Nanocomposites for Structural and Energy Applications

  • Nagaraj R. Banapurmath
  • Shankar A. Hallad
  • Anand M. Hunashyal
  • A. M. Sajjan
  • Ashok S. Shettar
  • N. H. Ayachit
  • Malatesh T. Godi
Living reference work entry


The present chapter provides comprehensive literature survey undertaken on the use of nanocomposites for both structural and energy applications. Research in the development of polymer-based composites for structural and energy applications is gaining prominence in the present scenario due to their unique lightweight and high-strength properties. Plain polymer alone cannot provide the deserved strength required for the structural applications due to the brittle nature of the plastics. Such drawbacks of polymeric materials can be suitably addressed by reinforcing it with strength fillers at both micro- and nano-level. However, continuous effort has been made by several investigators to improve the mechanical properties of polymers by adopting several reinforcement techniques. Recently usage of nano-materials in polymer-based matrix for varied applications is gaining tremendous importance due to their unique physical and chemical properties as compared to conventional strength fillers like carbon fibers, natural fibers unlike. Carbon nanostructures, such as graphene and fullerenes, have gained prominence for energy storage, and this is mainly attributed to their large aspect ratios, specific surface areas, and electrical conductivity (as reported by Sharma and Bhatti 51:2901–2912, 2010; Boota et al. 161:A1078–A1083, 2014). This chapter highlights on the advances made in energy storage applications involving multifunctional carbon nanostructures.


Nanocomposites Tensile test Multi-walled carbon nanotubes Carbon nano-fiber Flexural modulus Polymers Three-point loading SEM EDS Sonication Graphene Energy storage Capacitor Battery Fuel cell 


  1. 1.
    Lee B., Processing of Macroscopic Fiber Composites with Dispersion of Nanoparticles in Resin Matrix, 221st American Chemical Society Natl Mtg. Symp. On Defense Application of Nanomaterials, CA, April, 2001Google Scholar
  2. 2.
    Yong V, Hahn HT (2004) Processing and properties of SiC/vinyl Ester Nanocomposites. Nanotechnology 15:1338–1343CrossRefGoogle Scholar
  3. 3.
    Yasmin A, Abot JL, Daniel IM (2003) Processing of clay/epoxy Nanocomposites by shear mixing. Scr Mater 49:81–86CrossRefGoogle Scholar
  4. 4.
    Shah RK, Paul DR (2004) Nylon 6 Nanocomposites prepared by a melt mixing Masterbatch process. Polymer 45:2991–3000CrossRefGoogle Scholar
  5. 5.
    Haggenmueller R, Du F, Fischer JE, Winey KI (2006) Interfacial in situ polymerization of single wall carbon nanotube/nylon 6, 6 nanocomposites. Polymer 47:2381–2388CrossRefGoogle Scholar
  6. 6.
    Rodgers RM, Mahfuz H, Rangari VK, Chisholm N, Jeelani S (2005) Infusion of SiC nanoparticles into SC-15 epoxy: an investigation of thermal and mechanical response. Macromol Mater Eng 290:423–429CrossRefGoogle Scholar
  7. 7.
    Adebhar T, Roscher C, Adam J (2001) Reinforcing nanoparticles in reactive resins. Eur Coatings J 4:144Google Scholar
  8. 8.
    Kinloch AJ, Lee JH, Taylor AC, Sprenger S, Eger C, Egan D (2003) Toughening structural adhesives via Nano- and Micro-phase inclusions. J Adhes 79:867–873CrossRefGoogle Scholar
  9. 9.
    Zilg C, Thomman T, Finter J, Mulhaupt R (2000) The influence of silicate modification and Compatibilizers on mechanical properties and morphology of anhydride-cured epoxy Nanocomposites. Macromol Mater Eng 280:41CrossRefGoogle Scholar
  10. 10.
    Guo Z, Liang X, Pereira T, Scaffaro R, Hahn HT (2007) CuO nanoparticle filled vinyl-ester resin nanocomposites: fabrication, characterization and property analysis. Compos Sci Technol 67:2036–2044CrossRefGoogle Scholar
  11. 11.
    Subramaniyan AK, Sun CT (2006) Enhancing compressive strength of unidirectional polymeric composites using Nanoclay. Compos Part A 37(12):2257CrossRefGoogle Scholar
  12. 12.
