Advertisement

Mechanics of Soft Gels: Linear and Nonlinear Response

  • Mehdi BouzidEmail author
  • Emanuela Del Gado
Living reference work entry

Latest version View entry history

Abstract

Soft gels are materials at the core of material technological innovation, and as such, they are constantly evolving to meet different requirements in terms of performance, reliability, durability, and environmental impact. Despite many progresses made in the case of polymer gels, a consistent theoretical framework for the relationship between the microscopic structure and the mechanical properties of a wide range of materials ranging from colloidal gels to protein and biopolymer gels is still lacking. A multitude of different phenomena are observed – aging, strain stiffening, creep, banding, and fracture – that are difficult to control and properly tune to design the material properties. Here we discuss how numerical simulations of suitably designed microscopic models can help develop novel insight into the microscopic mechanisms that underlie the complex dynamics of these versatile materials. We provide an overview of the computational approach we have recently developed and of the main outcomes obtained. Finally we discuss outstanding questions and future developments.

Notes

Acknowledgements

The authors thank the Impact Program of the Georgetown Environmental Initiative and Georgetown University for funding and the Kavli Institute for Theoretical Physics at the University of California Santa Barbara for hospitality. This research was supported in part by the National Science Foundation under Grant No. NSF PHY17-48958. EDG thanks ESPCI Paris for hospitality and support through the Chair Joliot program.

