Advertisement

Synthesis Techniques for Preparation of Nanomaterials

  • Sharanabasava V. Ganachari
  • Nagaraj R. Banapurmath
  • Basavaraja Salimath
  • Jayachandra S. Yaradoddi
  • Ashok S. Shettar
  • Anand M. Hunashyal
  • Abbaraju Venkataraman
  • Parvathi Patil
  • H. Shoba
  • Gurusiddesh B. Hiremath
Living reference work entry

Abstract

Nanotechnology is concerned with the design, development, and application of nanomaterials and the essential empathizing of the associations among physical properties or phenomena and material dimensions. It deals with materials or structures in nanometers and is a novel field or a new technical area. Analogous to quantum mechanics, on the nanometer scale, materials or structures may have new physical properties or show new physical phenomena.

Nanomaterials have an enormously wide range of possible applications from nanoscale optics and electronics to nano-biological systems and nano-medicine. However, the study and applications of nanomaterials rely powerfully on the effective synthesis of nanomaterials. In addition, progress of simple and economical impending for the preparation of nanomaterials is vital for the applications of nanomaterials and the progress of nanotechnology.

Keywords

Nanomaterials Synthesis methods Sol- gel Hydrothermal Colloidal Spray pyrolysis Self-propagating high- temperature combustion method Self-propagating low- temperature combustion method Reverse microemulsions/micelles method Thermochemical/Flame decomposition of metal-organic precursors Microwave-assisted method 