    Choi Y-K, Sugimoto K-I, Song S-M, Ohkoshi Y, Endo M (2005) Mechanical and physical properties of epoxy composites reinforced by vapor grown carbon Nanofibers. Carbon 43:2199–2208CrossRefGoogle Scholar
  13. 13.
    Zheng H, Ning R, Zheng Y (2005) Study of SiO2 nanoparticles on the improved performance of epoxy and fiber composites. J Reinf Plast Compos 24:223–233CrossRefGoogle Scholar
  14. 14.
    Cho J, Joshi MS, Sun CT (2006) Effect of inclusion size on mechanical properties of polymeric composites with micro and Nano particles. Compos Sci Technol 66(13):1941–1952CrossRefGoogle Scholar
  15. 15.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58CrossRefGoogle Scholar
  16. 16.
    Dresselhaus M, Dresselhaus G, Avouris P (2002) Carbon nanotubes: synthesis, structure, properties and applications. Springer, New YorkGoogle Scholar
  17. 17.
    Reich S, Thomsen C, Maultzsch J (2004) Carbon nanotubes: basic concepts and physical properties. Wiley-VCH, WeinheimGoogle Scholar
  18. 18.
    Ruoff RS, Lorents DC (1995) Mechanical and thermal properties of carbon nanotubes. Carbon 33(7):925–930CrossRefGoogle Scholar
  19. 19.
    Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680CrossRefGoogle Scholar
  20. 20.
    Salvetat JP, Kulik AJ, Bonard JM, Forro L, Benoit W, Auppironi L (1999) Mechanical properties of carbon nanotubes. Appl Phys A Mater Sci Process 3:255–260CrossRefGoogle Scholar
  21. 21.
    MF Y, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453):637–640CrossRefGoogle Scholar
  22. 22.
    Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T (1996) Electrical conductivity of individual carbon nanotubes. Nature 382:54–56CrossRefGoogle Scholar
  23. 23.
    Pop E, Mann D, Wang Q, Goodson K, Dai H (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6(1):96–100CrossRefGoogle Scholar
  24. 24.
    Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44(9):1624–1652CrossRefGoogle Scholar
  25. 25.
    Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912CrossRefGoogle Scholar
  26. 26.
    Rana S, Alagirusamy R, Joshi M (2009) A review on carbon epoxy nanocomposites. J Reinf Plast Compos 28(4):461–487CrossRefGoogle Scholar
  27. 27.
    Ruiz-Perez L, Ryston GJ, Fairclough JPA, Ryan AJ (2008) Toughening by nanostructure. Polymer 49:4475–4488CrossRefGoogle Scholar
  28. 28.
    Qian H, Greenhalgh ES, Shaffer MSP, Bismarck A (2010) Carbon nanotube-based hierarchical composites: a review. J Mater Chem 20:4751–4762CrossRefGoogle Scholar
  29. 29.
    Ozdemir NG, Zhang T, Aspin I, Scarpa F, Davinia H, Song Y (2016) Toughening of carbon fiber reinforced polymer composites with rubber nanoparticles for advanced industrial applications. Express Polym Lett 10(5):394–407CrossRefGoogle Scholar
  30. 30.
    Nash NH, Young TM, McGrail PT, Stanley WF (2015) Inclusion of a thermoplastic phase to improve impact and post-impact performances of carbon fiber reinforced thermosetting composites. Mater Des 85:582–597CrossRefGoogle Scholar
  31. 31.
    Kangha P, Lingaiah S, Sivakumar K (2010) Effect of Nylon-66 nano-fiber interleaving on impact damage resistance of epoxy/carbon fiber composite laminates. Compos Struct 92(6):432–1439Google Scholar
  32. 32.
    Chekov DI, Stepashkin AA, Maksimkin AV, Tcherdyntsev VV, Kaloshkin SD, Kuskov KV, Bugakov VI (2015) Investigation of structure, mechanical and tribological properties of short carbon fiber reinforced UHMWPE-matrix composites. Compos Part B 76:79–88CrossRefGoogle Scholar
  33. 33.
    Unterweger C, Duchoslava J, Stifterb D, Fürsta C (2015) Characterization of carbon fiber surfaces and their impact on the mechanical properties of short carbon fiber reinforced polypropylene composites. Compos Sci Technol 108:41–47CrossRefGoogle Scholar
  34. 34.