References

  1. Abete T, de Candia A, Del Gado E, Fierro A, Coniglio A (2008) Dynamical heterogeneity in a model for permanent gels: different behavior of dynamical susceptibilities. Phys Rev E 78(4):041404ADSCrossRefGoogle Scholar
  2. Aime S, Cipelletti L, Ramos L (2018a) Power law viscoelasticity of a fractal colloidal gel. arXiv preprint arXiv:180203820Google Scholar
  3. Aime S, Ramos L, Cipelletti L (2018b) Microscopic dynamics and failure precursors of a gel under mechanical load. Proc Nat Acad Sci 115(14):3587–3592ADSCrossRefGoogle Scholar
  4. Alexander S (1998) Amorphous solids: their structure, lattice dynamics and elasticity. Phys Rep 296(2–4):65–236ADSCrossRefGoogle Scholar
  5. Andrade EdC (1910) Proceedings of the royal society of London series A, containing papers of a mathematical and physical character, pp 1–12Google Scholar
  6. Angelini R, Zulian L, Fluerasu A, Madsen A, Ruocco G, Ruzicka B (2013) Dichotomic aging behaviour in a colloidal glass. Soft Matter 9(46):10955–10959ADSCrossRefGoogle Scholar
  7. Angelini R, Zaccarelli E, de Melo Marques FA, Sztucki M, Fluerasu A, Ruocco G, Ruzicka B (2014) Glass–glass transition during aging of a colloidal clay. Nat Commun 5:4049CrossRefGoogle Scholar
  8. Arevalo RC, Kumar P, Urbach JS, Blair DL (2015) Stress heterogeneities in sheared type-I collagen networks revealed by boundary stress microscopy. PloS one 10(3):e0118021CrossRefGoogle Scholar
  9. Bandyopadhyay R, Liang D, Yardimci H, Sessoms D, Borthwick M, Mochrie S, Harden J, Leheny R (2004) Evolution of particle-scale dynamics in an aging clay suspension. Phys Rev Lett 93(22):228302ADSCrossRefGoogle Scholar
  10. Bantawa M, Bouzid M, Del Gado E (2018, in preparation) A computational model for gel microstructure and mechanicsGoogle Scholar
  11. Basquin O (1910) The Exponential Law of Endurance Tests. In: Proceedings of ASTM, vol 10, pp 625–630Google Scholar
  12. Bellour M, Knaebel A, Harden J, Lequeux F, Munch JP (2003) Aging processes and scale dependence in soft glassy colloidal suspensions. Phys Rev E 67(3):031405ADSCrossRefGoogle Scholar
  13. Bianchi E, Capone B, Kahl G, Likos CN (2015) Soft-patchy nanoparticles: modeling and self-organization. Faraday Discuss 181:123–138ADSCrossRefGoogle Scholar
  14. Blaak R, Miller MA, Hansen JP (2007) Reversible gelation and dynamical arrest of dipolar colloids. EPL (Europhys Lett) 78(2):26002ADSCrossRefGoogle Scholar
  15. Blair GS (1944) Analytical and integrative aspects of the stress-strain-time problem. J Sci Inst 21(5):80ADSCrossRefGoogle Scholar
  16. Blair GS, Veinoglou B (1944) A study of the firmness of soft materials based on nutting’s equation. J Sci Inst 21(9):149ADSCrossRefGoogle Scholar
  17. Bonn D, Denn MM, Berthier L, Divoux T, Manneville S (2017) Yield stress materials in soft condensed matter. Rev Mod Phys 89(3):035005ADSCrossRefGoogle Scholar
  18. Boromand A, Jamali S, Maia JM (2017) Structural fingerprints of yielding mechanisms in attractive colloidal gels. Soft Matter 13(2):458–473ADSCrossRefGoogle Scholar
  19. Bouchaud JP (2008) Anomalous relaxation in complex systems: from stretched to compressed exponentials. In: Klages R, Radons G, Sokolov IM (eds) Anomalous transport: foundations and applications. Wiley-Blackwell, pp 327–345Google Scholar
  20. Bouzid M, Del Gado E (2018a, in preparation) Aging and damage accumulation in soft colloidal gelsGoogle Scholar
  21. Bouzid M, Del Gado E (2018b) Network topology in soft gels: hardening and softening materials. Langmuir 34(3):773–781CrossRefGoogle Scholar
  22. Bouzid M, Colombo J, Barbosa LV, Del Gado E (2017) Elastically driven intermittent microscopic dynamics in soft solids. Nat Commun 8:15846ADSCrossRefGoogle Scholar