References

  1. 1.
    Queenety KT, Friend CM (2000) J Phys Chem B 104:409CrossRefGoogle Scholar
  2. 2.
    Roy R (1989) Solid State Ionics 32–33:3CrossRefGoogle Scholar
  3. 3.
    Rao CNR, Agrawal VV, Biswas K, Gautam UK, Ghosh M, Govindaraj A, Kulkarni GU, Kalyanikutty KP, Sardar K, Vivekchand SRC (2006) Pure Appl Chem 78:1619–1650CrossRefGoogle Scholar
  4. 4.
    Thomson J Jr (1974) Am Ceram Soc Bull 53:421Google Scholar
  5. 5.
    Tu GC, Chen FH, Koo HS (1990) Supercond Sci Technol 3:134CrossRefGoogle Scholar
  6. 6.
    Wang H-W, David A-H, Sale FR (1992) J Am Ceram Soc 75:124CrossRefGoogle Scholar
  7. 7.
    Mallikarjuna NN, Venkataraman A (2001) Indian J Eng Mater Sci 8:303Google Scholar
  8. 8.
    Rao CNR, Gopalakrishnan J (1997) New directions in solid state chemistry. Cambridge University Press, Cambridge, p 122CrossRefGoogle Scholar
  9. 9.
    Yanagida H, Koumoto K, Migayuma M (1996) The chemistry of ceramics. Wiley, Chichester, p 97Google Scholar
  10. 10.
    Rao KJ (1995) Perspectives in solid state chemistry. Narosa Publishing House, New Delhi, p 39Google Scholar
  11. 11.
    Segal D (1989) In: West AR, Baxter H (eds) Chemical synthesis of advanced ceramic materials. Chemistry of Solid State Materials. Cambridge University Press, Cambridge, p 33Google Scholar
  12. 12.
    Livage J (1997) Curr Opin Solid State Mater Sci 2:132CrossRefGoogle Scholar
  13. 13.
    Ricard-Poulet M, Vilminot S (1998) J Mater Chem 8:131CrossRefGoogle Scholar
  14. 14.
    Parkin IP, Rowley AT (1995) J Mater Chem 5:909. I.P. Parkin, Chem. Ind. (London), 1997, 725CrossRefGoogle Scholar
  15. 15.
    Merzhanov AG (1992) Adv Mater 4:294. Int. J. Self-Propag. High Temp. Synth., 4 (1995) 323CrossRefGoogle Scholar
  16. 16.
    Parkin IP (1996) Chem Soc Rev 25:199. P.R. Bonneau, R.F. Jarvis, R. B. Kaner, Nature, 349 (1991) 510CrossRefGoogle Scholar
  17. 17.
    Merzhanov AG (1995) Int J Self-Propag High Temp Synth 4:323Google Scholar
  18. 18.
    Pankhurst QA, Parkin IP (1998) Mater World 6:743Google Scholar
  19. 19.
    Palker VR (1999) Nanostruct Mater 11:369CrossRefGoogle Scholar
  20. 20.
    Herrig H, Hempelmann R (1996) Mater Lett 27:287CrossRefGoogle Scholar
  21. 21.
    Bruch C, Kruger JK, Unruch HG (1997) Ber Bunsenges Phys Chem 101:1761CrossRefGoogle Scholar
  22. 22.
    Hartl W, Beck C, Roth M, Meyer F, Hempelmann R (1997) Ber Bunsenges Phys Chem 101:1714CrossRefGoogle Scholar
  23. 23.
    Hung CH, Katz JL (1992) J Mater Res 7:1861CrossRefGoogle Scholar
  24. 24.
    Patil KC, Aruna ST, Ekambaram S (1997) Curr Opin Solid State Mater Sci 2:158–165CrossRefGoogle Scholar
  25. 25.
    Patil KC, Aruna ST (2002) In: Borisov AA, De Luca LT, Merzhanov AG, Scheck YN (eds) Redox methods in SHS practice in self-propagating high temperature synthesis of materials. Taylor & Francies, New YorkGoogle Scholar
  26. 26.
    Merzhanov AG (1999) SHS research and development handbook. Russian Academy of Sciences, ChernogolovkaGoogle Scholar
  27. 27.
    Verma A (2001) Sci Am 283:44Google Scholar
  28. 28.
    Verma A, Rogachev AS, Mukasyan AS, Hwang S (1998) Adv Chem Eng 24:79–226CrossRefGoogle Scholar
  29. 29.
    Patil KC, Serkar MMA (1994) Int J Self-Propag High-Temp Synth 3:181–196Google Scholar
  30. 30.
    Baghurst DR, Mingos DMP (1992) J Chem Soc Chem Commun 674–677.  https://doi.org/10.1039/C39920000674
  31. 31.
    Baghurst DR, Chippindale AM, Mingos DMP (1988) Nature 332:311CrossRefGoogle Scholar
  32. 32.
    Vaidyanathan B, Ganguli M, Rao KJ (1995) Mater Res Bull 30:1173CrossRefGoogle Scholar
  33. 33.
    Arafat A, Jansen JC, Baid ARE, Bekkum HV (1993) Zeolites 13:162CrossRefGoogle Scholar
  34. 34.
    Baghurst DR, Mingos DMP (1988) J Chem Soc Chem Commun 829–830.  https://doi.org/10.1039/C39880000829
  35. 35.
    Zhang H, Ouyang S, Liu H, Li Y (1996) Mater Res Soc Symp Proc 430:447CrossRefGoogle Scholar
  36. 36.
    Wu CG, Bein T (1996) Chem Commun 925–926.  https://doi.org/10.1039/CC9960000925
  37. 37.
    Zijlstra S, de Groot TJ, Kok LP, Visser GM, Vaalburg W (1993) J Organomet Chem 58:1643CrossRefGoogle Scholar
  38. 38.
    Taylor MD, Roberts AD, Nickels R (1996) J Nucl Med Biol 23:605CrossRefGoogle Scholar
  39. 39.
    Patil D, Mutsuddy B, Grrard R (1992) J Microw Power Electromagn Energy 27:49CrossRefGoogle Scholar
  40. 40.
    Landry CC, Barron AR (1993) Science 260:1653CrossRefGoogle Scholar
  41. 41.
    Bond G, Moyes RS, Whan DA (1993) Catal Today 17:429Google Scholar
  42. 42.
    Yuji W, Hiromitsu K, Takao S, Hirotaro M, Takayuki S, Takayuki K, Shozo Y (1999) Chem Lett 7:607Google Scholar
  43. 43.
    Boxall DL, Deluga GA, Kenik EA, King WD, Lukehart CM (2001) Chem Mater 13:891CrossRefGoogle Scholar
  44. 44.
    Gallis KW, Landry CC (2001) Adv Mater 13:23CrossRefGoogle Scholar
  45. 45.
    Boxall DL, Lukehart CM (2001) Chem Mater 13:806CrossRefGoogle Scholar