    Martone A, Formica C, Giordano M, Zarrelli M (2010) Reinforcement efficiency of multi-walled carbon nanotube/epoxy nano composites. Compos Sci Technol 70:1154–1160CrossRefGoogle Scholar
  35. 35.
    Liu L, Zheng Z, Chenyi G, Wang X (2010) The poly (urethane-ionic liquid)/multi-walled carbon nanotubes composites. Compos Sci Technol 70:1697–1703CrossRefGoogle Scholar
  36. 36.
    Ashrafi B, Guan J, Mercalli V, Zhang Y, Chun L, Simard PHB, Kingston CT, Bourne O, Johnston A (2011) Enhancement of mechanical performance of epoxy/carbon fiber laminate composites using single-walled carbon nanotubes. Compos Sci Technol 71:1569–1578CrossRefGoogle Scholar
  37. 37.
    Saatchi MM, Shojaei A (2011) Mechanical performance of styrene-butadiene-rubber filled with carbon nanoparticles prepared by mechanical mixing. Mater Sci Eng A528:7161–7172CrossRefGoogle Scholar
  38. 38.
    Kima J, Hyungu I, Chob MH (2011) Tribological performance of fluorinated polyimide-based nanocomposite coatings reinforced with PMMA-grafted- MWCNT. Wear 271:1029–1038CrossRefGoogle Scholar
  39. 39.
    Hwang Y, Kim M, Kim J (2013) Improvement of the mechanical properties and thermal conductivity of poly (ether-ether-ketone) with the addition of graphene oxide-carbon nanotube hybrid fillers. Compos Part A 55:195–202CrossRefGoogle Scholar
  40. 40.
    González I, Eguiazábal JI (2013) Widely dispersed PEI-based nanocomposites with multi-wall carbon nanotubes by blending with a masterbatch. Compos Part A 53:176–181CrossRefGoogle Scholar
  41. 41.
    Nama TH, Goto K, Nakayama H, Oshima K, Premalal V, Shimamura Y, Inoue Y, Naito K, Kobayashi S (2014) Effects of stretching on mechanical properties of aligned multi-walled carbon nanotube/epoxy composites. Compos Part A 64:194–202CrossRefGoogle Scholar
  42. 42.
    Chandrasekaran S, Sato N, Tölle F, Mülhaupt R, Fiedler B, Schulte K (2014) Fracture toughness and failure mechanism of graphene based epoxy composites. Compos Sci Technol 97:90–99CrossRefGoogle Scholar
  43. 43.
    Huu Nam T, Goto K, Nakayama H, Oshima K, Premalal V, Shimamura Y, Inoue Y, Naito K, Kobayashi S (2014) Effects of stretching on mechanical properties of aligned multi-walled carbon nanotube/epoxy composites. Compos Part A 64:194–202CrossRefGoogle Scholar
  44. 44.
    Muthu J, Dendere C (2014) Functionalized multiwall carbon nanotubes strengthened GRP hybrid composites: improved properties with optimum fiber content. Compos Part B 67:84–94CrossRefGoogle Scholar
  45. 45.
    Martonea A, Formicola C, Giordano M, Zarrelli M (2010) Reinforcement efficiency of multi-walled carbon nanotube/epoxy nano composites. Compos Sci Technol 20:1154–1160CrossRefGoogle Scholar
  46. 46.
    Saatchi MM, Shojaei A (2011) Mechanical performance of styrene-butadiene-rubber filled with carbon nanoparticles prepared by mechanical mixing. Mater Sci Eng A 528:7161–7172CrossRefGoogle Scholar
  47. 47.
    Pinto D, Bernardo L, Amaroa A, Lopes S (2015) Mechanical properties of epoxy nanocomposites using titanium dioxide as reinforcement. Constr Build Mater 95:506–524CrossRefGoogle Scholar
  48. 48.
    Cheng X, Kumar V, Yokozeki T, Goto T, Takahashi T, Koyanagi J, Wud L, Wang R (2016) Highly conductive graphene oxide/polyaniline hybrid polymer nanocomposites with simultaneously improved mechanical properties. Compos Part A 82:100–107CrossRefGoogle Scholar
  49. 49.
    Kang Y, Cui X, Dong Z, Chen W (2016) Preparation, microstructure and properties of chromium carbide/epoxy composite. Mater Des 92:356–361CrossRefGoogle Scholar
  50. 50.