  23. Bouzid M, Keshavarz B, Geri M, Divoux T, Del Gado E, McKinley GH (2018a) Computing the linear viscoelastic properties of soft gels using an optimally windowed chirp protocol. J Rheol 62(4):1037–1050. https://doi.org/10.1122/1.5018715 ADSCrossRefGoogle Scholar
  24. Bouzid M, Keshavarz B, Geri M, Divoux T, Del Gado E, McKinley GH (2018b) Computing the linear viscoelastic properties of soft gels using an optimally windowed chirp protocol. arXiv preprint arXiv:180507987Google Scholar
  25. Broedersz CP, MacKintosh FC (2014) Modeling semiflexible polymer networks. Rev Mod Phys 86(3):995ADSCrossRefGoogle Scholar
  26. Caggioni M, Spicer P, Blair D, Lindberg S, Weitz D (2007) Rheology and microrheology of a microstructured fluid: the gellan gum case. J Rheol 51(5):851–865ADSCrossRefGoogle Scholar
  27. Cerbino R, Trappe V (2008) Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Phys Rev Lett 100(18):188102ADSCrossRefGoogle Scholar
  28. Chaudhuri P, Berthier L (2017) Ultra-long-range dynamic correlations in a microscopic model for aging gels. Phys Rev E 95(6):060601ADSCrossRefGoogle Scholar
  29. Chaudhuri P, Hurtado PI, Berthier L, Kob W (2015) Relaxation dynamics in a transient network fluid with competing gel and glass phases. J Chem Phys 142(17):174503ADSCrossRefGoogle Scholar
  30. Chen DT, Wen Q, Janmey PA, Crocker JC, Yodh AG (2010) Rheology of soft materials. Annual ReviewsCrossRefGoogle Scholar
  31. Chung B, Ramakrishnan S, Bandyopadhyay R, Liang D, Zukoski C, Harden J, Leheny R (2006) Microscopic dynamics of recovery in sheared depletion gels. Phys Rev Lett 96(22):228301ADSCrossRefGoogle Scholar
  32. Cipelletti L, Ramos L (2005) Slow dynamics in glassy soft matter. J Phys Condens Matter 17(6):R253ADSCrossRefGoogle Scholar
  33. Cipelletti L, Manley S, Ball R, Weitz D (2000) Universal aging features in the restructuring of fractal colloidal gels. Phys Rev Lett 84(10):2275ADSCrossRefGoogle Scholar
  34. Colombo J, Del Gado E (2014a) Self-assembly and cooperative dynamics of a model colloidal gel network. Soft Matter 10(22):4003–4015ADSCrossRefGoogle Scholar
  35. Colombo J, Del Gado E (2014b) Stress localization, stiffening, and yielding in a model colloidal gel. J Rheol 58(5):1089–1116ADSCrossRefGoogle Scholar
  36. Colombo J, Widmer-Cooper A, Del Gado E (2013) Microscopic picture of cooperative processes in restructuring gel networks. Phys Rev Lett 110(19):198301ADSCrossRefGoogle Scholar
  37. Coniglio A, De Arcangelis L, Del Gado E, Fierro A, Sator N (2004) Percolation, gelation and dynamical behaviour in colloids. J Phys Condens Matter 16(42):S4831ADSCrossRefGoogle Scholar
  38. Coniglio A, De Arcangelis L, De Candia A, Del Gado E, Fierro A, Sator N (2006) Clusters in attractive colloids. J Phys Condens Matter 18(36):S2383CrossRefGoogle Scholar
  39. Csikor FF, Motz C, Weygand D, Zaiser M, Zapperi S (2007) Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale. Science 318(5848):251–254ADSCrossRefGoogle Scholar
  40. De Candia A, Del Gado E, Fierro A, Sator N, Tarzia M, Coniglio A (2006) Columnar and lamellar phases in attractive colloidal systems. Phys Rev E 74(1):010403CrossRefGoogle Scholar
  41. de Cagny HC, Vos BE, Vahabi M, Kurniawan NA, Doi M, Koenderink GH, MacKintosh FC, Bonn D (2016) Porosity governs normal stresses in polymer gels. Phys Rev Lett 117(21):217802ADSCrossRefGoogle Scholar
  42. Del Gado E, Kob W (2007) Length-scale-dependent relaxation in colloidal gels. Phys Rev Lett 98(2):028303ADSCrossRefGoogle Scholar
  43. Del Gado E, Kob W (2010) A microscopic model for colloidal gels with directional effective interactions: network induced glassy dynamics. Soft Matter 6(7):1547–1558ADSCrossRefGoogle Scholar
  44. Del Gado E, Fierro A, de Arcangelis L, Coniglio A (2004) Slow dynamics in gelation phenomena: from chemical gels to colloidal glasses. Phys Rev E 69(5):051103ADSCrossRefGoogle Scholar
