Advertisement

Electrochemical Synthesis of Coordination Compounds of Lanthanides: Effective Luminophores

  • V. T. Panyushkin
  • F. A. Kolokolov
  • A. I. Oflidi
  • M. A. Nazarenko
Living reference work entry

Abstract

The problems of electrochemical synthesis of complex compounds of lanthanides with organic acids are discussed. It was shown that the resulting complex compounds are thermally stable and can be used as effective luminophores.

Keywords

Electrochemical synthesis Lanthanides Luminescence 

References

  1. 1.
    Meshkova SB, Rusakova NV, Topilova ZM, Lozinsky MO (1992) Correlation of optical characteristics of different-ligand β-diketonate complexes of neodymium and europium with beta-diketone properties. Russ J Coord Chem 18(2):210–217. (in Russian)Google Scholar
  2. 2.
    Kharisov BI (2006) Direct low-temperature synthesis of coordination compounds of phthalocyanines and azomethines: DrSci. Dissertation, Rostov State University, Rostov-on-Don. 347 pp. (in Russian)Google Scholar
  3. 3.
    Kharisov BI, Ortiz Mendez U, Almaraz Garza JL (2005) Use of UV-irradiation for phthalocyanine preparation at low temperature. Influence of solvent nature. New J Chem 29(5):686–692Google Scholar
  4. 4.
    Kharisov BI, Kharissova OV, Méndez UO, Garnovskii AD, Tsivadze AYu (2007) Direct electrochemical synthesis of metal complexes of phthalocyanines and azomethines as model compounds: advantages and problems of this method versus traditional synthetic techniques. J Coord Chem 60(13):1435–1455CrossRefGoogle Scholar
  5. 5.
    Kharisov BI, Blanco LM, Garcia-Luna A (1999) Direct electrochemical synthesis of metal complexes. Lanthanide phthalocyanines: optimization of the synthesis. Rev Soc Quim Мех 43(2):50–53Google Scholar
  6. 6.
    Frolov VY, Bolotin SN, Panyshkin VT (2005) Electrochemical synthesis of complex compounds of transition elements with carboxyl-and carbonyl-containing ligands. Russ J Appl Chem 78(6):897–902CrossRefGoogle Scholar
  7. 7.
    Kryukova NP, Frolov VY, Kolokolov FA, Bolotin SN, Panyushkin VT (2005) Synthesis and Study of Copper(II) Complexes with Aspartic Acid, Serine, and Valine. Russ J Gen Chem 75(4):503–506CrossRefGoogle Scholar
  8. 8.
    Panyushkin VT, Zelenov VI, Tyukhteneva ZI, Frolov VY (1995) Synthesis of new carboxylate complexes of rare earths. Russ J Gen Chem 65(3):517–519Google Scholar
  9. 9.
    Bogdashev NN, Garnovsky AD, Osipov OA, Grigoriev VP, Gontmakher NM (1976) Complex metal compounds with some nitrogen-containing ligands. Russ J Gen Chem 46(3):675. (in Russian)Google Scholar
  10. 10.
    Frolov VY, Panyushkin VT, Zelenov VI. Method for the preparation of rare earth acetylacetonates. Russian Patent 2191190, priority 29.01.2001, registered 20.10.2002Google Scholar
  11. 11.
    Korshunov VN (1990) Amalgam systems. M.: Nauka. 201 pp. (in Russian)Google Scholar
  12. 12.
    Bonnier E, Desre PS (1963) Calculation of the thermodynamic parameters of amalgams. C R Acad Sci 237:3404–3406Google Scholar
  13. 13.
    Mathien JC, Durand F, Bonnier E (1965) Thermodynamics of binary amalgam systems. J Chim Phys Phys-Chim Biol 62:1289–1296CrossRefGoogle Scholar
  14. 14.
    Lesnik AG (1962) Models of interatomic interaction in the statistical theory of alloys.M. 278 pp. (in Russian)Google Scholar
  15. 15.
    Smirnov VА (1970) The reduction by amalgams. L.: Khimiya. 230 pp. (in Russian)Google Scholar
  16. 16.
    Davis S, James A (1979) Electrochemical dictionary. М.: Mir. 288 ppGoogle Scholar
  17. 17.
    Weissberger AD, Prskauer ES, Riddick JA, Toops EE Jr (1955) Organic solvents. Wiley (Interscience), New York, p 435Google Scholar