    Kashyap S, Pratihar SK, Behera SK Conventional nano-fillers used in polymer based matrix: strong and ductile graphene oxide reinforced PVA nano-composites. J Alloys Compd 24:211Google Scholar
  51. 51.
    Ali S, Boming Z, Changchun W (2013) Mechanical enhancement of carbon fiber/epoxy composites based on carbon nano-fibers by using spraying methodology. Appl Mech Mater 245:203–208Google Scholar
  52. 52.
    Sehaqui H, Morimune SB, Nishino TB, Berglund LA (2012) Stretchable and strong cellulose nanopaper structures based on polymer-coated nanofiber networks. Biomacromolecules 13(11):3661–3667CrossRefGoogle Scholar
  53. 53.
    Zhou Y, Pervin F, Rangari VK, Jelani S (2006) Fabrication and evaluation of carbon nano fiber filled carbon/epoxy composite. Mater Sci Eng A 426(1–2):221–228CrossRefGoogle Scholar
  54. 54.
    Ahmadi M, Masoomi M, Safi S (2015) Mechanical property characterization of carbon nanofiber/epoxynano-composites reinforced by GMA-grafted UHMWPE fibers. Compos Part-B 83:43–49CrossRefGoogle Scholar
  55. 55.
    Arras MML, Schillai C, Keller TF, Schulze R, Jandt KD (2013) Alignment of multi-wall carbon nanotubes by disentanglement in ultra-thin melt-drawn polymer films. Carbon 60:366–378CrossRefGoogle Scholar
  56. 56.
    FarshbafZinatia R, Razfara MR, Nazockdastba H (2014) Numerical and experimental investigation of FSP of PA 6/MWCNT composite. J Mater Process Technol 214:2300–2315CrossRefGoogle Scholar
  57. 57.
    Yazdani H, Smith BE, Hatami K (2016) Multi-walled carbon nanotube-filled polyvinyl chloride composites: influence of processing method on dispersion quality, electrical conductivity and mechanical properties. Compos Part A 82:65–77CrossRefGoogle Scholar
  58. 58.
    Tang L-C, Wan Y-J, Dong Y, Pei Y-B, Zhao L, Lic Y-B, Wu L-B, Jiang J-X, Lai G-Q (2013) The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60:16–27CrossRefGoogle Scholar
  59. 59.
    Hallad SA, Banapurmath NR, Patil AY, Hunashyal AM, Shettar AS (2015) Studies on the effect of multi-walled carbon nanotube–reinforced polymer based nano-composites using finite element analysis software tool. Proc IMechE Part N: J Nanoeng Nanosys 230(4):200–212. Google Scholar
  60. 60.
    Pontefisso A, Jr LM (2016) Nanomorphology of graphene and CNT reinforced polymer and its effect on damage: micromechanical numerical study. Compos Part B 96:338–349CrossRefGoogle Scholar
  61. 61.
    Razfara MR, Nazockdast H, Farshbaf Zinati R (2014) Numerical and experimental investigation of FSP of PA 6/MWCNTcomposite. J Mater Process Technol 214:2300–2315CrossRefGoogle Scholar
  62. 62.
    Penjumras P, Rahman RA, Talib RA, Abdan K (2015) Response surface methodology for the optimization of preparation of biocomposites based on poly(lactic acid) and durian peel cellulose. Sci World J 10(1155):12Google Scholar
  63. 63.
    Moghri M, Shamaee H, Shahrajabian H, Ghannadzadeh A (2015) The effect of different parameters on mechanical properties of PA-6/clay nanocomposite through genetic algorithm and response surface methods. Int Nano Lett 5(3):113–140CrossRefGoogle Scholar
  64. 64.
    Chow WS (2008) Optimization of process variables on flexural properties of epoxy/organo-montmorillonite nanocomposite by response surface methodology. Express Polym Lett 2:2–11CrossRefGoogle Scholar
  65. 65.
    Zare Y, Garmabi H, Sharif F (2011) Optimization of mechanical properties of PP/NAnoclay/CaCO3 ternanynoncomposite using response surface methodology. J Appl Polym Sci 122:3188–3200CrossRefGoogle Scholar
  66. 66.
