G, Panizo-Laiz M, González C, Martin-Bragado I, González-Arrabal R, Gordillo N, Iglesias R, Guerrero C, Perlado J, Rivera A (2017a) Influence of grain boundaries on the radiation-induced defects and hydrogen in nanostructured and coarse-grained tungsten. Acta Mater 122:277–286CrossRefGoogle Scholar
  95. Valles G, Martin-Bragado I, Nordlund K, Lasa A, Björkas C, Safi E, Perlado J, Rivera A (2017b) Temperature dependence of underdense nanostructure formation in tungsten under helium irradiation. J Nucl Mater 490:108–114ADSCrossRefGoogle Scholar
  96. Vattré A, Jourdan T, Ding H, Marinica M-C, Demkowicz MJ (2016) Non-random walk diffusion enhances the sink strength of semicoherent interfaces. Nat Commun 7:10424ADSCrossRefGoogle Scholar
  97. Vineyard GH (1957) Frequency factors and isotope effects in solid state rate processes. J Phys Chem Solids 3(1–2):121–127ADSCrossRefGoogle Scholar
  98. Voter AF (1997) Hyperdynamics: accelerated molecular dynamics of infrequent events. Phys Rev Lett 78(20):3908ADSCrossRefGoogle Scholar
  99. Voter AF (1998) Parallel replica method for dynamics of infrequent events. Phys Rev B 57(22):R13985ADSCrossRefGoogle Scholar
  100. Voter AF (2007) Introduction to the kinetic Monte Carlo method, Ch. 1. Springer, DordrechtGoogle Scholar
  101. Voter AF, Doll JD (1984) Transition state theory description of surface self-diffusion: comparison with classical trajectory results. J Chem Phys 80:5832ADSCrossRefGoogle Scholar
  102. Voter AF, Doll JD (1985) Dynamical corrections to transition state theory for multistate systems: surface self-diffusion in the rare-event regime. J Chem Phys 82:80–92ADSCrossRefGoogle Scholar
  103. Was GS (2007) Fundamentals of radiation materials science. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  104. Wen M, Takahashi A, Ghoniem NM (2009) Kinetics of self-interstitial cluster aggregation near dislocations and their influence on hardening. J Nucl Mater 392:386–395ADSCrossRefGoogle Scholar
  105. Witt WC, del Rio BG, Dieterich JM, Carter EA (2018) Orbital-free density functional theory for materials research. J Mater Res 33:1–19CrossRefGoogle Scholar
  106. Xu L, Henkelman G (2008) Adaptive kinetic monte carlo for first-principles accelerated dynamics. J Chem Phys 129:114104ADSCrossRefGoogle Scholar
  107. Xu D, Wirth BD, Li M, Kirk MA (2012) Defect microstructural evolution in ion irradiated metallic nanofoils: kinetic Monte Carlo simulation versus cluster dynamics modeling and in situ transmission electron microscopy experiments. Appl Phys Lett 101(10):101905, 00009ADSCrossRefGoogle Scholar
  108. Young WM, Elcock EW (1966) Monte carlo studies of vacancy migration in binary ordered alloys: I. Proc Phys Soc 89:735ADSCrossRefGoogle Scholar
  109. Zhang J, Zhang H, Ye H, Zheng Y (2016) Free-end adaptive nudged elastic band method for locating transition states in minimum energy path calculation. J Chem Phys 145(9):094104ADSCrossRefGoogle Scholar
  110. Zhu T, Li J, Samanta A, Kim HG, Suresh S (2007) Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc Natl Acad Sci 104(9):3031–3036ADSCrossRefGoogle Scholar
  111. Zinkle SJ, Farrell K (1989) Void swelling and defect cluster formation in reactor-irradiated copper. J Nucl Mater 168:262–267ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Enrique Martínez
    • 1
    Email author
  • María José Caturla
    • 2
  • Jaime Marian
    • 3
    • 4
  1. 1.Material Science and Technology Division, MST-8Los Alamos National LaboratoryLos AlamosUSA
  2. 2.Facultad de Ciencias, Fase II, Department of Física AplicadaUniversidad de AlicanteAlicanteSpain
  3. 3.Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesUSA
  4. 4.Department of Mechanical and Aerospace EngineeringUniversity of CaliforniaLos AngelesUSA

Section editors and affiliations

  • Michael P. Short
    • 1
  • Kai Nordlund
    • 2
  1. 1.Department of Nuclear Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Computational Materials PhysicsUniversity of HelsinkiHelsinkiFinland

Personalised recommendations