  45. Del Gado E, Ioannidou K, Masoero E, Baronnet A, Pellenq RM, Ulm FJ, Yip S (2014) A soft matter in construction–statistical physics approach to formation and mechanics of c–s–h gels in cement. Eur Phys J Spec Top 223(11):2285–2295CrossRefGoogle Scholar
  46. Di Michele L, Fiocco D, Varrato F, Sastry S, Eiser E, Foffi G (2014) Aggregation dynamics, structure, and mechanical properties of bigels. Soft Matter 10(20):3633–3648ADSCrossRefGoogle Scholar
  47. Divoux T, Mao B, Snabre P (2015) Syneresis and delayed detachment in agar plates. Soft Matter 11(18):3677–3685ADSCrossRefGoogle Scholar
  48. Duduta M, Ho B, Wood VC, Limthongkul P, Brunini VE, Carter WC, Chiang YM (2011) Semi-solid lithium rechargeable flow battery. Adv Energy Mater 1(4):511–516CrossRefGoogle Scholar
  49. Eberle AP, Porcar L (2012) Flow-sans and rheo-sans applied to soft matter. Curr Opin Colloid Interface Sci 17(1):33–43CrossRefGoogle Scholar
  50. Eberle AP, Wagner NJ, Castañeda-Priego R (2011) Dynamical arrest transition in nanoparticle dispersions with short-range interactions. Phys Rev Lett 106(10):105704ADSCrossRefGoogle Scholar
  51. Feng J, Levine H, Mao X, Sander LM (2015) Alignment and nonlinear elasticity in biopolymer gels. Phys Rev E 91(4):042710ADSCrossRefGoogle Scholar
  52. Feng J, Levine H, Mao X, Sander LM (2016) Nonlinear elasticity of disordered fiber networks. Soft Matter 12(5):1419–1424ADSCrossRefGoogle Scholar
  53. Feng D, Notbohm J, Benjamin A, He S, Wang M, Ang LH, Bantawa M, Bouzid M, Del Gado E, Krishnan R et al (2018) Disease-causing mutation in α-actinin-4 promotes podocyte detachment through maladaptation to periodic stretch. Proc Nat Acad Sci 201717870Google Scholar
  54. Ferrero EE, Martens K, Barrat JL (2014) Relaxation in yield stress systems through elastically interacting activated events. Phys Rev Lett 113(24):248301ADSCrossRefGoogle Scholar
  55. Fielding SM (2014) Shear banding in soft glassy materials. Rep Prog Phys 77(10):102601ADSCrossRefGoogle Scholar
  56. Fierro A, Del Gado E, de Candia A, Coniglio A (2008) Dynamical heterogeneities in attractive colloids. J Stat Mech Theory Exp 2008(04):L04002CrossRefGoogle Scholar
  57. Fiocco D, Foffi G, Sastry S (2013) Oscillatory athermal quasistatic deformation of a model glass. Phys Rev E 88:020301.  https://doi.org/10.1103/PhysRevE.88.020301 ADSCrossRefGoogle Scholar
  58. Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications, vol 1. ElsevierzbMATHGoogle Scholar
  59. Gallot T, Perge C, Grenard V, Fardin MA, Taberlet N, Manneville S (2013) Ultrafast ultrasonic imaging coupled to rheometry: principle and illustration. Rev Sci Inst 84(4):045107ADSCrossRefGoogle Scholar
  60. Gao Y, Kim J, Helgeson ME (2015) Microdynamics and arrest of coarsening during spinodal decomposition in thermoreversible colloidal gels. Soft Matter 11(32):6360–6370ADSCrossRefGoogle Scholar
  61. Godec A, Bauer M, Metzler R (2014) Collective dynamics effect transient subdiffusion of inert tracers in flexible gel networks. New J Phys 16(9):092002CrossRefGoogle Scholar
  62. Guo H, Ramakrishnan S, Harden JL, Leheny RL (2011) Gel formation and aging in weakly attractive nanocolloid suspensions at intermediate concentrations. J Chem Phys 135(15):154903ADSCrossRefGoogle Scholar
  63. Harden J, Guo H, Ramakrishnan S, Leheny R (2012) Gel formation and aging in weakly attractive nanocolloid suspensions. In: APS meeting abstractsGoogle Scholar
  64. Helal A, Divoux T, McKinley GH (2016) Simultaneous rheoelectric measurements of strongly conductive complex fluids. Phys Rev Appl 6(6):064004ADSCrossRefGoogle Scholar
  65. Hsiao LC, Newman RS, Glotzer SC, Solomon MJ (2012) Role of isostaticity and load-bearing microstructure in the elasticity of yielded colloidal gels. Proc Nat Acad Sci 109(40):16029–16034ADSCrossRefGoogle Scholar