    Ghasemi FA, Ghasemi I, Menbari S, Ayaz M, Ashori A (2016) Optimization of mechanical properties of polypropylene/talc/graphene composites using response surface methodology. J Polym Testing 53:283–292CrossRefGoogle Scholar
  67. 67.
    Li F, Xue J, Zhao J, Zhang S (2015) Graphene oxide: a promising nanomaterial for energy and environmental applications. Nano Energy 16:488–515CrossRefGoogle Scholar
  68. 68.
    Yang SY, Chang KH, Tien HW, Lee YF, Li SM, Wang YS, Wang JY, Ma CCM, Hu CC (2011) Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors. J Mater Chem 21:2374–2380CrossRefGoogle Scholar
  69. 69.
    De las Casas C, Li W (2012) A review of application of carbon nanotubes for lithium ion battery anode material. J Power Sources 208:74–85CrossRefGoogle Scholar
  70. 70.
    Cao H, Wang X, Gu H, Liu J, Luan L, Liu W, Wang Y, Guo Z (2015) Carbon coated manganese monoxide octahedron negative-electrode for lithium-ion batteries with enhanced performance. RSC Adv 5:34566–34571CrossRefGoogle Scholar
  71. 71.
    Li X, Gu H, Liu J, Wei H, Qiu S, Fu Y, Lv H, Lu G, Wang Y, Guo Z (2014) Multi-walled carbon nanotubes composited with nanomagnetite for anodes in lithium ion batteries. RSC Adv 5:7237–7244CrossRefGoogle Scholar
  72. 72.
    Hu C, Guo S, Lu G, Fu Y, Liu J, Wei H, Yan X, Wang Y, Guo Z (2014) Carbon coating and Zn2+ doping of magnetite nanorods for enhanced electrochemical energy storage. Electrochim Acta 148:118–126CrossRefGoogle Scholar
  73. 73.
    Reddy ALM, Srivastava A, Gowda SR, Gullapalli H, Dubey M, Ajayan PM (2010) Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4:6337–6342CrossRefGoogle Scholar
  74. 74.
    Zhang H, Li X, Zhao C, Fu T, Shi Y, Na H (2008) Composite membranes based on highly sulfonated PEEK and PBI: morphology characteristics and performance. J Membr Sci 308:66–74CrossRefGoogle Scholar
  75. 75.
    Aj A, Foules FR (1989) Fuel cell handbook. Van Nostrand Reinhold, New YorkGoogle Scholar
  76. 76.
    Savadogo O (1998) Emerging membranes for electrochemical systems. I. Solid polymer electrolyte membranes for fuel cell systems. J New Mater Electrochem Syst 1:47–66Google Scholar
  77. 77.
    Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352CrossRefGoogle Scholar
  78. 78.
    Hamnett A (2003) Introduction to fuel-cell types. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells-fundamentals, technology and applications. Wiley, Chichester, pp 36–43Google Scholar
  79. 79.
    Doyle M, Rajendran G (2003) Perfluorinated membranes. In: Viel Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells-fundamentals, technology and applications. Wiley, Chichester, pp 351–395Google Scholar
  80. 80.
    Grot WG. Laminates of support material and fluorinated polymer containing pendant side chains containing sulfonyl groups. U.S. Patent: 3,770,567;1973Google Scholar
  81. 81.
    Xing PX, Robertson GP, Guiver MD, Mikhailenko SD, Kaliaguine S (2005) Synthesis and characterization of poly(aryl ether ketone) copolymers containing (hexafluoroisopropylidene)-diphenol moiety as proton exchange membrane materials. Polymer 46:3257–3263CrossRefGoogle Scholar
  82. 82.
    Kayser MJ, Reinholdt MX, Kaliaguine S (2010) Amine grafted silica/SPEEK nanocomposites as proton exchange membranes. J Phys Chem B 114:8387–8395CrossRefGoogle Scholar
  83. 83.
    Mohanty AK, Mistri EA, Banerjee S, Komber H, Brigitte V (2013) Highly fluorinated sulfonated poly(arylene ether sulfone) copolymers: synthesis and evaluation of proton exchange membrane properties. Ind Eng Chem Res 52:2772–2783CrossRefGoogle Scholar
  84. 84.
    Shao ZG, Joghee P, Hsing IM (2004) Preparation and characterization of hybrid Nafion-silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells. J Membr Sci 229:43–51CrossRefGoogle Scholar
  85. 85.