  18. 18.
    Coetzee JF, Cunningham GP, McGuire DK, Padmanabhan GR (1962) Purification of Acetonitrile as a Solvent for Exact Measurements. Anal Chem 34:1139CrossRefGoogle Scholar
  19. 19.
    Kostyuk NN, Dik TA, Trebnikov AG, Shirokii VL (2003) Anodic dissolution of samarium in an acetonitrile solution in acetylacetone. Russ J Electrochem 39(11):1228–1232CrossRefGoogle Scholar
  20. 20.
    Kostyuk NN, Dik TA, Tereshko NV, Trebnikov AG (2004) Electrochemical synthesis and physico-chemical study of lanthanum (III) acetylacetonate complexes. Radiochemistry 46(6):552–555CrossRefGoogle Scholar
  21. 21.
    Kostyuk NN, Dik TA, Tereshko NV, Trebnikov AG (2003) Electrochemical synthesis of β-diketonates of La(III) in ethanol. Russ J Electrochem 39:1233–1235CrossRefGoogle Scholar
  22. 22.
    Kostyuk NN, Dik TA, Trebnikov AG (2005) Cathodic electrolysis of samarium(III), europium(III), and ytterbium(III) chlorides in the presence of acetylacetone. Russ J Inorg Chem 50(9):1558–1561Google Scholar
  23. 23.
    Nazarenko MA, Oflidi AI, Kolokolov FA, Panyushkin VT (2017) Electrochemical Synthesis of Anhydrous Luminescent Tb3+ Complexes with Aromatic and Heterocyclic Carboxylic Acids. Russ J Gen Chem 87(5):1022–1025CrossRefGoogle Scholar
  24. 24.
    Pikula AA, Kolechko DV, Panyushkin VT, Oflidi AI, Nazarenko MA (2013) Coordination compounds of europium(III), terbium(III), dysprosium(III), samarium(III), and gadolinium(III) with 2-acetylbenzoic acid. Russ J Inorg Chem 58(7):773–776CrossRefGoogle Scholar
  25. 25.
    Pashchevskaya NV, Nazarenko MA, Bolotin SN, Oflidi AI, Panyushkin VT (2010) Effect of the condition of synthesis on the composition and structure of copper(II) complexes with benzimidazole. Russ J Inorg Chem 55(9):1425CrossRefGoogle Scholar
  26. 26.
    Shuvaev S, Utochnikova V, Marciniak Ł et al (2014) Lanthanide complexes with aromatic ophosphorylated ligands: synthesis, structure elucidation and photophysical properties. Dalton Trans 43(8):3121CrossRefGoogle Scholar
  27. 27.
    Monteiro JHSK, Formiga ALB, Sigoli F (2014) The influence of carboxilate, phosphinate and seleninate groups on luminescent properties of lanthanides complexes. J Lumin 154:22CrossRefGoogle Scholar
  28. 28.
    Kalyakina AS, Sokolova EY, Vaschenko AA et al (2013) High efficiency organic light-emitting diode based on uv stable terbium aromatic carboxylates. Proceedings to SID Mid-Europe Chapter Spring Meeting, vol 2013, p 19Google Scholar
  29. 29.
    Trivedi ER, Eliseeva SV, Jankolovits J et al (2014) Highly emitting near-infrared lanthanide “encapsulated sandwich” metallacrown complexes with excitation shifted toward lower energy. J Am Chem Soc 136(4):1526CrossRefGoogle Scholar
  30. 30.
    Solodukhin NN, Utochnikova VV, Lepnev LS, Kuzmina NP (2014) Mixed-ligand terbium hydroxyaromatic carboxylates with o-phenanthroline: luminescence quenching at 300 and 77 K. Mendeleev Commun 24(2):91CrossRefGoogle Scholar
  31. 31.
    Utochnikova VV, Kuzmina NP (2016) Photoluminescence of lanthanide aromatic carboxylates. Russ J Coord Chem 42(10):679CrossRefGoogle Scholar
  32. 32.
    Kolechko DV, Kolokolov FA, Oflidi AI, Pikula AA, Panyushkin VT, Mikhailov IE, Dushenko GA (2011) Novel luminescent lanthanides complexes with 1,10-phenanthroline-2,9-dicarboxylic acid. Dokl Phys Chem 441:374CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • V. T. Panyushkin
    • 1
  • F. A. Kolokolov
    • 2
  • A. I. Oflidi
    • 2
  • M. A. Nazarenko
    • 2
  1. 1.Department of General and Inorganic ChemistryKuban State UniversityKrasnodarRussia
  2. 2.Kuban State UniversityKrasnodarRussia

Personalised recommendations