  66. Ilg P, Del Gado E (2011) Non-linear response of dipolar colloidal gels to external fields. Soft Matter 7(1):163–171ADSCrossRefGoogle Scholar
  67. Irving J, Kirkwood J (1950) The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J Chem Phys 18(6):817–829Google Scholar
  68. Jabbari-Farouji S, Wegdam GH, Bonn D (2007) Gels and glasses in a single system: evidence for an intricate free-energy landscape of glassy materials. Phys Rev Lett 99(6):065701ADSCrossRefGoogle Scholar
  69. Jaishankar A, McKinley GH (2012) A fractional K-BKZ constitutive formulation for describing the nonlinear rheology of multiscale complex fluids. Power-law rheology in the bulk and at the interface: quasi-properties and fractional constitutive equations. Proc R Soc A Math Phys Eng Sci 469:20120284Google Scholar
  70. Jaishankar A, McKinley GH (2014) A fractional k-bkz constitutive formulation for describing the nonlinear rheology of multiscale complex fluids. J Rheol 58(6):1751–1788ADSCrossRefGoogle Scholar
  71. Jamali S, McKinley GH, Armstrong RC (2017) Microstructural rearrangements and their rheological implications in a model thixotropic elastoviscoplastic fluid. Phys Rev Lett 118(4):048003ADSCrossRefGoogle Scholar
  72. Koumakis N, Petekidis G (2011) Two step yielding in attractive colloids: transition from gels to attractive glasses. Soft Matter 7(6):2456–2470ADSCrossRefGoogle Scholar
  73. Krall A, Weitz D (1998) Internal dynamics and elasticity of fractal colloidal gels. Phys Rev Lett 80(4):778ADSCrossRefGoogle Scholar
  74. Kurokawa A, Vidal V, Kurita K, Divoux T, Manneville S (2015) Avalanche-like fluidization of a non-Brownian particle gel. Soft Matter 11(46):9026–9037ADSCrossRefGoogle Scholar
  75. Landau LD, Lifshitz E (1986) Theory of elasticity. Course of theoretical physics, vol 7, 3rd edn, Elsevier, p 109Google Scholar
  76. Landrum BJ, Russel WB, Zia RN (2016) Delayed yield in colloidal gels: creep, flow, and re-entrant solid regimes. J Rheol 60(4):783–807ADSCrossRefGoogle Scholar
  77. Lees A, Edwards S (1972) The computer study of transport processes under extreme conditions. J Phys C Solid State Phys 5(15):1921ADSCrossRefGoogle Scholar
  78. Leocmach M, Perge C, Divoux T, Manneville S (2014) Creep and fracture of a protein gel under stress. Phys Rev Lett 113(3):038303ADSCrossRefGoogle Scholar
  79. Licup AJ, Münster S, Sharma A, Sheinman M, Jawerth LM, Fabry B, Weitz DA, MacKintosh FC (2015) Stress controls the mechanics of collagen networks. Proc Nat Acad Sci 112(31):9573–9578ADSCrossRefGoogle Scholar
  80. Lidon P, Villa L, Manneville S (2017) Power-law creep and residual stresses in a carbopol gel. Rheol Acta 56(3):307–323CrossRefGoogle Scholar
  81. Lieleg O, Kayser J, Brambilla G, Cipelletti L, Bausch A (2011) Slow dynamics and internal stress relaxation in bundled cytoskeletal networks. Nat Mater 10(3):236ADSCrossRefGoogle Scholar
  82. Lu PJ, Zaccarelli E, Ciulla F, Schofield AB, Sciortino F, Weitz DA (2008) Gelation of particles with short-range attraction. Nature 453:499ADSCrossRefGoogle Scholar
  83. Maccarrone S, Brambilla G, Pravaz O, Duri A, Ciccotti M, Fromental JM, Pashkovski E, Lips A, Sessoms D, Trappe V et al (2010a) Ultra-long range correlations of the dynamics of jammed soft matter. Soft Matter 6(21):5514–5522ADSCrossRefGoogle Scholar
  84. Maccarrone S, Brambilla G, Pravaz O, Duri A, Ciccotti M, Fromental JM, Pashkovski E, Lips A, Sessoms D, Trappe V, Cipelletti L (2010b) Ultra-long range correlations of the dynamics of jammed soft matter. Soft Matter 6(21):5514–5522ADSCrossRefGoogle Scholar
  85. Macosko C (1994) Rheology. Principles, measurements, and applications. Wiley – VCH, New YorkGoogle Scholar
  86. Maloney CE, Lemaître A (2006) Amorphous systems in athermal, quasistatic shear. Phys Rev E 74(1):016118ADSCrossRefGoogle Scholar