    Sxengu E, Erdener HL, Akay RG, Yucel H, Bac N, Eroglu I (2009) Effects of sulfonated polyether-etherketone (SPEEK) and composite membranes on the proton exchange membrane fuel cell (PEMFC) performance. Int J Hydrog Energy 34:4645–4652CrossRefGoogle Scholar
  86. 86.
    Staiti P, Arico AS, Baglio V, Lufrano F, Passalacqua E, Antonucci V (2001) Hybrid Nafion–silica membranes dipped with HPA for applications in DMFC. Solid State Ionics 145:101–107CrossRefGoogle Scholar
  87. 87.
    Hennepe HJCT, Bargeman D, Mulder MHV, Smolders CA (1987) Zeolite-filled silicone rubber membranes part I: membrane preparation and pervaporation results. J Membr Sci 35:39–55CrossRefGoogle Scholar
  88. 88.
    Zhou XY, Weston J, Chalkova E, Hofmann MA, Ambler CM, Allcock HR, Lvov SN (2003) High temperature transport properties of polyphosphazene membranes for direct methanol fuel cells. Electrochim Acta 48:2173–2180CrossRefGoogle Scholar
  89. 89.
    Watanabe M, Uchida H, Emori M (1998) Polymer electrolyte membranes incorporated with nanometer-size particles of Pt and/or metal-oxides: experimental analysis of the self-humidification and suppression of gas-crossover in fuel cells. J Phys Chem 102:3129–3137CrossRefGoogle Scholar
  90. 90.
    Zarrin H, Higgins D, Jun Y, Chen Z, Fowler M (2011) Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. J Phys Chem C 115:20774–20781CrossRefGoogle Scholar
  91. 91.
    Chien HC, Tsai LD, Huang CP, Kang CY, Lin JN, Chang FC (2013) Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells. Int J Hydrog Energy 38:13792–13801CrossRefGoogle Scholar
  92. 92.
    Heo Y, Im H, Kim J (2013) The effect of sulfonated graphene oxide on sulfonated poly(ether ether ketone) membrane for direct methanol fuel cells. J Membr Sci 425:11–22CrossRefGoogle Scholar
  93. 93.
    Sharma P, Bhatti TS (2010) A review on electrochemical double-layer capacitors. Energy Convers Manag 51:2901–2912CrossRefGoogle Scholar
  94. 94.
    Boota M, Hatzell KB, Beidaghi M, Dennison CR, Kumbur EC, Gogotsi Y (2014) Activated carbon spheres as a flowable electrode in electrochemical flow capacitors. J Electrochem Soc 161:A1078–A1083CrossRefGoogle Scholar
  95. 95.
    Omosebi A, Besser RS (2013) Electron beam patterned Nafion membranes for DMFC applications. J Power Sources 228:151–158CrossRefGoogle Scholar
  96. 96.
    Jannasch P (2003) Recent developments in high-temperature proton conducting polymer electrolyte membranes. Curr Opin Colloid Interface Sci 8:96–102CrossRefGoogle Scholar
  97. 97.
    Gahlot S, Sharma PP, Kulshrestha V, Jha PK (2014) SGO/SPES- based highly conducting polymer electrolyte membranes for fuel cell application. ACS Appl Mater Interfaces 6:5595–5601CrossRefGoogle Scholar
  98. 98.
    Beydaghi H, Javanbakht M, ElahehKowsari (2014) Synthesis and characterization of poly (vinyl alcohol)/sulfonated graphene oxide nanocomposite membranes for use in proton exchange membrane fuel cells (PEMFCs). Ind Eng Chem Res 53(43):16621–16632CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Nagaraj R. Banapurmath
    • 1
    • 2
  • Shankar A. Hallad
    • 1
    • 2
  • Anand M. Hunashyal
    • 1
    • 3
  • A. M. Sajjan
    • 1
  • Ashok S. Shettar
    • 1
    • 3
  • N. H. Ayachit
    • 4
  • Malatesh T. Godi
    • 1
  1. 1.Centre for Material ScienceKLE Technological UniversityHubballiIndia
  2. 2.Department of Mechanical EngineeringKLE Technological UniversityHubballiIndia
  3. 3.Department of Civil EngineeringKLE Technological UniversityHubballiIndia
  4. 4.Ranichannamma UniversityBelgaviIndia

Personalised recommendations