  46. 46.
    Zhang Y, Qiao ZP, Chen XM (2002) J Solid State Chem 167:249. W. Tu, H. Liu, J. Mater. Chem., 10 (2000) 2207CrossRefGoogle Scholar
  47. 47.
    Komarneni S, Fregeau E, Breval E, Roy R (1998) J Am Ceram Soc 71:c26–c28Google Scholar
  48. 48.
    Chen Q, Rondinone AJ, Chakoumakos BC, Zhang ZJ (1999) J Magn Magn Mater 194:1CrossRefGoogle Scholar
  49. 49.
    Suresh K, Kumar NRS, Patil KC (1991) Adv Mater 3:148CrossRefGoogle Scholar
  50. 50.
    Albuquerque AS, Ardisson JD, Macedo WAA (1999) J Magn Magn Mater 192:277CrossRefGoogle Scholar
  51. 51.
    Gajbhiye NS, Prasad S, Balaji G (1999) IEEE Trans Magn 35:2155CrossRefGoogle Scholar
  52. 52.
    Yu H-F, Gadalla AM (1996) J Mater Res 11:663. M.P. Pileni, N. Moumen, J. Phys. Chem., 100 (1996) 1867CrossRefGoogle Scholar
  53. 53.
    Liu C, Zou B, Rondinone AJ, Zhang ZJ (2000) J Am Chem Soc 122:6263CrossRefGoogle Scholar
  54. 54.
    Dawson WJ (1988) Am Ceram Soc Bull 67:1673Google Scholar
  55. 55.
    Ozin GA (1997) Acc Chem Res 30:17CrossRefGoogle Scholar
  56. 56.
    Sarakaya M, Tamerler C, Jen AKY, Schulten K, Babeyx F (2003) Nat Mater 2:577CrossRefGoogle Scholar
  57. 57.
    Reiss BD, Mao C, Solis DJ, Ryan KS, Thomson T, Belcher AM (2004) Nano Lett 4:1127CrossRefGoogle Scholar
  58. 58.
    Martisen A, Skjak-Braek G, Smidsrod O (1989) Biotechnol Bioeng 33:79CrossRefGoogle Scholar
  59. 59.
    Pope NM, Alsop RC, Chang Y-A, Smith AK (1994) J Biomed Mater Res 28:449CrossRefGoogle Scholar
  60. 60.
    Wu P, Gao L, Guo J (2002) Mater Lett 57:115CrossRefGoogle Scholar
  61. 61.
    Guo Q, Teng X, Rahman S, Yang H (2003) J Am Chem Soc 125:630CrossRefGoogle Scholar
  62. 62.
    Rao CNR, Kulkarni GU, Thomas PJ, Agrawal VV, Saravanan P (2003) J Phys Chem B 107:7391CrossRefGoogle Scholar
  63. 63.
    Gautam UK, Ghosh M, Rao CNR (2003) Chem Phys Lett 381:1CrossRefGoogle Scholar
  64. 64.
    Gautam UK, Ghosh M, Rao CNR (2004) Langmuir 20:10775CrossRefGoogle Scholar
  65. 65.
    Rao CNR, Kulkarni GU, Agrawal VV, Gautam UK, Ghosh M, Tumkurkar U (2005) J Colloid Interface Sci 289:305CrossRefGoogle Scholar
  66. 66.
    Sarathy KV, Kulkarni GU, Rao CNR (1997) Chem Commun 537–538.  https://doi.org/10.1039/A700738H
  67. 67.
    Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) J Chem Soc Chem Commun 801–802.  https://doi.org/10.1039/C39940000801
  68. 68.
    Lin Y, Skaff H, Dinsmore AD, Russell TP (2003) Science 299:226CrossRefGoogle Scholar
  69. 69.
    Rao CNR, Kulkarni GU, Thomas PJ, Agarwal VV, Gautam UK, Ghosh M (2003) Curr Sci 85:1041Google Scholar
  70. 70.
    Vaidhyanathan B, Balaji K, Rao KJ (1998) Chem Mater 10:3400CrossRefGoogle Scholar
  71. 71.
    Tu W, Liu H (2000) Chem Mater 12:564CrossRefGoogle Scholar
  72. 72.
    Ganachari SV, Bhat R, Deshpande R et al (2012) BioNano Sci 2:316CrossRefGoogle Scholar
  73. 73.
    Trevethan T et al (2006) Nanotechnology 17(23):5866CrossRefGoogle Scholar
  74. 74.
    Roco MC (2007) Handbook on Nanoscience, Engineering and Technology. 2nd ed. Taylor and Francis 3.1–3.26Google Scholar
  75. 75.
    Messing GL, Zhang SC, Jayanthi GV (1993) J Am Ceram Soc 76(11):2707CrossRefGoogle Scholar
  76. 76.
    Skanandan G, Chen Y-J, Glumac N, Kear BH (1999) Nanostruct Mater 11:149CrossRefGoogle Scholar
  77. 77.
    Cow GM, Gonsalves KE (eds) (1996) Nanotechnology, molecularly designed materials. American Chemical Society, Washington, DC, pp 64–78Google Scholar
  78. 78.
    Lindackers D, Janzen C, Rellinghaus B, Wassermann EF, Roth P (1998) Nanostruct Mater 10:1247CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Sharanabasava V. Ganachari
    • 1
  • Nagaraj R. Banapurmath
    • 1
    • 2
  • Basavaraja Salimath
    • 4
    • 5
  • Jayachandra S. Yaradoddi
    • 1
  • Ashok S. Shettar
    • 1
    • 3
  • Anand M. Hunashyal
    • 1
    • 3
  • Abbaraju Venkataraman
    • 4
    • 5
  • Parvathi Patil
    • 4
    • 5
    • 6
  • H. Shoba
    • 7
  • Gurusiddesh B. Hiremath
    • 8
  1. 1.Centre for Material Science, Advanced research in Nanoscience & NanotechnologyB.V. Bhoomaraddi College of Engineering and TechnologyHubballiIndia
  2. 2.Department of Mechanical EngineeringB.V. Bhoomaraddi College of Engineering and TechnologyHubballiIndia
  3. 3.Department of Civil EngineeringB.V. Bhoomaraddi College of Engineering and TechnologyHubballiIndia
  4. 4.Department of PG Studies and Research in ChemistryGulbarga UniversityKalaburagiIndia
  5. 5.Department of Materials ScienceGulbarga UniversityKalaburagiIndia
  6. 6.Department of ChemistryH. K. E. Society’s Smt. Veeramma Gangasiri College for WomenKalaburagiIndia
  7. 7.Department of Agricultural EngineeringUniversity of Horticultural SciencesBagalkotIndia
  8. 8.Department of Biotechnology and MicrobiologyP. C. Jabin Science CollegeHubballiIndia

Personalised recommendations