  87. Manley S, Wyss H, Miyazaki K, Conrad J, Trappe V, Kaufman L, Reichman D, Weitz D (2005) Glasslike arrest in spinodal decomposition as a route to colloidal gelation. Phys Rev Lett 95(23):238302ADSCrossRefGoogle Scholar
  88. Mansel BW, Williams MA (2015) Internal stress drives slow glassy dynamics and quake-like behaviour in ionotropic pectin gels. Soft Matter 11(35):7016–7023ADSCrossRefGoogle Scholar
  89. Mao B, Divoux T, Snabre P (2016) Normal force controlled rheology applied to agar gelation. J Rheol 60(3):473–489ADSCrossRefGoogle Scholar
  90. Mao B, Divoux T, Snabre P (2017) Impact of saccharides on the drying kinetics of agarose gels measured by in-situ interferometry. Sci Rep 7:41185ADSCrossRefGoogle Scholar
  91. Marx D, Hutter J (2009) Ab initio molecular dynamics: basic theory and advanced methods. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  92. Meeker SP, Bonnecaze RT, Cloitre M (2004) Slip and flow in pastes of soft particles: direct observation and rheology. J Rheol 48(6):1295–1320ADSCrossRefGoogle Scholar
  93. Ng TSK, McKinley GH (2008) Power law gels at finite strains: the nonlinear rheology of gluten gels. SOR, J Rheol 52(2):417–449ADSCrossRefGoogle Scholar
  94. Nicolas A, Ferrero EE, Martens K, Barrat JL (2017) Deformation and flow of amorphous solids: a review of mesoscale elastoplastic models. arXiv preprint arXiv:170809194Google Scholar
  95. Ohtsuka T, Royall CP, Tanaka H (2008) Local structure and dynamics in colloidal fluids and gels. EPL (Europhys Lett) 84(4):46002ADSCrossRefGoogle Scholar
  96. Padmanabhan P, Zia R (2018) Gravitational collapse of colloidal gels: non-equilibrium phase separation driven by osmotic pressure. Soft Matter 14(17):3265–3287. https://doi.org/10.1039/c8sm00002f ADSCrossRefGoogle Scholar
  97. Pantina JP, Furst EM (2005) Elasticity and critical bending moment of model colloidal aggregates. Phys Rev Lett 94(13):138301ADSCrossRefGoogle Scholar
  98. Pantina JP, Furst EM (2006) Colloidal aggregate micromechanics in the presence of divalent ions. Langmuir 22(12):5282–5288CrossRefGoogle Scholar
  99. Plimpton S (1995) Fast parallel algorithms for short–range molecular dynamics. J Comput Phys 117:1–19ADSzbMATHCrossRefGoogle Scholar
  100. Puosi F, Rottler J, Barrat JL (2014) Time-dependent elastic response to a local shear transformation in amorphous solids. Phys Rev E 89(4):042302ADSCrossRefGoogle Scholar
  101. Ramos L, Cipelletti L (2001) Ultraslow dynamics and stress relaxation in the aging of a soft glassy system. Phys Rev Lett 87(24):245503ADSCrossRefGoogle Scholar
  102. Rovigatti L, Sciortino F (2011) Self and collective correlation functions in a gel of tetrahedral patchy particles. Mol Phys 109(23–24):2889–2896ADSCrossRefGoogle Scholar
  103. Royall CP, Eggers J, Furukawa A, Tanaka H (2015) Probing colloidal gels at multiple length scales: the role of hydrodynamics. Phys Rev Lett 114:258302.  https://doi.org/10.1103/PhysRevLett.114.258302 ADSCrossRefGoogle Scholar
  104. Ruta B, Chushkin Y, Monaco G, Cipelletti L, Pineda E, Bruna P, Giordano VM, Gonzalez-Silveira M (2012) Atomic-scale relaxation dynamics and aging in a metallic glass probed by x-ray photon correlation spectroscopy. Phys Rev Lett 109:165701ADSCrossRefGoogle Scholar
  105. Ruta B, Czakkel O, Chushkin Y, Pignon F, Nervo R, Zontone F, Rinaudo M (2014) Silica nanoparticles as tracers of the gelation dynamics of a natural biopolymer physical gel. Soft Matter 10(25):4547–4554ADSCrossRefGoogle Scholar
  106. Salerno KM, Maloney CE, Robbins MO (2012) Avalanches in strained amorphous solids: does inertia destroy critical behavior? Phys Rev Lett 109(10):105703ADSCrossRefGoogle Scholar
  107. Segre P, Prasad V, Schofield A, Weitz D (2001) Glasslike kinetic arrest at the colloidal-gelation transition. Phys Rev Lett 86(26):6042ADSCrossRefGoogle Scholar
  108. Tabatabai AP, Kaplan DL, Blair DL (2015) Rheology of reconstituted silk fibroin protein gels: the epitome of extreme mechanics. Soft Matter 11(4):756–761ADSCrossRefGoogle Scholar
  109. Tanguy A, Wittmer J, Leonforte F, Barrat JL (2002) Continuum limit of amorphous elastic bodies: a finite-size study of low-frequency harmonic vibrations. Phys Rev B 66(17):174205ADSCrossRefGoogle Scholar
  110. Thompson A, Plimpton S, Mattson W (2009) General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions. J Chem Phys 131:154107ADSCrossRefGoogle Scholar
  111. Trappe V, Prasad V, Cipelletti L, Segre P, Weitz D (2001) Jamming phase diagram for attractive particles. Nature 411(6839):772ADSCrossRefGoogle Scholar
  112. Tsurusawa H, Leocmach M, Russo J, Tanaka H (2018) Gelation as condensation frustrated by hydrodynamics and mechanical isostaticity. arXiv preprint arXiv:180404370Google Scholar
  113. van Doorn JM, Verweij JE, Sprakel J, van der Gucht J (2018) Strand plasticity governs fatigue in colloidal gels. Phys Rev Lett 120(20).  https://doi.org/10.1103/PhysRevLett.120.208005
  114. Van Oosten AS, Vahabi M, Licup AJ, Sharma A, Galie PA, MacKintosh FC, Janmey PA (2016) Uncoupling shear and uniaxial elastic moduli of semiflexible biopolymer networks: compression-softening and stretch-stiffening. Sci Rep 6:19270ADSCrossRefGoogle Scholar
  115. van der Kooij HM, Dussi S, van de Kerkhof GT, Frijns RAM, van der Gucht J, Sprakel J (2018) Laser speckle strain imaging reveals the origin of delayed fracture in a soft solid. Sci Adv 4(5).  https://doi.org/10.1126/sciadv.aar1926, http://advances.sciencemag.org/content/4/5/eaar1926.full.pdf ADSCrossRefGoogle Scholar
  116. Varga Z, Swan JW (2018) Normal modes of weak colloidal gels. Phys Rev E 97(1):012608ADSCrossRefGoogle Scholar
  117. Varga Z, Wang G, Swan J (2015) The hydrodynamics of colloidal gelation. Soft Matter 11(46):9009–9019ADSCrossRefGoogle Scholar
  118. Varrato F, Di Michele L, Belushkin M, Dorsaz N, Nathan SH, Eiser E, Foffi G (2012) Arrested demixing opens route to bigels. Proc Nat Acad Sci 109(47):19155–19160ADSCrossRefGoogle Scholar
  119. Vasisht VV, Roberts G, Del Gado E (2018, in preparation) Shear start-up in jammed soft solids: a computational studyGoogle Scholar
  120. Youssry M, Madec L, Soudan P, Cerbelaud M, Guyomard D, Lestriez B (2013) Non-aqueous carbon black suspensions for lithium-based redox flow batteries: rheology and simultaneous rheo-electrical behavior. Phys Chem Chem Phys 15(34):14476–14486CrossRefGoogle Scholar
  121. Zaccarelli E, Saika-Voivod I, Buldyrev SV, Moreno AJ, Tartaglia P, Sciortino F (2006) Gel to glass transition in simulation of a valence-limited colloidal system. J Chem Phys 124(12):124908ADSCrossRefGoogle Scholar
  122. Zhang L, Rocklin DZ, Sander LM, Mao X (2017) Fiber networks below the isostatic point: fracture without stress concentration. Phys Rev Mater 1(5):052602CrossRefGoogle Scholar
  123. Zia RN, Landrum BJ, Russel WB (2014) A micro-mechanical study of coarsening and rheology of colloidal gels: cage building, cage hopping, and smoluchowski’s ratchet. J Rheol 58(5): 1121–1157ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.LPTMS, CNRS, Univ. Paris-SudUniversité Paris-SaclayOrsayFrance
  2. 2.Department of Physics, Institute for Soft Matter Synthesis and MetrologyGeorgetown UniversityWashingtonUSA

Section editors and affiliations

  • Emanuela Del Gado
    • 1
  • Roland J. -M. Pellenq
    • 2
    • 3
    • 4
  1. 1.Department of Physics, Institute for Soft Matter Synthesis and MetrologyGeorgetown UniversityWashingtonUSA
  2. 2.Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.MSE2, the MIT/CNRS/Aix-Marseille University Joint LaboratoryMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Centre Interdisciplinaire des Nanosciences de MarseilleCNRS and Aix-Marseille UniversityMarseilleFrance

Personalised recommendations